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Simple Summary: There are diverse challenges in the poultry production industry that decrease the
productivity and efficiency of poultry production, impair animal welfare, and pose issues to public
health. Furthermore, the use of antibiotic growth promoters (AGP) in feed, which have been used to
improve the growth performance and gut health of chickens, has been restricted in many countries.
Tannins, polyphenolic compounds that precipitate proteins, are considered as alternatives for AGP in
feed and provide solutions to mitigate challenges in poultry production due to their antimicrobial,
antioxidant, anti-inflammatory and gut health promoting effects. However, because high dosages
of tannins have antinutritional effects when fed to poultry, determining appropriate dosages of
supplemental tannins is critical for their potential implementation as a solution for the challenges
faced in poultry production.

Abstract: The poultry industry has an important role in producing sources of protein for the world,
and the size of global poultry production continues to increase annually. However, the poultry
industry is confronting diverse challenges including bacterial infection (salmonellosis), coccidiosis,
oxidative stress, including that caused by heat stress, welfare issues such as food pad dermatitis
(FPD) and nitrogen and greenhouse gasses emissions that cumulatively cause food safety issues,
reduce the efficacy of poultry production, impair animal welfare, and induce environmental issues.
Furthermore, restrictions on the use of AGP have exacerbated several of these negative effects.
Tannins, polyphenolic compounds that possess a protein precipitation capacity, have been considered
as antinutritional factors in the past because high dosages of tannins can decrease feed intake and
negatively affect nutrient digestibility and absorption. However, tannins have been shown to have
antimicrobial, antioxidant and anti-inflammatory properties, and as such, have gained interest as
promising bioactive compounds to help alleviate the challenges of AGP removal in the poultry
industry. In addition, the beneficial effects of tannins can be enhanced by several strategies including
heat processing, combining tannins with other bioactive compounds, and encapsulation. As a result,
supplementation of tannins alone or in conjunction with the above strategies could be an effective
approach to decrease the need of AGP and otherwise improve poultry production efficiency.
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1. Introduction

Poultry products including meat and eggs account for a significant part of global food production
and constitute a protein staple throughout the world [1]. The United States Department of Agriculture
(USDA) reported in 2016 that global egg production was approximately 70 million tons, and poultry
meat production reached more than 100 million tons, which accounted for more than one-third of global
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meat production [2]. Moreover, global poultry production continues to increase annually [1]. However,
there are many challenges in the poultry industry including: bacterial infection (salmonellosis); parasitic
infection (coccidiosis); oxidative stress, including that caused by heat stress; welfare issues such as food
pad dermatitis (FPD); and nitrogen and greenhouse gas emissions which can cause severe economic
losses, threaten food safety and public health, impair animal welfare, and induce environmental
pollution [2–5].

Antibiotic growth promoters (AGP) have been supplemented to chicken diets to improve growth
performance and gut health, predominantly due to their antimicrobial effects and immunomodulatory
functions in chickens [6,7]. However, because of the increased public concern about the transmission
of antibiotic-resistant bacteria from poultry products, the use of AGP in poultry production has been
banned or restricted in many countries [8–10]. In addition, some producers in the U.S. poultry industry
have opted to entirely remove the use of antibiotics and instead raise chickens using “no antibiotics
ever (NAE)” or “raised without antibiotics (RWA)” approaches [11,12]. As a consequence, the efficiency
of poultry production has decreased due to increases in various bacterial and parasitic infections and
reductions in the growth rate of chickens [13]. In addition, because there is no “magic bullet” that
can replace AGP, some poultry producers are still using antibiotics in the U.S. and in many other
countries, and the use of antibiotics for livestock animals in the world is expected to increase, possibly
owing to population growth which is associated with a greater demand for livestock products in
middle-income countries [14]. Therefore, it is essential to find alternatives to AGP, which must be
cost-effective, eco-friendly and have antimicrobial and growth-promoting effects, without causing side
effects (e.g., generation of resistant bacteria) to the animals and humans [15].

Tannins, defined as polyphenolic compounds that can precipitate proteins, are secondary
metabolites, which are found in plants, seeds, bark, wood leaves and fruit skins and serve as
plant defense mechanisms against predation [16]. High concentrations of tannins have been shown to
have antinutritional effects in monogastric animals because tannins can decrease feed intake, nutrient
digestibility and growth performance of chickens [17,18]. However, recently in poultry production,
tannins have garnered a great deal of attention as an alternative for AGP because of their antimicrobial,
antioxidants and anti-inflammation properties [19–21]. In addition, many tannins are considered
sustainable feed additives, as they derive from byproducts of plant-based agriculture and industry.
For example, chestnut tannins, which are already sometimes supplemented to poultry, are obtained by
the distillation of wood that is used in the building industry [22]. However, the effects of tannins on the
growth performance and gut ecosystem of the chickens are still inconsistent and their mode of action
is unclear. Therefore, it is important to understand the chemical properties and biological effects of
tannins to maximize the use of supplemental tannins in chickens. This review is mainly focused on the
classification and bioavailability of tannins, the effects of distinct tannins on mitigating the challenges
facing poultry production, and strategies to enhance the effects of tannins.

