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Simple Summary: Knowledge of mineral requirements enables diets to be better formulated.
Mineral requirements of black tiger prawns (Penaeus monodon) are not well known compared with
other cultured prawn species. To close this knowledge gap, the importance of providing additional
sources of twelve minerals in prawn diets were assessed. These minerals are known to be required
for optimal growth in other animals and included boron, calcium:phosphorus at 1:1 ratio, cobalt,
copper, magnesium, manganese, potassium, selenium, sodium, strontium and zinc. Inorganic forms
of these minerals were incorporated into diets and fed to prawns for 6 weeks where their effect on
growth performance and mineral concentrations in tissues were determined. This study was able
to assess the effect of many minerals by adopting a ‘screening design’ where it was demonstrated
that additions of calcium:phosphorus at 1:1 ratio, magnesium, boron, manganese, selenium and zinc
to diets for black tiger prawns were important for growth, feed conversion efficiency and nutrient
utilisation. Further research is needed to determine the requirement values of the important minerals
identified in this study.

Abstract: Twelve minerals were screened to identify key dietary minerals important for
Penaeus monodon growth. The minerals selected included boron, calcium plus phosphorus (assessed
in tandem at a 1:1 ratio), cobalt, copper, magnesium, manganese, potassium, selenium, sodium,
strontium and zinc. Twelve purified casein/gelatin-based diets were formulated and contained
minerals at two levels: below expected requirements, as attributed by the basal formulation (−)
and above expected requirements by adding inorganic minerals (+). The two levels were allocated
to dietary treatments in juvenile prawns in accordance with the PB design. A two-level screening
analysis was employed where effect of each mineral at level − or + across twelve diets were compared
to identify the minerals of importance for culture performance of juvenile prawns. Calcium plus
phosphorus (at a 1:1 ratio), magnesium, boron, manganese, selenium and zinc produced the greatest
positive effects on weight gain, feed conversion efficiency, biomass gain and nutrient/energy retention.
Particularly, boron and manganese significantly increased retention of key macronutrients and energy
including gross energy, crude protein and crude lipid. Our study demonstrates the importance of
several macro and trace minerals in prawn diets and the pressing need to refine their requirements
for P. monodon.
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1. Introduction

Dietary minerals are needed for a myriad of biological processes. For terrestrial livestock,
requirements of essential minerals are well defined and supplied through least-cost formulations
where an oversupply of nutrients is minimised. However, for many aquaculture species including
Penaeus monodon, the mineral requirements are not well understood [1]. There are difficulties in
assessing mineral requirements of P. monodon as they are reared in seawater, a medium which can
provide a supply of over 20 minerals but the concentrations of which can be inconsistent with varying
salinity. The bioavailability and utilisation of these water-borne minerals are not well established for
this species.

The limited understanding of mineral requirements for P. monodon results in the aquaculture
industry commonly including a mix of mineral sources at excessive rates to ensure requirements are met.
An oversupply of dietary minerals can contribute to environmental pollution (i.e., particularly regarding
phosphorus) which has negative consequences for the industry [2,3]. Refining our understanding of
mineral requirements for P. monodon would, therefore, produce more efficient feeds and minimise
unnecessary nutrient loss through effluent.

Mineralrequirements forP.monodon,recommendedbytheNationalResearchCouncil [1], reportednutrient
requirement values for only three minerals: phosphorus (P = 0.7% diet), potassium (K = 1.2% diet) and
copper (Cu = 10–30 ppm diet), as well as an ideal calcium (Ca):phosphorus (P) ratio of 1:1. The absences
of recommendations for other minerals is concerning, as P. monodon represents 24% of global farmed
prawn production and production is forecast to rise [4].

Minerals which have not been tested in P. monodon but have known necessity in other prawn
species include macro-minerals: chloride (Cl), magnesium (Mg), sodium (Na) and sulphur (S); and trace
minerals: cobalt (Co), iodine (I), manganese (Mn) and selenium (Se). A preliminary analysis of the
mineral composition of adult black tiger prawn body (~8 g) reared in marine commercial-style ponds
was conducted to provide an indication of which minerals may be of biological significance to this
species. Two minerals of particular interest were strontium (Sr) and boron (B), which are present
at 569 mg/kg and 9 mg/kg in whole prawns, respectively. Sr and B have demonstrated biological
functions in other species [5–8] but have received limited focus in aquaculture nutrition.

The importance of a large array of minerals in diets for P. monodon can be assessed using a
screening design, also known as a fractional factorial design. For example, Plackett-Burman (PB) [9]
screening designs have been used recently to assess the importance of dietary factors in nutrition
studies of production animals [10]. The PB statistical method analyses the main effects of factors on a
response parameter, allowing 11 mineral factors to be assessed within 12 treatments. By employing
a PB experimental design, a single mineral-factor can be assessed at two levels, in this case (i) with
added mineral, +, and (ii) without added mineral, −, where six diets assess the mineral at each level.
In the presence of mineral interactions, such a design is beneficial as the effect of each mineral-factor at
level + or − is averaged over six diets, which contain different combinations of the other minerals to
reduce the noise from mineral interactions. This would not be possible in a single factor deletion study
as the difference in response of a single mineral-factor is determined by only two treatments where all
other minerals are held constant except for the removal of one factor. Therefore, in a single deletion
study, the effect of the mineral-factor may only be relevant in the presence of the same combination of
minerals. A disadvantage of the PB design is that it assumes that not all mineral-factors will have a
large effect on the response parameter. Therefore, a PB screening design with 12 treatments was applied
to rank the importance of selected minerals to develop an initial assessment of mineral requirements.

