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Simple Summary: Heavy metal pollution of environmental ecosystems has become rather a significant
factor in assessing them, as heavy metals can significantly influence animal health. The objective of
this study was to examine a possible association between contents of selected heavy metals such as
cadmium, copper, lead, chrome, zinc, and manganese in intestines of foxes and between prevalence
of fox intestinal parasites. The association was not fully proven. On the contrary, sensitivity of
parasites to cadmium was demonstrated; with increasing cadmium content in the intestine of the
host, prevalence of parasites decreased to zero. No parasites were found in the intestine, when
concentration of accumulated cadmium exceeded the level of 0.05 milligrams per kilogram, which
represents the limit for meat (excluding offal) of bovine animals, sheep, pig, and poultry according
to the Regulation (EU) No. 488/2014 amending the Regulation (EC) No. 1881/2006). Thus, even
cadmium content below the above limit showed an impact on parasite biodiversity.

Abstract: The aim of this study was (i) to compare levels of accumulated heavy metals in the fox
intestines with and without parasites. Moreover, our research also dealt with (ii) examination of
the relationship between heavy metal content in fox intestines and between the presence of fox
intestinal parasites. The intestines of 34 hunter-killed foxes were dissected to detect the occurrence of
parasites. In 15 intestinal samples, parasitic intestinal helminths were found. Heavy metal content in
small intestine tissue and in parasites was determined using atomic absorption spectrometry (AAS).
The prevalence of parasites was significantly dependent on Cd content in the host’s small intestine
(p < 0.01). To conclude, the authors suggest that parasites are sensitive to Cd levels; their prevalence
in the intestines of the fox host decreases to zero with increasing Cd content.

Keywords: accumulation; metals; red fox; intestinal parasites

1. Introduction

Wildlife, farm animals, and humans are exposed to increasing environmental pollution. The sooner
this pollution is detected, the sooner measures necessary to prevent and eliminate it can be taken.
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Therefore, scientists have continuously been searching for new species that could be used as pollution
markers [1]. Accumulation indicators are organisms, which have sufficient size, are easily available,
and widely spread. They are also expected to show high accumulation potential. Moreover, pollutant
contents in their bodies and average pollutant concentrations in the environment are required to
correlate identically at all locations and conditions [1]. Due to their functional influence in animal
hierarchy [2], that is because of their position in the food chains [3], parasites exert the potential
to be regarded as bio-indicators of heavy metals, especially when anthropogenic pollution must be
monitored [1,4]. Due to their higher potential to accumulate heavy metals before contamination occurs
in animal tissues used for human consumption, parasites are considered bio-indicators capable of
indicating possible environmental burdens. Several studies have already reported research on the
use of parasites as indicators of environmental quality [5]. Specific animal indicators for detection of
pollution in aquatic ecosystems have already been proposed; amounts of heavy metals found in the
Hysterothylacium aduncum nematode were used to assess the contents of waterborne contaminants [6].
Moreover, the rat-parasite scheme [7,8] has been proposed for monitoring pollution in urban ecosystems.
For other ecosystems, appropriate indicators are expected to be found.

However, the amount of heavy metals that can be tolerated by parasites has not been determined
yet. Many studies [1,8–10] have demonstrated higher levels of heavy metals found in parasites rather
than in their hosts; some researchers report objective findings on bio-remediation ability of parasites to
relieve their hosts of the heavy metal burden [11–13].

The above findings might lead to the following presumption: by deliberately infecting a host
with a parasite, the host could recover from intoxication. Another hypothesis suggests alternatively
that higher concentrations of heavy metals in the tissues of a host may exert a negative effect on
its parasites. Many heavy metals are toxic; a study on the effect of cadmium on the reproductive
capacity of Caenorhabditis elegans proved damage of its intestinal lining followed by eating disorders
and reduced fecundity after exposure to higher doses of Cd [14]. Regarding influence of environmental
pollution, changes in populations of parasites and in their communities have often been analysed.
An article summarizing findings of many studies shows that environmental pollution affects parasite
populations and their communities directly or through intermediate hosts and host effects [1].

The aim of this study was (i) to compare levels of accumulated heavy metals in the fox intestines
with and without parasites. Moreover, the research also dealt with (ii) examination of the relationship
between heavy metal contents in fox intestines and presence of intestinal parasites.

2. Materials and Methods

2.1. Foxes

In the period of 2015 to 2018, samples of intestines of 34 red wild foxes were collected occasionally
during hunts in various parts of the Czech Republic. No animal investigated in our study was
kept in experimental breeding colonies. All the fox specimens were shot down as nuisance wildlife
management in compliance with the Czech Act No. 449/2001 Coll. in reading of further prescriptions.
Intestines of hunter-killed animals were subjected to the research.