2. Classification and Bioavailability of Tannins

Tannins, defined as polyphenolic compounds that have a protein precipitation capacity, exist in
several different types with various molecular weights [23]. Plant tannins are classified into hydrolysable
tannins (HT) with tannin derivatives (e.g., gallic acid and ellagic acid) and condensed tannins (CT) [24]
(Figure 1). Additionally, phlorotannins (PT) are a third class of tannin unique to brown algae. Tannins
have different bioavailabilities (absorbability), and their level of bioavailability varies depending on
several factors, including the derivatives of each tannin (e.g., gallic acid and ellagic acid), their affinity to
protein, molecular structure and molecular weight. The bioavailability of tannins is an important trait for
their functionality and should be considered for tackling different issues in poultry production. Tannins
with a low bioavailability potentially have better antimicrobial effects in chickens, whereas highly
bioavailable tannins would be more beneficial as antioxidant and anti-inflammatory agents.
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Figure 1. Classification and examples of molecular structure of tannins. Hydrolysable tannins and
condensed tannins belong to plant tannins, and phlorotannins are found in brown algae.

The HT including predominately gallotannins and ellagitannins (molecular weight 500 to 3000 Da)
contain a polyol (normally glucose) as a central core, which is esterified with phenolic groups (e.g., gallic
acid and ellagic acid) [25]. Under certain conditions (e.g., thermal processing, esterification, and acid or
base treatment), HT can be hydrolyzed to yield free gallic acid and ellagic acid. Gallotannins produce
one molecule of sugar and 9 to 10 molecules of gallic acid when hydrolyzed, whereas ellagitannins
yield one molecule of sugar and several molecules of gallic acid and ellagic acid [26]. The unhydrolyzed
HT are partially absorbable in the small intestine [27]. Gallic acid is readily absorbable into the blood
stream [28], while ellagic acid has low bioavailability due to strong affinity for proteins and poor
absorption [29]. Hence, HT include gallotannins and ellagitannins and have different bioavailability
depends on the components and structure.

The CT are defined as oligomeric or polymeric flavonoids containing flavan-3-olunits such as
catechin, epicatechin, gallocatechin and epigallocatechin [24]. The CT exist in fruits (e.g., berries,
pears and apples), forage legumes (e.g., lentils, black-eyed peas, chickpeas and red kidney beans),
nuts, red and green grapes (and their juice and wine) [30–32]. The CT have higher molecular weight
(1000—20,000 Da) and more complex structure compared to HT [24]. Unlike HT, CT are not vulnerable
to hydrolyzation, which may imply low bioavailability in the gastrointestinal tract (GIT) of the
chickens. This is because high molecular weight of tannins are hardly absorbable in the intestine [33].
Kahle et al. [34] reported that around 90% procyanidins (CT) were recovered in the distal ileum,
which imply that most of CT can reach to the large intestine. The CT in the large intestine can be
metabolized and absorbed by epithelial cells [35]. The CT have low bioavailability compared to HT
and can be delivered to the large intestine of the chicken.

The PT, algae-derived polyphenols, have molecular sizes ranging 126 Da to 650 kDa, but the
majority of them are 10 and 100 kDa [36,37]. By using in-vitro models, Corona et al. [38] demonstrated
that PT can be metabolized and absorbed in the upper GIT potentially due to low molecular weight of
PT, and limited amounts of biologically active PT were delivered to the colon. In addition, the author
also demonstrated that higher molecular weight of PT are less vulnerable to metabolization and
absorption in the upper GIT [38]. Nwosu et al. [39] showed that PT can be metabolized and absorbed
by the colon cells (e.g., Caco-2). Therefore, PT can be easily metabolized and absorbed in the GIT tracts
due to their low molecular weights. However, more future in-vivo experiments are required to study
bioavailability of PT in chickens.
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Taken together, tannins are classified into HT, CT and PT, and their bioavailability are depending
on their components, structure and molecular weight. It is important to understand specific chemical
properties each tannin prior to application in poultry diets.

3. Traditional Viewpoints on Tannins as Antinutritional Factors in Poultry Production

While tannins were known as beneficial bioactive compounds in ruminants, they have been
considered as antinutritional factors in poultry diets [16]. In the (GIT) of ruminants, tannins bind proteins
under rumen pH (pH 5.5–7.0), inhibiting the microbial degradation of dietary proteins. Upon reaching
the abomasum (pH 2.5–3.5), the non-covalent linkages between proteins and tannins are broken,
and free protein can be absorbed by the host in the distal small intestine (pH 7.5) [40]. As such, tannins
are known to increase ruminant’s protein utilization and decrease gas emission [41,42]. However,
in chickens, tannins were considered as phytotoxins predominately due to their protein binding
properties, which impair dietary protein digestion and decrease activity of digestive enzymes [43].
Moreover, tannins bind proline-rich, hydrophobic salivary proteins of chickens, forming complexes
that are responsible for an astringent taste of the feed, and in turn lead to low palatability and
decreased feed intake of chickens [44]. In addition, a high concentration of tannic acid (25 g/kg)
showed toxicity to chickens by showing liver proteolytic activity in broiler chickens [45]. Lee et al. [46]
reported that tannic acid impaired growth performance, hematological indices and plasma iron status
in weaning pigs potentially because tannic acid can form complex with iron. However, these toxic
properties of tannins were shown when tannins were included in the diets more than 7.5 g/kg (based on
tannic acid, considered as the standard of HT), and many current studies proved that appropriate
amounts of tannins (based on tannic acid; standard of tannins) ranging from to 0.5 g/kg to 5 g/kg in
poultry could improve grow rate and gut health due to their potential antimicrobial, antioxidants and
anti-inflammatory functions (Table 1). Therefore, while tannins were considered as anti-nutritional
factors in the past, tannins at appropriate dosages have potentials to improve growth performance and
gut health of chickens.