The present study aimed to estimate the need for the following twelve minerals in diets for
P. monodon: B, Ca plus P (considered in tandem at a 1:1 ratio), Co, Cu, Mg, Mn, K, Se, Na, Sr and
Zn. The minerals were investigated as a two-level factor: (i) above expected mineral requirements by
adding inorganic minerals, +, or (ii) below expected mineral levels as contributed only by the basal
formulation, −. The allocation of each mineral level to diets was based on the PB screening design.
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2. Materials and Methods

2.1. Dietary Treatments

Twelve minerals (Ca and P were assessed in tandem) were investigated according to the PB
design matrix (Table 1). It was not the intention of this study to investigate practical inclusion levels
of minerals but rather to understand the ranked importance of a wide selection of minerals for
prawn growth and nutrient assimilation into tissue. Thus, the inclusion rates of inorganic minerals
added to the basal formulation were based on twice the levels reported in requirement studies or
muscle composition concentrations when no requirement values have been determined for prawns.
This was to ensure requirements for each mineral were met and to maximise the response in measured
parameters. Furthermore, due to the variation in reported requirement values, studies were selected
which most closely resembled the rearing conditions of this study, i.e., marine Penaeid prawns reared in
high-salinity water.

Purified casein, gelatin and wheat starch-based diets were formulated to be iso-energetic and
iso-nitrogenous and to contain inorganic sources of the target minerals in accordance with the PB
design matrix where Diet 12 contained all inorganic mineral inclusions (Table 2). Diatomaceous earth
was used as a dietary filler. Inorganic minerals were weighed in a fume hood and agitated in deionised
water before being incorporated to the diet mix to prevent aeration of fine mineral particulates.
Water was added, to approximately 30%, during mixing to form a dough which was subsequently
screw-pressed (Dolly, La Monferrina, Castell’Alfero, Italy) through a 2 mm die and cut to pellet length
of approximately 6 mm. Pellets were then steamed for 3 min and oven dried at 65 ◦C for 12 h.
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Table 1. Mineral-supplement allocation for twelve treatments and reported mineral requirements or muscle composition derived from 9 studies. ‘−’, ‘+’ denotes the
inclusion rate of ‘below expected requirements’ and ‘above expected requirements in diets’, respectively. Inclusion rates of mineral in ‘+’ diets were twice the amount
of the ‘reported mineral requirement or muscle composition’ level.

Diet
Number

PB Factor Allocation for 12 Treatments Reported Mineral Requirements
or Muscle Composition

Inclusion Rate of
Mineral in ‘+’ Diets

Species and Material Used to
Determine Requirement1 2 3 4 5 6 7 8 9 10 11 12

B, mg/kg − − + − − − + + + − + + 8.7 17.4 Penaeus platyceros muscle [11]
Ca + P, g/kg + + − + − − + − − − + + 14 28 Penaeus monodon diets [12]
Co, mg/kg − + − − − + + + − + − + 1.2 2.4 Carnivorous prawns diets [13]
Cu, mg/kg + − − − + + + − + − − + 32 64 Penaeus vannamei diets [14]

K, g/kg + − − + − − − + + + − + 12 24 Penaeus monodon diets [15]
Mg, g/kg − + − − + − − − + + + + 3.5 7.0 Litopenaeus vannamei diets [16]

Mn, mg/kg − − − + + + − + − − + + 60 120 Carnivorous prawns diets [13]
Na, g/kg + − + − − + − − − + + + 10 20 Penaeid prawn diets [1]

Se, mg/kg − − + + + − + − − + − + 0.4 0.8 Penaeu. vannamei diets [17]
Sr, mg/kg − + + + − + − − + − − + 50 100 Penaeus platyceros muscle [11]
Zn, mg/kg + + + − + − − + − − − + 15 30 Penaeus vannamei diet [18]
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Table 2. Dietary composition of casein and wheat starch-based diets for prawns.

Diet 1 2 3 4 5 6 7 8 9 10 11 12

Ingredient (%Diet)
Base mixture 1 82.4 82.4 82.4 82.4 82.4 82.4 82.4 82.4 82.4 82.4 82.4 82.4

Diatomaceous earth 1.73 10.22 12.52 6.78 16.43 12.50 11.39 13.02 11.88 6.83 5.12 0.50
Sum of mineral premix 15.92 7.44 5.13 10.88 1.22 5.15 6.26 4.64 5.78 10.82 12.53 17.16

Mineral premix details 2

H3BO3 (g/kg) 0.1 0.1 0.1 0.1 0.1 0.1
CoCl2 (mg/kg) 5 5 5 5 5 5
CuCl2 (g/kg) 0.1 0.1 0.1 0.1 0.1 0.1

MnSO4·H2O (g/kg) 0.37 0.37 0.37 0.37 0.37 0.37
Na2SeO3 (mg/kg) 4 4 4 4 4 4
C4H6O4Sr (g/kg) 0.24 0.24 0.24 0.24 0.24 0.24

ZnSO4·7H2O (g/kg) 0.13 0.13 0.13 0.13 0.13 0.13
Ca3(PO4)2 (g/kg) 36.1 36.1 36.1 36.1 36.1 36.1
NaPO4H2 (g/kg) 26.3 26.3 26.3 26.3 26.3 26.3