The foxes were eviscerated in situ and the viscera were transported to a laboratory. In the
laboratory, the samples were being kept at −78 ◦C for one month to inactivate any potential infections.
After thawing, the viscera were divided into individual parts during visceral dissection. For the
purpose of this study, the small intestine was used. It was divided into duodenum, jejunum, and
ileum. Each part was washed separately with distilled water and stored in plastic vials containing 80%
alcohol. Endoparasites were examined microscopically considering also the washed small intestine
content. Although Protozoa representatives were also detected, only the species that could be further
investigated by the chosen method were examined within this study. The parasites were also washed
with distilled water and separately stored in plastic vials with 80% alcohol.
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In 15 intestinal samples, parasitic intestinal helminths of the phylum Nematoda (roundworms)
and Cestoda (tapeworms) were found. Nine samples contained tapeworms of the genus Mesocestoides.
Helminths were not detected in 19 tissue samples of fox intestines.

2.2. Samples

For further processing, the biological material was categorized into four main groups:

• Small intestine (jejunum) without ingesta from foxes where no parasites were detected;
• Small intestine (jejunum) without ingesta from foxes where parasites were detected;
• Parasites, further classified into the following three groups: (a) Nematoda, (b) Cestoda—

Mesocestoides spp., (c) Cestoda—others;
• Standard reference material (CRM 12-02-01 Bovine Liver) from the Czechoslovak Institute

of Metrology.

2.3. Sample Analysis

For determination of the Pb, Cd, Ni, and Cr elements, atomic absorption spectrometry (AAS) with
electro thermal atomization (ETA AAS) was used (detection limit: Pb 0.100 µg kg−1, Cd 0.005 µg kg−1,
Cr 0.020 µg kg−1, Ni 0.080 µg kg−1). For Cu, Mn, and Zn analysis, flame atomization (FAAS) with
C2H2/air flame was employed. An AAS spectrometer AA 30 with a GTA 96 graphite cuvette (Varian
Ltd., Mulgrave, Australia) was used for measurement (detection limits: Cu 2.0 µg kg−1, Zn 10.0 µg
kg−1, Mn 1.8 µg kg−1). Standard solutions of Cd, Pb, Cr, Cu, Zn, Mn, and Ni such as TraceCERT®

(Sigma Aldrich, Prague, CZ) and ASTASOL (Analytika, Prague, CZ) were used in construction of
calibration curves for the measurements.

For background correction, Pb and Cd signals were corrected with a D2 lamp and a matrix
modifier (Mg(NO3)2 + NH4H2PO4). Ascorbic acid was used as a matrix modifier for determination
of Cr.

AAS spectrometry was employed to analyze mineralized samples prepared by wet digestion in
an ETHOS SF microwave mineralizer (Milestone, Sorisole, Italy).

For mineralization, concentrated HNO3 was distilled using a BERGHOF equipment. Then,
0.16–0.6 g of tissue with addition of 5 mL HNO3 + 5 mL H2O (DEMI) was mineralized consequently.

The temperature program was set to reach 210 ◦C at maximum. After cooling, the samples
were filtered into 25 mL volumetric flasks. Element concentrations were determined in µg L−1

and recalculated to mg kg−1 in wet weight. The accuracy of the analytical method was enhanced
by simultaneous analysis of certified CRM 12-02-01 reference material (Bovine Liver). Levels of
all determined elements ranged within the confidence interval given by the CRM producer for
these elements.

2.4. Statistical Analysis

The obtained results were processed by the Statistica ver. 10 statistical program from StatSoft
(StatSoft Czech Rep. s.r.o., Zličín, CZ) and analysis of one-dimensional data was used. Exploratory data
analysis indicated an asymmetrical distribution of the acquired data. Therefore, incorrect values of a
classical and robust estimation of parameters were expected. Consequently, the Box-Cox transformation
method was used. Conversion of the data resulted in improved parameters of distribution. Thus,
the re-expressed estimate x̄R of Box-Cox transformation is one the most reliable point estimates of
the centre.

In case of small samples (4 < n < 20), use of the Horn procedure of pivot measures is
recommended [15]. Both pivot half-sum PL and pivot range RL are robust against outliers in a
small sample. Interval estimate suggests a range of possible values with a pre-chosen probability
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(lower limit LL < µ < upper limit LU). For significance level α = 0.05, the 95% confidence interval of
the measure of location µ was calculated.