Table 1. Effects of different dosages of tannic acid on the broiler chickens.

Dosages of Tannic Acid Outcomes References

0.5 g/kg Improved growth performance and immune system in broiler
chickens challenged with Eimeria spp. [47]

2 g/kg Improved foot pad dermatitis of the chickens without affecting
growth performance [48]

5 g/kg Improved growth performance and decreased lipid oxidation. [49]

5 g/kg Increased growth performance, modulated cecal microbial
metabolites and decreased cecal pH. [50]

7.5 and 15 g/kg
Decreased growth performance and did not inhibit the growth
of Salmonella typhimurium in broiler chickens challenged with

S. typhimurium.
[51]

10 g/kg Attenuated fatty acid profile of breast but decreased growth
performance in the heat stressed chickens. [52]

25 g/kg Decreased growth performance and showed liver toxicity by
inducing liver proteolytic activity [45]

4. Challenges in Poultry Production and Potential Solution by Using Tannins

4.1. Effects of Tannins on Bacterial Infection (Salmonellosis)

There are many pathogenic bacteria in chickens and poultry products (meat and eggs),
including Salmonella Typhimurium, Escherichia coli O157:H7, Campylobacter jejuni, Clostridium
perfringens, enterohemorrhagic Escherichia. coli (EHEC), Listeria monocytogenes, Arcobacter butzleri,
Mycobacterium avium subsp. Paratuberculosis and Aeromonas hydrophila [53]. These pathogenic bacteria
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not only impair gut health and growth rate of chickens, but are also a public health threat as foodborne
diseases in humans [54]. Salmonellosis, one of the main food-borne diseases from poultry products, is
induced by S. Typhimurium and S. Enteritis and causes, illness, morbidity and mortality in humans [55].

Diverse in-vitro studies showed that tannins and their derivatives showed bacteriostatic (inhibiting
bacterial growth) and bactericidal (killing bacteria) effects on Salmonella spp. and other pathogens,
as shown in Table 2. Potential mechanisms of antibacterial effects of tannins include (1) direct interactions
with components in the cell wall to alter morphology of the cell wall and to increase membrane
permeability of bacteria [24]; (2) decreasing activities of microbial enzymes [56]; and (3) depriving
essential nutrients such as proteins and minerals (e.g., iron) for pathogenic bacteria [57–59]. In addition
to bacteriostatic and bactericidal effects of tannins, many in-vitro studies reported that sub-lethal
dosages of tannins also restricted pathogenicity of Salmonella spp. and other pathogens by inhibiting
motility [60], quorum sensing [61] and biofilm formation [62] of pathogenic bacteria.

Table 2. In-vitro antimicrobial effects tannins against diverse pathogenic bacteria.

Tannins Sources Strains Results and Conclusions References

Ellagitannins from Chestnut wood
Gallotannins from Tara and Sumach

(Gall nuts)
Condensed tannins from Quebaracho and

Calliandra calothyrsus
Flavanol gallates from Tea and

Acacia nilotica

Salmonella Typhimurium All of the tannins inhibited the
growth of S. Typhimurium. [63]

Tannic acid
Gallic acid S. Typhimurium

Tannic acid and gallic acid had
bactericidal effects and gallic acid

had higher bactericidal effects
than tannic acid

[64]

Condensed tannins extracted from tree
leaves viz. babool (Acacia nilotica), jamun

(Eugenia jambolana), peepal (Ficus religiosa),
subabul (Leucaenia leucocephala) and guajava

(Psidium guajava)

Escherichia coli
Staphylococcus aureus

S. enteritis Enterococcus
faecalis

All of the selected five condensed
tannins inhibited the growth of

the four pathogenic bacteria
[65]

Tannin extracts from Cytinus hypocistis and
C. ruber

S. aureus
S. epidermidis

E. faecium
Pseudomonas aeruginosa

Klebsiella pneumoniae

Tannin extracts from C. hypocistis
and C. ruber showed antibacterial
and antibiofilm activities against

gram positive and negative
human pathogens.

[66]

Chestnut tannins
(80% hydrolysable tannins)

Quebracho tannins
(75% condensed tannins)

Clostridium perfringens

Both hydrolysable and condensed
showed antimicrobial effects

against C. perfringens and
neutralized its cytotoxicity.