NaCl (g/kg) 50.8 50.8 50.8 50.8 50.8 50.8
MgO (g/kg) 11.6 11.6 11.6 11.6 11.6 11.6
KCl (g/kg) 45.8 45.8 45.8 45.8 45.8 45.8

1 Casein (37.4% diet), pregelatinised wheat starch (15.7%), gluten (7%), gelatin (8%), fishoil (6.0%), attractant (5%; as D-glucosamine, glycine, glutamic acid and alanine at 5:3:1:1),
lecithin (1.0%), vitamin premix (1.0%; as Vitamin A, 2.5 MIU; vitamin D3, 1.25 MIU; vitamin E, 100 g; vitamin K3, 10 g; vitamin B1, 25 g; vitamin B2, 20 g; vitamin B3, 100 g; vitamin B5,
100 g; vitamin B6, 30 g; vitamin B9, 5 g; vitamin B12, 0.05 g; biotin, 1 g; vitamin C, 250 g; Banox E, 13 g), cholesterol (0.5%), TAU (0.4%), methionine (0.2%), astaxanthin (0.1%) and yttrium
(0.1%). 2 Sigma-Aldrich, Castle Hill, Australia.
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A water stability assessment was performed on each diet in which ~1 g of feed was added to the
aerated trial system (n = 4) without animals and recovered after 5 h by siphoning through a 200 µm
screen. A 5 h time frame of water stability was selected to account for the length of time feed would be
submersed in water during a feeding regime of five feedings per day. Recovered feed was dried in the
oven at 105 ◦C to determine dry matter (DM) weight and a diet stability factor (%DM) was calculated
using the formulae:

Diet water stability (%DM) after 5 h = 100 × (Feed recoveredg DM/Feed offeredg DM) (1)

2.2. Prawn Feeding Trial

A total of forty-eight (48) 100 L indoor experimental tanks were used to evaluate 12 treatments each
with four replicate tanks. The number of tanks per treatment was determined using the online sample
size calculator, Statulatorbeta (©Statulator 2014, The University of Sydney, Australia). This program
calculated that the minimum number of tank replicates required was 3.1, which was rounded up
to 4. Specifically, the statistical power was set to 0.80 to calculate the minimal sample size [19].
Juvenile prawns were expected to gain 0.7 g/week and achieve a final weight gain (WG) of at least
6.2 g at the end of the feeding trial, based on previous feeding trials with 8 prawns/tank and 4 tank
replicates/treatment, completed at the Bribie Island Research Centre, Australia. The typical standard
deviation observed in previous juvenile prawn trials was 1.5 g/prawn for final weight. A 5% difference
was used to calculate the effect size and thus, effect size of weight was 0.59 g/prawn.

Juvenile prawns (2.0 ± 0.29 g) were sorted and eight (8) prawns were allocated into each tank
based on body weights so that all initial prawn weights were within one standard deviation. Samples of
initial prawns (4 replicates of 8 prawns) were kept at −20 ◦C until analyses for nutrient retention
calculations. Prawns were held in flow-through tanks with a single air diffuser for aeration and
supplied with ozonated, UV-treated and -filtered sea water at a continuous rate of 0.6 L/min with water
temperature, salinity and dissolved oxygen maintained at 29 ◦C, 38 g/L and 5.8 mg/L, respectively.

Prawns were housed for six weeks and fed by automatic feeders (06:00, 14:00, 18:00 and 20:00 h)
and a single manual feed (10:00 h), totalling five feeds spread evenly throughout the day. Feed intake
(FI) was monitored daily and rations were adjusted based on the presence of uneaten feed in tanks to
ensure prawns were fed to satiation. The amount of feed delivered to each tank was recorded after the
last ration was delivered. Uneaten feed was siphoned and collected into a 200 µm screen, rinsed with
freshwater and pooled weekly per tank, before being oven dried (105 ◦C for 12 h) to determine FI. A 5
h water stability factor was used to adjust the amount of uneaten feed recovered, based on the time
feed would be submerged in water and a corrected FI was calculated on a DM basis using the formula:

FI (g/prawn/day) = [Feedin × DM − (Feedout/Diet water stability) × 100]/(7 × Numberprawn) (2)

where Feedin is the cumulative amount of feed as is delivered over 7 days, DM is the dry matter
content of each feed, Feedout is the amount of dry matter recovered from each tank after 7 days and
Numberprawn is the number of live prawn.

2.3. Sample Collection and Analysis

Prawn mortalities and moults were collected and recorded daily. Mean body weights of prawns for
each tank were determined on Days 21 and 42 from live individuals and feed efficiency (FE; gain:feed)
was calculated. The diet effect on WG, FI and FE determined at Day 21 were reported in Appendices A
and B. Prawns were fasted for 12 h prior to the conclusion of the trial (Day 42) to ensure emptied
digestive tracts and minerals from digesta would not interfere with whole body analysis. Final weights
of prawns were recorded and three prawns from each tank were euthanized by submersion in an ice
slurry before being retained on ice for body composition analyses. Animal samples were stored frozen
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at −20 ◦C, before being freeze-dried using an Alpha 1–4 LD Plus. The diet and freeze-dried animal
samples were then ground to pass a 1 mm mesh before analysis.