PL − RL. tL, 0,975 (n) < µ < PL+ RL. tL, 0,975 (n) (1)

where tL, 0,975 (n) = Horn’s quantile.
To evaluate the significance of variability sources in the data, non-parametric analysis of variance,

namely the Kruskal-Wallis test was used.
The comparison of two independent variables such as the content of heavy metals in fox intestines

containing parasites, and the content of heavy metals in fox intestines without parasites was done
using the non-parametric Mann-Whitney U test.

3. Results

The effect of intestinal fox parasites on accumulation of heavy metals in the small intestine of foxes
was evaluated by comparing detected contents of heavy metals in fox intestines with parasites with
those found in fox intestines free of parasites (Table 1). All results are calculated on a wet matter basis.

Table 1. Heavy metal contents in fox intestines and in their parasites.

Tissues
Metal (mg kg−1)

Cd Pb Cr Cu Zn Mn Ni

Small intestines
free of parasites

n = 19

x̄ 0.03 0.52 0.14 1.37 21.9 4.27 0.23
x̄0,5 0.03 0.29 0.06 1.31 20.7 1.82 0.20
x̄R 0.03 0.34 0.07 1.33 17.8 1.65 0.20
LL 0.02 0.18 0.05 1.05 17.3 1.53 0.13
LU 0.04 0.61 0.24 1.68 23.2 4.09 0.29

Small intestines
with parasites

n = 15

x̄ 0.01 0.22 0.13 1.19 23.9 2.84 0.19
x̄0,5 0.01 0.13 0.09 1.07 24.2 1.77 0.12
x̄R 0.01 0.12 0.09 1.09 23.4 1.89 0.15
LL 0.00 0.06 0.06 0.97 20.9 1.47 0.11
LU 0.01 0.37 0.15 1.24 27.4 2.39 0.26

Nematoda
(roundworms)

n = 4

x̄ 0.08 1.37 0.34 1.65 33.2 4.32 0.30
x̄0,5 0.05 1.23 0.18 1.78 34.1 4.06 0.26
x̄R 0.04 1.23 0.18 1.81 26.9 4.04 0.26
LL 0 0.65 0.12 0.04 13.9 3.09 0.10
LU 0.20 2.25 0.22 2.99 50.6 6.09 0.59

Cestoda
(tapeworms)
Mesocestoides

n = 9

x̄ 0.09 3.23 0.54 3.77 60.8 26.7 1.13
x̄0,5 0.03 2.34 0.35 2.72 59.0 20.6 0.70
x̄R 0.06 2.46 0.36 2.52 50.3 21.3 0.62
LL 0 0.69 0.07 0 26.2 5.62 0
LU 0.25 4.82 0.98 8.38 97.1 46.0 3.31

Cestoda
(tapeworms)

n = 4

x̄ 0.07 0.83 0.57 8.10 63.2 21.1 4.15
x̄0,5 0.02 0.66 0.42 3.93 55.6 18.0 3.06
x̄R 0.02 0.65 0.40 3.44 42.7 16.8 2.83
LL 0 0.19 0.10 0 11.7 3.15 0
LU 0.28 1.82 1.33 4.59 129.8 39.7 11.26

x̄ arithmetic mean; x̄0,5 median; x̄R expressed point estimate of Box-Cox data transformation; LU upper limit of
confidence interval of the measure of location for significance level = 0.05. LL lower limit of confidence interval of
the measure of location for significance level = 0.05.

Concentrations of Pb, Cr, Cu, Zn, Mn, and Ni in the parasites free intestines did not differ
significantly from levels of the above heavy metals in the intestines with detected parasites (p > 0.05).
However, concentration of Cd in the intestines of foxes without parasites (0.029 mg kg−1) was higher
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than that found in the intestines of animals with parasites (0.009 mg kg−1), the difference was statistically
significant (p = 0.014).

The association between prevalence of parasites and Cd content in fox intestines is shown in
Figure 1.Animals 2020, 10, x 5 of 11 
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Figure 1. Association between prevalence of parasites and Cd content in fox intestines.

The difference between the contents of heavy metals in parasites and between their levels in
intestines of their hosts was statistically evaluated by the Kruskal-Wallis test.

The concentrations of Pb, Cr, Cu, Zn, Mn, and Ni in parasites were higher than the concentrations
of the above metals in the host intestines, and the difference between the above concentrations was
statistically significant (p < 0.01). An exception to the above pattern is represented by Cd, for which
the determined level of statistical significance ranges between the following limits: 0.05 > p = 0.023
> 0.01. Statistical significance lies in the uncertainty interval. Comparison of Cd contents in parasite
tissues with Cd contents in intestines of the host is shown in Figure 2.
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Figure 2. Comparison of Cd concentrations in parasite tissues with Cd concentrations in intestines of
the host.