[67]

In addition to their antibacterial effects, tannins can control systemic infection of Salmonella spp.
by beneficially modulated components of gut ecosystem. Salmonella spp. can enter blood circulation
via paracellular and transcellular pathways and use immune cells to enter enterocytes to be distributed
in the internal organs and muscles in chickens (Figure 2). Many studies reported that tannins altered
expression and functionality of tight junction proteins [68], mucus [69,70], and immune cells [71,72]
of chickens. Nevertheless, supplemental tannins have not typically translated to antimicrobial
effects against Salmonella spp.in in-vivo studies. For example, while Van Parys et al. [73] reported
that whereas HT extract of sweet chestnut woods showed strong antimicrobial effects (minimum
inhibitory concentration: 25–50 µg/mL and minimum inhibitory concentration: 100 µg/mL) against
S. Typhimurium isolated from pigs under in-vitro conditions, the inclusion of 3000 mg/kg HT in the pig
feed did not reduce the Salmonella spp. concentration in feces, intestine and internal organs of pigs
inoculated 107 colony forming units (CFU)/mL of S. Typhimurium strain at four days post-inoculum.
Similarly, Kubena et al. [51] reported that tannic acid (7.5 or 15 g/kg in the feed) did not modulate the
salmonella concentration in cecal content of broiler chickens inoculated with 104 CFU of S. typhimurium.
Potential explanations for such findings include (1) tannins were degraded by host or microbial
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enzymes or absorbed before they reached to the lower intestine where most of the Salmonella spp. and
other pathogenic bacteria propagate; (2) tannins formed complexes with components of feedstuffs
(polysaccharides and proteins) or endogenous proteins, which inhibits antimicrobial effects of tannins;
and (3) experimental factors including the low dosages of tannins, the high dosages of salmonella
inoculum or short period of the experiments were possibly obstacles to diminish antimicrobial effects
of tannins in in-vivo models [73]. In contrast, Jamroz et al. [74] reported that 1000 mg/kg of sweet
chestnut tannins reduced the number of E. coli and coliforms bacteria in the small intestine on 28 d;
however, growth performance of the tannin-fed birds was decreased in this study.
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Figure 2. Systemic infection routes of Salmonella spp. and potential mechanisms of antibacterial actions
of tannins in an in-vivo chicken model. Chickens can orally ingest Salmonella spp. from feed or
their environment, and subsequently escape the small or large intestine [75]. (1) Tannins and tannin
derivatives (tannins, hydrolyzed tannins, and tannin-protein complexes) are known to inhibit the growth
of Salmonella spp. in the intestine and decrease quorum sensing of the bacteria [61]. Lipopolysaccharides
(LPS) of Salmonella spp. can impair intestinal barrier function, which allows Salmonella spp. to pass the
paracellular pathways of the intestine [76,77]. (2) Tannins and tannin derivatives may improve gut
barrier integrity by neutralizing LPS or decreasing expression of cytokines, which can impair tight
junction proteins [78]. (3) and (4) Salmonella spp. also utilized mucus and immune cells to invade
epithelial cells [71]. Tannins and their derivates potentially modulate expression and morphology of
immune cells and mucus. Salmonella spp. can invade epithelial cells in diverse pathways and enter
blood circulation and finally colonize in internal organs (e.g., liver, kidney, spleen, etc.) and muscles in
chickens [79]. (5) Tannins also can enter the blood circulation and potentially show antimicrobial effects
and modulate immune cells to attenuate internal organ infection by Salmonella spp. in chickens [80,81].

While many in-vitro studies showed that tannins showed antimicrobial effects against Salmonella spp.
and other pathogens, the optimal antimicrobial dosages in chickens have not yet been fully determined.
Therefore, dose-specific antimicrobial effects of tannins in chickens, as well as their mode of actions,
warrant further investigation.

4.2. Effects of Tannins on Coccidiosis

Coccidiosis, which is a parasitic disease induced by protozoa of the family Eimeridae, is one of
the most prevalent and detrimental enteric diseases in poultry production [82]. The nine identified
Eimeria species in chickens includes E. acervulina, E. brunetti, E. maxima, E. necatrix, E. praecox, E. mitis,
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E. tenella, E. mivati and E. hagani to date [83,84]. Eimeria spp. infect and multiply within the mucosal
epithelial layers in the different parts of the GIT through the fecal-oral route [85]. Coccidiosis can result
in reduced growth rate and gut barrier integrity and induce inflammation, diarrhea, hemorrhaging,
and even mortality in broiler chickens, negatively influencing the efficacy of poultry production and
welfare [86,87]. The negative effects of coccidiosis on gut health of chickens are closely related to
oxidative stress, as Eimeria infections cause lipid peroxidation and excessive production of reactive
oxygen species (ROS) in chickens [88]. Furthermore, coccidiosis is closely associated with an enteric
infectious disease, necrotic enteritis, which is predominately induced by C. perfringens with the presence
of Eimeria spp. [89,90]. To cope with coccidiosis for the poultry industry, prophylactic coccidiostats and
anticoccidial drugs have been supplemented in poultry diets [91]. However, resistance for all currently
available drugs have been documented, making it imperative to discover novel drug alternatives that
induce limited resistance and effectively control coccidiosis in broiler chickens [92]. To find alternatives
for prophylactic coccidiostats and anticoccidial drugs, bioactive compounds including prebiotics [93],
plant extracts [94], organic acids [95], essential oils [96], lipids (fatty acids) [97], minerals (e.g., zinc) [98]
and nitro compounds [99] have been studied in chickens.