Samples of diets and whole prawns were analysed for total nitrogen (N) to determine crude
protein (CP), gross energy (GE), crude lipid (CL), DM, ash content and mineral concentrations.
All composition analyses were carried out in CSIRO laboratory facilities at the Queensland Bioscience
Precinct, Queensland, Australia. DM was obtained gravimetrically after drying at 105 ◦C for 12 h.
Ash content was obtained gravimetrically following combustion at 550 ◦C for 12 h in a muffle furnace.
CP was calculated (N× 6.25) following determination of total N by combustion analysis using a Thermo
Scientific Flash 2000 Elemental analyser. GE was determined by isoperibolic bomb calorimetry in a Parr
6200 oxygen bomb calorimeter with an 1108CL bomb for diets and whole prawn samples (Par Instrument
Company, Moline, IL, USA). CL was extracted by using a modified Folch extraction [20] and determined
gravimetrically. Diet and whole prawn mineral composition were analysed by Inductively Coupled
Plasma–Mass Spectrometry (ICPMS) using an Elan DRCII ICMPS (Perkin Elmer Inc., Waltham, MA,
USA) for multi-element determination of trace elements. Before ICPMS analysis, the samples were
solubilised using microwave-assisted acid digestion (Milestone Srl, Sorisole, BG, Italy) following a
modified Environmental Protection Agency 3051A method [21]. Two 20 mL samples of seawater were
taken at the termination of the animal trial for ICPMS analysis of minerals.

Biomass gain, weight gain (WG), FE, moulting rate and nutrient/energy retention were calculated
as follows:

Biomass gain (g) = Final weight of total prawns − Initial weight of total prawns (3)

WG (g)= W2 −W1 (4)

FE = (W2 −W1)/C (5)

Moulting rate (%/week) = 100 × [(Sum of (Nmoults_week/Nprawn_week))/6 weeks] (6)

Nutrient retention (%) = 100 × [(Nutrient%final prawn ×W2 − Nutrient%initial prawn ×W1)/(Nutrient content%feed × C)] (7)

where W2 and W1 are the final and initial wet body weight of the prawns, respectively, FeedIN is the
as-is weight of feed delivered, FeedOUT is the DM weight of uneaten feed recovered, T is the duration
in days, C is the total amount of feed consumed, Nmoults_week is the amount of moults collected in a
week and Nprawn_week_i is the number of prawns in the corresponding week.

2.4. Statistical Analysis

Experimental data of growth performance parameters derived from four replicate tanks were
analysed in a one-way ANOVA to observe the variation between diets. ANOVA assumptions of
normality of residuals and homogeneity of variances were tested using the Shapiro–Wilk and Levene
tests, respectively. Multiple comparisons Tukey–Kramer test were obtained using statistical analysis
software NCSS 11 (Kaysville, UT, USA). PB design analysis were completed using the ‘Fit Two Level
Screening’ platform on JMP®, Version 14.0. (SAS Institute Inc., Cary, NC, USA) to obtain main
effects of minerals across 12 treatments, using four replicates per treatment. Minerals were set as
categorical values with two levels (‘−’ and ‘+’) to determine their relative importance on prawn
response parameters. Coefficient estimates, t-ratios and probability levels for each mineral were
reported. The main effects of the mineral at the two inclusion levels: ‘−’ and ‘+’, were calculated by
averaging the response parameter of diets assigned with the corresponding level. The magnitude of
the effect of each mineral to a parameter is explained by the coefficient estimate which is calculated
by comparing the degree of change between the ‘+’ diets to the ‘−’ diets. The coefficient estimates
are then used to rank minerals in terms of their influence. T-ratios describe the magnitude of the
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effect size for each mineral, whereby a negative value indicates a reduction in the response parameter
and a positive value indicates an increase. A probability level of less than 5% was considered to be
statistically significant.

2.5. Animal Research Ethics

Animal research ethics was not required for research using prawns as outlined by the CSIRO
Queensland Animal Ethics Committee guidelines.

3. Results

3.1. Composition of Diets

Diet specifications and mineral concentrations of seawater are shown in Table 3. Analysed CP
of diets ranged from 494 to 530 g/kg and GE ranged between 19.0 and 19.5 MJ/kg. Concentrations of
minerals in diets 1–12 agreed with calculated concentrations of minerals allocated by the PB design
where diets assigned with − had mineral concentrations that were below expected requirements and
diets assigned with + achieved mineral concentrations that were above expected mineral requirements;
with the exception of Zn. Thus apart from Zn, diets with low mineral assignment − were expected
to be deficient in the respective mineral and conversely, diets with high mineral assignment + were
expected to meet requirements of the respective mineral.
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Table 3. Analyzed diet specifications and mineral concentrations of seawater.

Diet 1 2 3 4 5 6 7

Composition (g/kg DM)
DM (% as is) 93 95 96 95 96 96 95
GE (MJ/kg) 19.1 19.0 19.4 19.1 19.0 19.1 19.2

CP 524 521 510 530 512 494 516
CL 54 55 63 56 60 60 64
Ash 206 216 218 208 218 218 218

Diet stability
(%DM) 73 90 85 63 99 76 89

Diet pH 5.1 5.7 5.6 5.3 5.8 5.6 5.4
Minerals
B (mg/kg) 0.6 3.1 15.9 0.6 2.0 0.1 15.9
Ca (g/kg) 14.7 13.1 4.9 12.5 4.9 5.3 12.5

Co (mg/kg) 0.3 2.1 0.3 0.3 0.3 2.4 2.3
Cu (mg/kg) 64.8 18.6 18.4 11.0 105.2 84.1 84.5