Concentrations of heavy metals in Mesocestoides spp. and their correlation with heavy metal
contents in the intestine of the host were examined by the Spearman’s rank correlation analysis.
The significance level (p) of the correlation was calculated. The results are shown in Table 2.

Table 2. Dependence of heavy metal concentrations in Mesocestoides spp. on heavy metal contents in
the intestine.

Mesocestoides spp. vs. Intestine
Metal

Cd Pb Cr Cu Zn Mn Ni

Spearmans’ rank correlation
coefficient (r) 0.23 0.75 0.77 0.03 0.32 0.47 0.03

p-value >0.05 <0.05 <0.05 >0.05 >0.05 >0.05 >0.05

For concentrations of heavy metals in other parasite species, this correlation was not calculated
due to the low number of samples (n = 4). The high Spearman’s rank correlation coefficient indicates
statistically significant dependence of Pb and Cr concentrations in Mesocestoides spp. on contents of
these heavy metals in the host’s intestine revealing thus a significant positive correlation. On the other
hand, correlation between the concentrations of Cd, Cu, Zn, Mn, and Ni in parasites and between the
levels of these heavy metals in the host intestine is not significant.

Therefore, occurrence of parasites was related to concentration of Cd in intestines of the host.
Prevalence of parasites decreased exponentially with increasing Cd concentrations in the host’s intestine.
No parasites were found in the intestines of the hosts that had accumulated Cd in concentrations
higher than 0.05 mg kg−1 (Figure 3).
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4. Discussion

High metal accumulation capacity has previously been reported for fish parasites, especially for
spiny-headed worms from the phylum Acanthocephala. Concentration of metals in the parasites was
up to 2700x higher than that in the tissues of their hosts [16]. The tapeworms of the genus Hymenolepis,
which parasitize rodents, were also subjected to tests. After exposure to Pb under laboratory conditions,
parasites contained the metal in amounts 17 times higher than those found in rat kidneys [7,17].

Similarly, parasites of the genus Moniliformis (Acanthocephala) parasitizing in rat intestine
contained Cd in concentration 119x higher than the intestines themselves [18]. Sures et al. [19] also
investigated the ability of heavy metals to accumulate in Macracanthorhynchus hirudinaceus in pigs and
found that Cd, Cu, Fe, Mg, Mn, Ni, and Pb concentrations in parasites were up to 160 times higher
than the amounts of the above metals in host tissues.

Our measurements confirmed the findings of other authors showing that the parasite tissues contain
higher levels of Pb, Cr, Zn, Cu, Mn, and Ni than the tissues of their hosts [16,20,21]. The bio-accumulation
factor (BAF) reflecting the ratio of heavy metal level between parasite and host tissues was always
greater than 1. The highest accumulation capacity of Pb was found in Mesocestoides spp., which
accumulated 21 times more Pb than the fox’s small intestine. Moreover, parasites can also accumulate
other metals like Cr (2–4.5x) and Mn (2–9x) well. On the contrary, it was found that Cd content in
parasite tissues does not grow proportionally to the Cd content in fox tissues such as in small intestine.
Some authors report the ability of selected parasites to accumulate significant amounts of elements
and to influence their concentrations in the host’s body [1,11,12]. However, based on our results, the
above findings cannot be taken for granted. The influence of parasites on the content of Pb, Cr, Cu, Zn,
Mn, and Ni in fox intestines was statistically inconclusive, perhaps because of the limited sample size.

Based on the results of our research, we can agree with findings reported in the following studies:
parasites neither cause reduction of some heavy metal amounts in the host tissue [22] nor they can
serve as natural bioremediators of heavy metals as expressed in [13]. However, content of Cd in a host
may show influence on occurrence of parasites in its body.

In accordance with other works, it was verified that red foxes with parasites had lower Cd
concentrations in their intestines than red foxes without parasites. However, low Spearman’s rank
correlation coefficient shows that Cd concentrations in parasites do not increase proportionally to the
Cd content in intestines of the host.



Animals 2020, 10, 343 8 of 11

As the concentration of Cd in host intestines increases, prevalence of parasites decreases
exponentially. The results of this study show, that parasites may demonstrate higher sensitivity
to the toxic effects of Cd than their hosts do. Along with their limited ability to accumulate Cd, higher
sensitivity of parasites to its toxic effects can reduce probability of parasitisation, when a certain level
of Cd contamination in the host is reached.