Tannins are known to have anticoccidial effects because tannins can form complexes with parasitic
enzymes and metal ions, which are essential for Eimeria spp. and can stimulate immune system
against of the chickens [100–102]. Tonda et al. [47] reported that the dietary supplementation of
500 mg/kg of gallnut tannic acid extract reduced total oocyst number in excreta, and 500 mg/kg
of tannic acid or gallnut tannic acid extract decreased intestinal lesion scores in broilers infected
with Eimeria spp. Furthermore, the authors showed that gallnut tannic acid extract enhanced feed
conversion ratio of cocci-vaccinated birds, which possibly implies that gallnut tannic acid extract
improved protective immunity following coccidiosis vaccination [47]. Supplemental chestnut HT
and quebracho CT tannins reduced Eimeria spp. oocyst shedding and parasitic bacterial diarrhea and
attenuated negative effects of coccidiosis via immunomodulating and anti-inflammatory effects in
rabbits [103]. In broiler chickens, Kaleem et al. [104] showed that administration of Emblica officinalis
derived tannins improved growth performance and showed immunostimulatory properties and
enhanced protective immune system. The beneficial effects of tannins on gut health of chickens infected
with Eimeria spp. are closely associated with antioxidant properties of tannins, which can restore
an Eimeria-damaged gastrointestinal [105]. A study by [106] demonstrated that supplementation of
grape seed proanthocyanidin extract, rich in CT, enhanced growth performance and attenuated clinical
symptoms, potentially by improving antioxidant capacity in chickens infected with Eimeria tenella.
In contrast, Mansoori and Modirsanei [107] showed that supplemental tannic acid (10 g/kg) numerically
increased D-xylose absorption in chickens vaccinated against coccidiosis followed by challenging
with Eimeria spp., however, supplemental tannic acid increased the total number of oocysts in excreta,
indicating that high dosages of tannins can attenuate the efficiency of anticoccidial vaccines and impair
appropriate development of immune system against coccidiosis in chickens. The discrepancy may be
attributed to different sources and concentrations of tannins and dissimilar experimental conditions
(e.g., challenge dosages of Eimeria spp.).

Although many studies reported the potential benefits of supplemental tannins in broiler chickens
infected Eimeria spp., more comprehensive studies are required (1) to study the mechanisms under
anticoccidial effects of tannins in chickens; (2) to elucidate mechanisms of the beneficial effects of
tannins on the gut health of chickens infected with Eimeria spp.; (3) to investigate the effects of tannins
in a necrotic enteritis challenge model by using inoculum of Eimeria spp. and C. perfringens; and (4) to
find appropriate concentrations and types of tannins against coccidiosis in chickens.

4.3. Effects of Tannins on Oxidative Stress, Including that Caused by Heat Stress

Heat stress is one of the major obstacles in the poultry industry because heat stress negatively
impacts growth performance, gut health, meat quality, and welfare of chickens [108,109]. A potential
reason for negative effects of heat stress on chickens is closely associated with excessive production of
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ROS via accelerated metabolic reactions due to mitochondrial respiration [110–112]. Under normal
conditions, enzymatic and non-enzymatic antioxidants can neutralize ROS and maintain the balance
between oxidants and antioxidants [113,114] (Figure 3). However, if there is an imbalance between
oxidants and antioxidants in chickens, excessively produced ROS can impair gut health and induce
inflammation, which results in decreased growth performance of chickens [115]. Antioxidants including
plant extracts [116,117], L-carnitine [118], vitamin C [119,120], vitamin E [121], and selenium [122] have
been studied to alleviate heat stress and oxidative stress.

Tannins are believed to relieve or attenuate effects of oxidative stress, including that
caused by heat stress by scavenging ROS and modulating enzymatic antioxidants in animals
(Figure 3) [116]. The reducing power of tannins including proanthocyanidins, catechins, epicatechin,
and procyanidin from grade seeds is approximately 20 times higher than vitamin E and 50 times
higher than vitamin C [123]. A study from Sahin et al. [124] reported that 200 or 400 mg/kg of
epigallocatechin-3-gallate (the ester of epigallocatechin and gallic acid) from green tea relieved
oxidative stress by controlling the hepatic nuclear transcription factors such as nuclear factor
κ-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor (erythroid-derived 2)-like
2 (Nrf2) in heat stressed quails. Furthermore, 10 mg/kg supplementation of tannic acid improved fatty
acid profile (decreased monosaturated fatty acids) in breast muscle of chickens under heat stress [52].
Ramnath and Rekha [125] showed that supplementation of Brahma Rasayana containing various sorts
of tannins enhanced activities of enzymatic antioxidants including superoxide dismutase (SOD),
glutathione peroxidase (GPx), glutathione reductase (GR), and reduced glutathione (GSH) in blood of
chickens raised at a cold temperature. Moreover, the inclusion of grape (Vitis vinifera) pomace, rich in
CT, enhanced antioxidant enzyme activities (GPx and SOD) and intestinal morphology, and increased
relative weight of bursa of Fabricius and thymus in the heat-stressed broiler chickens [126]. In a
diquat-induced mouse model (oxidative stress model), tannic acid improved intestinal morphology,
activated the antioxidative pathway by reducing protein expression of Kelch like-ECH-associated
protein 1 (KEAP1) and enhancing protein expression of nuclear factor erythroid 2-related factor
2 (NRF2), as well as modulated intestinal barrier function in the jejunum. Thus, supplementing
appropriate concentrations of tannins potentially would be an effective strategy to attenuate oxidative
stress in heat-stressed birds.
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Figure 3. Potential mechanisms for the alleviating effects of tannins in heat-stressed chickens.
High ambient temperature with high humidity increase core body temperature of chickens, and this
can result in impaired physiology and mitochondrial functions, which lead to excessive reactive oxygen
species (ROS) [127]. Tannins, polyphenolic compounds, directly scavenge ROS like non-enzymatic
antioxidants [128], and also, tannins can increase activities of antioxidant enzymes such as superoxide
dismutase (SOD), glutathione peroxidase (GPX), and glutathione reductase (GR) in broiler chickens.
The ROS cause inflammation that can impair growth rate and gut health of chickens and tannins also
have anti-inflammatory function [124].
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4.4. Effects of Tannins on Food Pad Dermatitis (FPD)