K (g/kg) 27.4 1.4 1.1 23.6 1.2 1.4 1.1
Mg (g/kg) 0.7 8.9 0.5 0.6 5.0 0.6 0.6

Mn (mg/kg) 8.8 11.9 5.6 124.9 128.0 121.4 9.7
Na (g/kg) 29.5 6.3 20.7 5.8 1.4 20.2 6.0
P (g/kg) 23.0 20.0 5.7 20.0 5.7 6.0 20.0

Se (mg/kg) 0.3 0.3 2.4 2.5 2.5 0.3 2.3
Sr (mg/kg) 12.8 100.8 94.3 97.6 5.8 90.8 11.6
Zn (mg/kg) 61.2 66.8 68.6 42.1 84.0 49.4 46.6

Diet 8 9 10 11 12 Seawater Sample

Composition (g/kg DM)
DM (% as is) 96 96 96 95 95
GE (MJ/kg) 19.1 19.2 19.2 19.2 19.1

CP 508 525 508 510 530
CL 61 62 57 56 50
Ash 222 223 220 211 211

Diet stability
(%DM) 74 67 61 86 65

Diet pH 5.7 5.9 5.9 5.2 5.5
Minerals
B (mg/kg) 15.3 17.4 2.7 17.8 17.3 25 mg/L
Ca (g/kg) 4.9 4.9 4.7 12.8 12.7 510 mg/L

Co (mg/kg) 2.1 0.3 2.2 0.3 2.3 1 µg/L
Cu (mg/kg) 15.7 73.2 11.4 9.5 63.9 3 µg/L

K (g/kg) 22.3 24.0 23.8 1.3 24.6 2449 mg/L
Mg (g/kg) 0.4 6.4 10.3 10.6 7.1 363 mg/L

Mn (mg/kg) 118.6 6.9 7.0 124.9 125.8 18 µg/L
Na (g/kg) 1.2 1.2 20.4 25.8 26.1 1516 mg/L
P (g/kg) 5.1 5.8 5.6 20.8 21.0 389 µg/L

Se (mg/kg) 0.2 0.2 2.4 0.2 2.9 51 µg/L
Sr (mg/kg) 6.2 92.4 5.6 11.0 99.3 25 µg/L
Zn (mg/kg) 64.6 43.5 39.5 38.6 57.1 9 µg/L

3.2. Prawn Culture

Survival across all treatments averaged 85% and prawns grew 5-fold in relation to their initial
weight over the six-week period. One-way ANOVA of dietary treatments reported in Table 4 showed
diet had a significant effect on biomass gain, FI, FE and survival at Day 42 and diet stability at 5 h.
In particular, Diet 1 obtained inferior biomass gain, FE and survival compared to all other diets.
The lowest diet stability of 61.4% and 63.2% was obtained by Diets 10 and 4, respectively, and this was
significantly lower than the highest diet stability of 98.9% obtained by Diet 5.
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Table 4. Effect of twelve dietary treatments on growth performance and survival of juvenile prawns at
Day 42 and diet stability, as analyzed by a one-way ANOVA.

Diet WG (g) FI
(g/Prawn/Day) FE Biomass

Gain (g)
Survival

(%)
Diet Stability (% DM

After 5 h)

1 6.47 0.434 ab 0.362 a 25.6 a 62.5 a 72.4 ab

2 8.50 0.459 ab 0.460 abcd 39.0 ab 65.6 ab 90.2 ab

3 9.04 0.520 b 0.431 abcd 47.7 ab 71.9ab 85.0 ab

4 7.96 0.416 ab 0.476 abcd 47.8 ab 81.3 ab 63.2 a

5 8.77 0.421 ab 0.523 cd 54.4 ab 81.3 ab 98.9 b

6 7.40 0.489 ab 0.374 a 57.0 ab 96.9 ab 76.2 ab

7 8.49 0.429 ab 0.491 abcd 52.1 ab 81.3 ab 89.3 ab

8 8.57 0.457 ab 0.457 abcd 68.5 b 100 b 73.6 ab

9 7.06 0.444 ab 0.391 ab 51.6 ab 93.8 ab 66.9 ab

10 7.77 0.469 ab 0.406 abc 59.4 b 96.9 ab 61.4 a

11 8.29 0.394 a 0.518 bcd 61.0 b 93.7 ab 86.1 ab

12 8.20 0.371 a 0.543 d 55.0 ab 87.5 ab 64.9 ab

SEM 0.537 0.025 0.026 6.382 7.065 7.045
p-value 0.062 0.012 <0.001 0.006 <0.001 0.006
abcde Means within columns not sharing common suffixes are significantly different at the 5% level of probability,
as determined by a multiple comparisons Tukey-Kramer test.