The hosts, whose concentration of Cd in intestines exceeded 0.05 mg kg−1, did not contain parasites
in their intestines. To compare, Regulation (EU) No 488/2014 allows cadmium content in various foods
to reach 0.05–0.2 mg kg−1 at maximum [23].

According to Sures [1], Cestodes and Acanthocephala parasites meet most of the criteria for ideal
toxicity sentinels because they are large, widespread, easy to collect, and they can provide information
about the average host exposure in its home district. Undoubtedly, the fox is a suitable host, because in
contrast to the rodents they prey upon, it lives in a relatively large territory [24]. Similar models of
pollution markers have already been studied [18]. Sures [10] suggests the use of parasites accumulating
metals as a pre-concentration step before detection of Pt and Rh in exhaust gases. In Antarctica, Pb and
Ag occurrence were studied [25]. Fish intestinal parasites have also been used to investigate heavy
metal water pollution in Vaal Dam and Lake Victoria, namely to examine Pb and Ag levels. In both
cases, the metals were barely detectable in the hosts, but in their parasites, they could have been easily
detected [26,27]. According to Sures [8,16], it is extremely important to employ effective indicators
also for urban areas. The above researcher proposes a host-parasite system of rat-H. diminuta for
urban ecosystems as a usable and promising mean at least for Pb detection because both rats and their
parasites are globally widespread and readily available.

Thus, based on the results of this study, the red fox-cestode system in forest ecosystems is
suggested to become a possible alternative or complementation to the above-mentioned ones, serving
thus as a means of biomonitoring of heavy metals, especially of Pb, Cr, and Mn. Parasites are supposed
to be able to detect occurrence of these metals in the environment rather soon, before they accumulate
in food sources at a concentration exceeding the hygienic limits.

In our case, samples taken from the animals that were to be killed in hunts were analysed. However,
should an extensive large scale research be required, the number of animals killed through wildlife
management measures would not be sufficient. Killing foxes only for the purpose of monitoring
contamination by heavy metals would certainly raise ethical questions. It is, therefore, appropriate to
pay attention to other, especially non-invasive monitoring methods that do not request killing. Animal
hair analysis is commonly used for the purpose of environmental pollution monitoring [28–30].

A substantial decrease in prevalence of intestinal fox parasites that is associated with increase in
Cd concentrations in the host intestine was found in this study. The above finding confirms conclusions
of some authors on influence of Cd on occurrence and life functions of other organisms, even at very
low concentrations [20,31,32].

Cadmium affects cell proliferation, differentiation, and apoptosis. These processes influence
DNA repair mechanism, generation of “reaction oxygen species” and also induction of apoptosis.
Cadmium binds to mitochondria. Moreover, it can inhibit both cellular respiration and oxidative
phosphorylation even at low concentrations [33]. Thus, Cd threatens biodiversity of different systems
in nature, as reported in [34–39]. Moreover, it also poses a health risk to humans.

Chronic Cd exposures have been reported to be associated with chronic kidney disease,
osteoporosis, diabetes, cardiovascular disease, and with cancer. For common population, food
represents the primary source of exposure by Cd. The major food sources that substantially enhance
Cd exposure are represented by rice and grains, shellfish and seafood, and meat including edible
offal, and vegetables. The estimated weekly intake (WI) values for Cd via rice consumption ranged
from 20 to 82 mg Cd per kg bw. In Thailand, most (88.0%) of the people living in urban areas mainly
consumed rice grown locally in the contaminated areas [40]. Cadmium pollution has not been reported
only in Thailand, it has been detected worldwide, from Scandinavia [41] to Antarctica [42], as well as
in the Czech Republic [43]. It is thus regarded as a serious global problem with an impact on stability
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of ecosystems and on safety of food sources. Safe food sources with reduced cadmium content have
been sought to decrease exposure by cadmium [44].

5. Conclusions

The results of our study confirm the following findings of other authors: the contents of Cd
accumulated in the small intestine of foxes without intestinal parasites are higher than its levels in
the small intestine of foxes with intestinal parasites, and the difference in the above Cd amounts is
statistically significant.

Statistically significant positive correlation between concentrations of Pb, Cr, and Mn in the
intestinal parasites (Mesocestoides spp.) of foxes and between levels of these metals in the small intestine
of foxes was proved. The correlation between Cd levels in fox intestinal parasites and between Cd
amounts in their intestines is statistically inconclusive.

An exponential decrease in prevalence of intestinal parasites (Mesocestoides spp.) of foxes that
depends on increasing concentration of Cd accumulated in the intestines of foxes was found.

Further research is suggested to elucidate causes of the above findings and to clarify possible
impacts of such specific factors on biodiversity or on human health.
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