Foot pad dermatitis (FPD) is defined as a condition that induces lesions on the plantar surface of
the footpads in growing chickens [129]. The FPD causes severe economic losses in poultry production
because paws are the third most crucial economic part in broiler chickens, and FPD can impair growth
rate, gut health, and welfare of chickens [129,130]. Thøfner et al. [131] showed that FPD and systemic
bacterial infections are closely correlated because pathogens can invade to the chickens through
damaged epithelium on the foot pads [132]. Litter moisture and litter quality are the most two crucial
features that cause FPD among varied factors such as bedding materials and depth, drinkers and
nutrient deficiencies [129,133,134]. In addition, increased excreta viscosity has been known to increase
the occurrence and severity of FPD in chickens by modulating litter moisture and litter quality [135].

Tannins can relieve the incidence and severity of FPD by enhancing fecal consistency (e.g., fecal
dry matter contents) and litter quality [16]. Cengiz et al. [48] reported that 2000 mg/kg supplementation
of tannic acid reduced the incidence and severity of FPD in broiler chickens without affecting growth
performance, litter quality and intestinal viscosity of chickens. Moreover, 700 mg/kg and 2000 mg/kg
of tannin-rich sweet chestnut wood extract increased fecal dry matter contents in chickens [136].
In addition, antimicrobial, antioxidant and anti-inflammatory properties of tannins probably helped
to attenuate the incidence and severity of FPD in broiler chickens because oxidative stress and
inflammation can exacerbate the severity and consequences of FPD in chickens [137,138]. Thus,
supplementation of tannins has potential to reduce severity and incidence of FPD in broiler chickens
by enhancing fecal consistency and litter quality.

4.5. Effects of Tannins on Nitrogen Excretion and Emissions of Noxious and Greenhouse Gases

Reactive nitrogen species (ammonia, nitrous oxide, and other oxides of nitrogen) and sulfur-
containing compounds (hydrogen sulfide and sulfur dioxide) are produced in poultry production
facilities and cause environment pollution and greenhouse gases such as carbon monoxide,
carbon dioxide and methane [139–142]. Factors affecting the production of nitrogen compounds
and detrimental gases include types of feedstuffs, manure conditions, and housing accessories (bedding
and heating materials) [143,144]. Nitrogen and greenhouse gases are produced in the livestock animals
due to enteric fermentation and manure fermentation, and ruminants contribute most of the livestock
greenhouse gas production because of high fermentation rate in the rumen [140]. Although poultry
production is not a major contributor of noxious or greenhouse gases, the continued growth of poultry
production coupled with higher intensity of excretion and emission per unit compared to other
species, more attention is needed to find strategies to mitigate the production of nitrogen excretion and
emissions of noxious and greenhouse gases [145].

It is well-established that tannins improve N utilization and decrease methane production in
ruminant animals [25,146]. The potential mechanisms underlying effects of tannins on mitigation
of emissions of nitrogen and greenhouse gases are inhibiting growth of methanogens, reducing
protozoal-associated methane production, and decreasing fiber fermentation [25]. Although chickens
(monogastric animals) have distinct GIT from ruminants, tannins may alter gut health and microbiota
and improve N utilization in chickens, thereby potentially reducing nitrogen and methane emissions.
Ahmed and Yang [147] reported that supplementation of by-products of Punica granatum (fruit),
which contains HT such as ellagitannins, punicalagin, punicalin and pedunculagin, decreases the
emission of ammonia and methanethiol from excreta of broiler chickens. Moreover, a study by
Bostami et al. [139] demonstrated that supplementation of fermented pomegranate byproducts,
containing ellagitannins, reduced gas emission (ammonia and hydrogen sulfide) from excreta in broiler
chickens, potentially via reducing microbial activity and pH of excreta. However, 2000 mg/kg of tannic
acid from chestnut wood did not affect ammonia volatilization in broiler chickens. Hence, more studies
are required to identify suitable sorts and dosages of tannins to reduce nitrogen excretion and emissions
of noxious and greenhouse gases during poultry production.
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4.6. Effects of Tannins on Growth Performance, Immune System, Gut Microbiota, Gut Ecosystem and in
Chickens Raised under General Conditions

While some authors showed that low concentrations (0.5 g/kg to 5 g/kg) of tannic acid improved
growth performance (shown in Table 1), the others reported that supplementation of different sources
of tannins at low dosages (0.5 to 5 g/kg) did not affect growth performance [48,136] and even showed
negative effects on growth performance of the birds [74]. These differences may be a result of different
tannin sources, supplementation period, or specific experiment conditions (e.g., genetics of chickens,
temperature and abundance of pathogens in the living conditions).