Tables 5–7 show the results from the two-level screening analysis using the PB design.
Only results that were statistically significant are listed in Tables 5–7 (complete results are provided in
Appendices A–D including parameters measured at Day 21). Several minerals were significant for
WG, FI, FE, moulting frequency, biomass gain, survival at Day 42 and diet stability as shown in Table 5.
K and Se were the most influential minerals on WG based on coefficient estimates where additional K
negatively influenced WG by 8.9% (7.67 vs. 8.42 g; p < 0.05) while additional Se had a positive influence
on WG with an 8.6% increase (8.37 vs. 7.71 g; p < 0.05). Measurements of biomass gain and survival
showed similar effects from additional minerals. Survival was negatively influenced by the inclusion
of Ca + P and Zn while Mn improved survival (90.1 vs. 78.7%; p < 0.01). Similarly, biomass gain was
negatively influenced by Ca + P inclusions (46.8 vs. 56.4 g; p < 0.05) and was improved with Mn
(57.3 vs. 45.9 g; p < 0.05) and B (56.0 vs. 47.2 g; p < 0.05).
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Table 5. Effect of significant mineral inclusions on growth performance parameters including WG (g) 1,
FI (g/prawn/day) 2, FE (gain:feed) 3, moulting frequency (%/week) 4, biomass gain (g) 5, survival (%) 6

at Day 42 and diet stability (%DM after 5 h) 7 using a two-level screening analysis. p-values are denoted
by an asterisk (* p < 0.05, ** p < 0.01, *** p < 0.001). t-ratios of minerals highlighted green have a positive
effect and red have a negative effect on the performance parameter where the shading reflects the
magnitude (i.e., darker shading has a higher magnitude of effect and vice versa).

Mineral Performance Factor Main Effect − Main Effect + Estimate t-Ratio

B * FE (gain:feed) 0.433 0.472 0.26 2.50
B * Biomass gain (Tank weight gain; g) 47.2 56.0 8.80 2.40

Ca + P ** FI (g/prawn/day) 0.467 0.417 −0.05 −3.48
Ca + P ** FE (gain:feed) 0.430 0.475 0.31 2.97
Ca + P * Moulting frequency (%/week) 21.1 32.1 10.9 2.60
Ca + P * Biomass gain (Tank weight gain; g) 56.4 46.8 −9.60 −2.60
Ca + P * Survival (%) 90.1 78.7 −11.50 −2.81

Cu * Moulting frequency (%/week) 30.1 23.2 −11.7 −2.80
K * WG (g) 8.4 7.7 −0.75 −2.41

K *** Diet stability (%DM after 5 h) 87.6 67.1 −20.60 −5.10
Mn * FI (g/prawn/day) 0.459 0.425 −0.03 −2.42

Mn *** FE (gain:feed) 0.423 0.482 0.40 3.88
Mn * Moulting frequency (%/week) 31.4 21.9 10.9 −2.30
Mn ** Biomass gain (Tank weight gain; g) 45.9 57.3 11.40 3.10
Mn ** Survival (%) 78.7 90.1 11.50 2.81
Mg * FI (g/prawn/day) 0.458 0.426 −0.03 −2.20
Mg ** FE (gain:feed) 0.432 0.473 0.28 2.75
Se * WG (g) 7.7 8.4 0.66 2.12
Se ** FE (gain:feed) 0.427 0.478 0.35 3.40
Zn ** Survival (%) 90.6 78.1 −12.50 −3.06

Ranked significant factors of importance according to coefficient estimates for each growth performance parameter:
1 K > Se. 2 Ca + P > Mn > Mg. 3 Mn > Se > Ca + P > Mg > B. 4 Cu > Ca + P > Mn. 5 Mn > Ca + P > B.
6 Zn > Ca + P = Mn. 7 Only significant factor was K.

Table 6. Effect of significant mineral inclusions on prawn body content (%) and retention (%) sampled
at Day 42 including ash composition 1, CL composition 2, GE retention 3, CP retention 4, CL retention 5,
and total mineral retention 6 using two-level screening analysis. p-values are denoted by an asterisk
(* p < 0.05, ** p < 0.01, *** p < 0.001). t-ratios of minerals highlighted green have a positive effect and
red have a negative effect on the performance parameter where the shading reflects the magnitude
(i.e., darker shading has a higher magnitude of effect and vice versa).

Mineral Performance Factor Main Effect − Main Effect + Estimate t-Ratio

B *** Ash composition (%body) 13.48 12.45 −1.02 −4.01
B * GE retention (MJ/kg) 12 13.6 1.56 2.44
B * CP retention (%body) 17.6 19.6 2.01 2.32
B * CL retention (%body) 13.7 15.7 2.04 2.13

Ca + P *** Total mineral retention (%body) 7.22 4.24 −2.98 −5.77
Cu *** CL composition (%body) 6.81 5.9 −0.91 −4.08
Cu * CL retention (%body) 15.7 13.7 −2.05 −2.14
K *** Total mineral retention (%body) 7.02 4.44 −2.57 −4.98
Mn ** GE retention (MJ/kg) 11.7 13.9 2.2 3.45
Mn ** CP retention (%body) 17.2 20.1 2.95 3.4
Mn ** CL retention (%body) 13.3 16.1 2.83 2.94
Mn ** Total mineral retention (%) 4.77 6.69 1.92 3.72
Mg ** CL retention (%body) 13.1 16.2 3.12 3.25
Na *** Total mineral retention (%body) 6.97 4.5 −2.47 −4.78

Se * CL composition (%body) 6.06 6.65 0.59 2.67
Se * CL retention (%body) 13.5 15.8 2.29 2.38
Se * Total mineral retention (%body) 5.06 6.41 1.34 2.6
Sr ** Total mineral retention (%body) 6.5 4.97 −1.53 −2.97
Zn * Total mineral retention (%body) 5.14 6.33 1.19 2.31

Ranked significant factors of importance according to estimates for each growth performance
parameter: 1 Only significant factor was B. 2 Cu > Se. 3 Mn > B. 4 Mn > B. 5 Mg > Mn > Se > Cu > B.
6 Ca + P > K > Na > Mn > Sr > Se > Zn.
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Table 7. Effect of significant mineral inclusions on mineral content of prawn body sampled at Day
42 using two-level screening analysis. p-values are denoted by an asterisk (* p < 0.05, ** p < 0.01,
*** p < 0.001). t-ratios of minerals highlighted green have a positive effect and red have a negative effect
on the performance parameter where the shading reflects the magnitude (i.e., darker shading has a
higher magnitude of effect and vice versa).