However, supplemental tannins at appropriate dosages can improve immune system, gut ecosystem
and gut microbiota of chickens raised under general conditions. Ramah et al. [148] reported that
whereas the high dosage of tannic acid (30 g/kg diet) have negative impacts on immune system by
decreasing relative (cluster of differentiation) CD4+, CD8+, CD4+CD8+ and γδ+ cell populations in
thymus, spleen, and cecal tonsils and by reducing cytokine mRNA expression in spleen cells, the low
dosage of tannic acid (0.5 g/kg) enhanced CD4+CD8+ subpopulations and γδ+ cells in spleen and
CD4+CD8+ subpopulations and B cells in cecal tonsils and increasing mRNA expression of IFN-γ in
broiler chickens. A study by Karaffová et al. [149], reported that tannins were beneficial to maintain
components of mucosal immunity of chickens via upregulating immunoglobulins A and mucin 2.
Erlejman et al. [150] also demonstrated that CT can combine with receptors of tumor necrosis factor-α
(pro-inflammatory cytokines) to inhibit inflammation, which implies that tannins directly modulate
immune system without eliciting antimicrobial and antioxidant properties.

Diaz Carrasco et al. [151] reported that a blend of chestnut (HT) and quebracho tannins (CT)
modulated diversity cecal microbiota of chickens and decreased genus Bacteroides and increased certain
members of order Clostridiales predominately in the families Ruminococcaceae and Lachnospiraceae.
A study by Koo and Nyachoti [152] demonstrated that tannic acid positively modulated microbial
metabolites in pigs fed oxidized oil. Selective antimicrobial effects of tannins would beneficially
modulate microbiome of animals [153]. Viveros et al. [154] also suggested that tannins probably can
have prebiotic effects via stimulating the proliferation of the beneficial bacteria.

Microbiome modulating effects of tannins may partially explain the gut health promoting effects
of the chickens because microbiota of the chicken is closely associated with the gut ecosystem of
chickens [155]. Moreover, an in-vitro study by Brus et al. [19] reported that chestnut tannins stimulated
proliferation of enterocytes and enhanced antioxidative properties of the chicken small intestinal
epithelial cells. Bilić-Šobot et al. [156] demonstrated that HT decreased production of cell debris in
the large intestine of pigs, which leaded to decreased production of skatole, which belongs to the
indole family. Together, supplemental tannins have the potential to improve growth performance,
gut microbiota and gut ecosystem in broiler chickens, even in the absence of challenge models.

5. Strategies to Maximize the Effects of Supplemental Tannins in the Chickens

5.1. Heat Process on Tannins

Some in-vitro studies showed that heat processed HT had better antimicrobial and antioxidant
properties than unprocessed HT [143,144]. This would be because heat processing could partially
hydrolyze tannic acid and release gallic acid molecules, and these newly produced gallic acid and galloyl
groups had enhanced antimicrobial and antioxidant effects compared to the fresh tannic acid [157].
González et al. [145] also reported that thermal process of hamamelis virginiana containing gallotannins
and CT improved efficacy of antioxidant properties for inhibiting lipid oxidation. However, because
CT are hardly hydrolyzed, enhanced antioxidant of heat-processed hamamelis virginiana probably
due to hydrolyzation of gallotannins in hamamelis virginiana rather than hydrolyzation of CT. Thus,
while in-vitro studies found that heat process of tannins could improve their functional properties
(e.g., antioxidant and antimicrobial effects) compared to unprocessed HT, it is unknown yet whether
heat-processed tannins have more beneficial effects on animal models.
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5.2. Co-Supplementation of Tannins with other Bioactive Compounds

Supplementation of tannins with other bioactive compounds could be more beneficial to
chickens than supplementing tannins alone for several reasons: (1) complexed form with proteins or
polysaccharides of tannins inhibit tannins to form a complex with endogenous and dietary proteins and
metal ions; (2) distinct properties of bioactive compounds can show synergistic effects to antimicrobial
effects against both gram negative and positive bacteria; (3) different bioactive compounds affect gut
health in different ways, which can lead to synergistic effects in animals; and (4) by providing more
than two bioactive compounds, pathogenic bacteria are hard to generate resistant system against
diverse bioactive compounds. Table 3 shows that tannins have potentials to show synergistic effects
with other bioactive compounds.

Probiotics are living microorganisms which beneficially affect the host animals by enhancing
animal’s intestinal microbial balance [158]. Probiotics may have different mode of actions from tannins
to inhibit the growth of pathogenic bacteria and to improve gut health of chickens. Probiotics can
improve gut integrity by modulating immune system and maintaining microflora of chickens and
tannins, while tannins can show antioxidant and anti-inflammatory properties [159]. However, one of
the concerns of using probiotics with tannins could be that tannins may show antimicrobial effects
against probiotics. However, Khalil [160] showed that gallic acid and catechin polyphenols did not
inhibit the growth of Streptococcus thermophilus (probiotics), and Pacheco-Ordaz et al. [153] reported that
catechin, gallic, vanillic, ferulic and protocatechuic acids selectively inhibit the growth of pathogenic
bacteria without decreasing viability of probiotics. More studies are required to establish synergistic
effects and mechanisms of tannins and probiotics in in-vivo chicken models.

Table 3. Effects of tannins with other bioactive compounds on the chickens.

Tannins Other Bioactive Compounds Outcomes References

100 mg/kg tannic
acid extract

Probiotics
(1 × 104 spores/kg Bacillus

coagulans)

Improved feed conversion ratio of
coccidiosis vaccinated broilers. [47]

240 mg/kg
tannic acid

Organic acids (420 mg/kg
lactic, 480 mg/kg butyric acid

and 480 mg/kg acetic acid)

Decreased S. enteritis horizontal
transmission in broiler chickens [161]

Chestnut tannins Saturated short medium chain
fatty acids (C4:0 to C12:0)

Showed strong antimicrobial effects in
in-vitro conditions and did not affect

growth performance and meat quality of
in-vivo chicken models.

[22]

Organic acids, known as strong antimicrobials, are organic compounds with acidic properties.
Tannins inhibit the growth of pathogens predominately by inhibiting activities of microbial enzymes
and modulating bacterial membrane, but organic acids penetrate bacterial cell wall, and bacteria have
to spend a lot of energy to pump out hydrogen molecules, which causes bacterial death [162,163].
Furthermore, organic acids are known to improve intestinal morphology and gut barrier integrity by
being energy sources for epithelial cells, which may imply that organic acids with tannins can show
synergistic effects [164–166]. Thus, combination of tannins and organic acids can have synergistically
increased antimicrobial effects and gut health promoting effects due to different mode of actions.

5.3. Supplementation of Combined or Encapsulated Form of Tannins

If tannins are combined with proteins, polysaccharides and ions before being included in the
chickens feed, the tannins in complexes would not bind dietary and endogenous proteins and metal
ions in chickens. The tannin complexes would be loose in the high pH (>7.0) in the intestine of chickens,
and proteins in the tannin complexes can be degraded by digestive enzymes in the small intestine of
chickens [40,167]. However, Lee et al. [46] showed that supplementation of albumin-tannin complexes
still decreased growth performance and negatively modulated microbiota, hematological indices and
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plasma iron status of weaning piglets. The delivery of tannin-protein or polysaccharide complexes in
the GIT of chickens, and effects of diverse dosages of supplemental tannin complexes on growth rate
and gut health of chickens should be further investigated.

Encapsulation techniques, which offer a physical barrier for bioactive compounds and separate the
core material from the environment until their release, have obtained a lot of attention in the livestock
industry because encapsulation can maximize the efficacy of feed additives that have stability, cost and
environmental issues. Encapsulation has been applied to various vulnerable feed additives such as
essential oils [96,168,169], probiotics [170], organic acids [171], bacteriophages [172], zinc [173] and
exogenous enzymes [174]. Diverse materials including proteins [96,175], lipids [171], carbohydrates
(starch) [169], and polysaccharides [172,176] have been used to encapsulate bioactive compounds.

Encapsulation techniques can be applied to decrease side effects and maximize benefits of
tannins in chickens. Encapsulation of tannins can depress the protein binding capacity of tannins,
which decreases feed intake by making astringent taste and digestibility of proteins and induces
dietary and endogenous protein losses [177]. In addition, more tannins can be delivered to small or
large intestine where many pathogens propagate by decreasing bioavailability for absorption in the
upper GIT of chickens. Adejoro et al. [178] showed that lipid-encapsulated acacia tannin extracts
reduced methane production and enhanced neutral detergent fiber digestibility in sheep. A study
by Wang et al. [179] reported that microencapsulated tannic acid improved intestinal morphology
in duodenum, increased expression of ileal nutrient transporters (sodium-dependent neutral amino
acid transporter; B0AT1 and peptide transporter 1; PepT1) and modulate microbiota without affecting
growth performance of weaned piglets even though ileal maltase activity and gene expression of
jejunal sodium-dependent glucose transporter 1 (SGLT1) was reduced. Future studies are required to
develop effective encapsulated tannins and to determine appropriate dosages of encapsulated tannins
for chickens.

6. Conclusions

There are various kinds of tannins, which have different bioavailability in chickens. Depends on
the sorts and dosages of tannins, tannins can elicit detrimental effects on growth performance and
gut ecosystem of the broiler chickens or can beneficially modulate growth performance and gut
ecosystem of the broiler chickens. In addition, heat processing, co-supplementation with other
bioactive compounds and encapsulation potentially enhance the beneficial biological effects of tannins.
In conclusion, supplementation of tannins alone or in conjunction with those strategies have large
potential to alleviate challenges, replace AGP and improve production efficiency in poultry productions.
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