Mineral Performance Factor Main Effect − Main Effect + Estimate t-Ratio

B ** Cu body content (mg/Kg) 65 76 10.93 2.8
Co ** Co body content (mg/Kg) 0.10 0.16 0.06 3.09
Cu *** Cu body content (mg/Kg) 37 104 67.12 17.16
Cu * P body content (mg/Kg) 2941 2611 −330.94 −2.07
Cu * Zn body content (mg/Kg) 39 44 4.69 2.47
Mg * Mg body content (mg/Kg) 926 1008 81.44 2.36
Mn * Cu body content (mg/Kg) 75 66 −9.54 −2.44

Mn *** Mn body content (mg/Kg) 1.32 5.48 4.16 11.42
Na * K body content (mg/Kg) 4110 4456 345.95 2.24
Se *** Se body content (mg/Kg) 0.74 1.24 0.50 6.68

Day 42, Se addition had a negative trend on intake (0.438 vs. 0.446 g/prawn/day) and significantly
improved FE (0.478 vs. 0.427; p < 0.01). Decreases in FI by Ca + P (0.417 vs. 0.467 g/prawn/day; p < 0.01),
Mg (0.426 vs. 0.458 g/prawn/day; p < 0.05) and Mn (0.425 vs. 0.459 g/prawn/day; p < 0.05) inclusions
were also coupled with improved FE at Day 42 (all p-values < 0.05). Positive trends in WG and FI from
B addition resulted in a significant improvement in FE at Day 42 (0.472 vs. 0.433; p < 0.05).

Diet stability in seawater averaged 77.3% DM and ranged from 61.4% to 90.2%. The addition of K
reduced diet stability by 23.5% (67.1% vs. 87.6%; p < 0.001).

3.3. Whole Prawn Body Composition

Table 6 outlines the influence of mineral inclusions on prawn body composition sampled at Day
42. Inclusion of Se increased body CL content by 9.7% (6.65 vs. 6.06%; p < 0.05) while Cu reduced lipid
content by 13.4% (5.90 vs. 6.81%; p < 0.001). B inclusion reduced ash content by 9.2% (12.45 vs. 13.48%;
p < 0.001). The effect of mineral inclusions on GE composition and CP composition was not significant
(p < 0.05) and are provided in Appendix C.

Retention of major dietary macronutrients and energy, i.e., GE, CP, CL, and total minerals were
influenced by mineral inclusion (Table 6; all mineral effects are provided in Appendix D). The inclusion
of B and Mn significantly improved nutrient and energy retention. Boron improved GE, CP and CL
retention (all p < 0.05). Manganese produced higher retentions of GE, CP and total metal retention
(all p < 0.01). Seven out of the eleven mineral factors tested (Ca + P, K, Mn, Na, Se, Sr and Zn) influenced
the retention of total minerals (all p-values < 0.05).

Table 7 reports the effect of dietary mineral addition on body mineral concentrations.
Concentrations of Co, Cu, K, Mg, Mn, P, Se and Zn in the body were significantly affected (p < 0.05)
by dietary mineral additions. Minerals that were not significantly affected are listed in Appendix E.
Dietary inclusion of Cu had the broadest influence on body mineral concentrations by significantly
increasing Cu (37 to 104 mg/kg; p < 0.001) and Zn (39 to 44 mg/kg; p < 0.05) while reducing p (2941 to
2611 mg/kg; p < 0.05). Five out of the twelve minerals included in diets resulted in higher concentrations
of the corresponding mineral in the body. These were Co, Cu, Mg, Mn and Se (all p-values < 0.05).

4. Discussion

4.1. Effect of Diets on Prawn Culture

The growth of P. monodon juvenile prawns over the 6-week period (>1.0 g/week) was comparable
to other trials assessing minerals in purified diets [12,15,22–24]. Weight gain averaged 84% per week,
which is satisfactory when compared to weight gains of P. monodon fed purified diets in other trials,
Peñaflorida [12] (68%) and Lee and Shiau [25] (183%). The lower survival of prawns fed Diet 1 (62.8%)
and Diet 2 (65.6%) was unexpected and could not be explained. It is noteworthy that Diets 1 and
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2 both contained added Ca:P and Zn and did not have Mn. This result likely contributed to the
survival response where Ca + P and Zn had a negative effect on survival while Mn had a positive
effect on survival.

Mineral analysis of Diets 1–12 confirmed the formulated mineral content was achieved, except for
Zn, and the mineral treatments had the desired effect of generating expected mineral deficiencies or
adequacies from the absence or presence of inorganic minerals, respectively.

4.2. Effect of Minerals via a PB Screening Analysis

Addition of trace minerals: B, Mn, Se and Zn generated significant improvements in growth and
nutrient utilisation when analysed as a PB design. The biological importance of Mn, Se and Zn in other
aquatic animals has been demonstrated [26]; receiving recent attention since the increased accessibility
of organometallic products such as chelates with amino acids and yeast-encapsulated minerals for
animal feeding. Briefly, Mn plays a significant role in muscle composition functioning as a cofactor in
several enzyme systems [27], Se acts as an antioxidant as well as a catalyst for growth and hormone
production [28] and Zn is a component of many metalloenzymes relating to carbohydrate and glucose
catabolism [18]. These three minerals are found in insufficient quantities in seawater and so must be
provided in the diet, which was evident from the present study as the inclusion of twice the dose rate
had a significant positive influence on performance.

Dietary inclusion of minerals improved retention of CP, CL and GE in prawns and may underlie
the observed improvements in growth. The trace minerals B, Cu, Mn and Se, as well as macro-mineral
Mg, were the highest ranked minerals of importance in the screening analysis for macronutrient and
energy retention. Mn and B were particularly important for improving the retention of nutrients and
this finding is consistent with the expected functional role that Mn plays in metabolism of nutrients [27].
The necessity for B is far less established. B function in invertebrates is unknown but it has been
suggested that at least two vertebrate phylogenetic classes require B for bone metabolism [7].

The majority of B research is focused in plants as this is the only group where B has been
demonstrated as being essential [6]. As reported in the mineral concentrations of seawater, B is present
at 25 mg/L and there has been evidence for dietary B requirement in marine animals under certain
conditions. Responses to dietary B were most marked when an experimental animal (terrestrial and
aquatic) was in the presence of a stressor that adversely altered hormonal or cellular membrane status
such as cholecalciferol, Ca, Mg or K deprivation [29]. B supplementation stimulated growth during
embryonic and early larval stages of rainbow trout and this response was more pronounced in the
absence of Ca, Mg and Na salts in the incubation solutions [30]. In the present study, prawns may
have been in various states of mineral deficiency, which may have contributed to the positive growth
responses to B supplementation. The positive influence of B on nutrient retention is intriguing,
and further study is warranted to identify the biological function of dietary B addition in crustaceans.

The effect of dietary supplementation of macro-minerals on prawn culture was not consistent
across all parameters; however, based on FE, Ca + P and Mg addition were beneficial. In crustaceans,
Ca is the major component of the exoskeleton while P and Mg are involved in the metabolism of fats,
carbohydrates and proteins. Furthermore, it has been demonstrated across multiple crustacean species
that Ca and P requirements should be investigated in tandem as an imbalance will disadvantage the
utilisation of either mineral [31–33]. In P. monodon, a dietary Ca and P interaction was evident where
Ca:P ratios of 1:1 achieved optimal mineral assimilation producing a 62% increase in WG and 89%
recovery from soft-shelling [34] whereas P supplemented diets that were devoid or oversupplied with
Ca deteriorated WG by 15.9% and 27.5%, respectively [12]. In the present study, dietary Ca and P
ratio of 1:1 caused no increase in body P concentrations but improved total mineral retention and
prawn FE. Based on these results, minerals which were not previously tested in P. monodon: B, Mg,
Mn, Se, Zn, and previously tested minerals, Ca:P at a 1:1 ratio, were identified as important for prawn
growth and nutrient utilisation. Thus, it will be instructive to confirm nutrient requirement values in a
dose–response experiment.
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4.3. Effects of Diet Stability and Mineral Bioavailability

Dietary K had a surprising negative effect on growth performance, most likely due to its negative
impact on diet water stability. K was the only mineral to significantly reduce water stability, which it
did by 30% (87.6 to 67.1%) after 5 h submersion. Dietary K was included at 2.4% which converted to a
4.6% inclusion rate of potassium chloride (KCl). KCl has a high solubility of 272.6 g/L in deionised
water at 30 ◦C which is higher compared to sodium chloride (NaCl; 265.5 g/L) [35]. The high solubility
and inclusion of KCl could lead to its loss and breakdown of the pellet as shown by the negative effect
of K on diet stability. Furthermore, we observed that prawns fed the highest concentration of K had
the lowest levels of this element in their tissues, the opposite of what was expected (see Appendix F).
Low diet stability is associated with poor palatability, decline in intake and diminished nutritional
value caused by leaching [36]. The reduced growth accompanying high dietary K may relate to the
mineral solubilizing and the pellet losing its stability, more so than a toxic effect caused by the element.
The use of a binder could minimize the negative effect on diet stability from the addition of highly
soluble ingredients; however, the bioavailability of the mineral once ingested should be considered.

The chemical form of a mineral is critical to its bioavailability as it characterizes the likelihood
for the element to form insoluble substances impeding digestion, or hydrolyze and increase nutrient
leaching [37]. In this study, the response to a dietary mineral appeared linked to its assimilation in the
prawn body. For example, addition of Co, Cu, Mg, Mn and Se resulted in higher concentrations in
body and enhanced growth and/or nutrient retention. The benefits of higher mineral assimilation on
prawn growth requires further investigation. Highly bioavailable sources such as chelated minerals
have potential benefits in enhancing mineral assimilation in prawns as observed by Roy et al. [38] and
Bharadwaj et al. [39]; however, any corresponding benefits to prawn growth or health have yet to
be demonstrated.

4.4. Variation in Response to Minerals as Observed in This Study

The interim sampling point at Day 21 in this study showed some divergent results compared to the
final sampling at Day 42. A greater number of minerals had an effect on WG and FE measured at Day 21,
where there were 4 and 7 significant mineral factors, respectively, compared to Day 42, where there were
only 2 and 5 significant mineral factors, respectively (Appendices A and C). Thus, minerals observed to
be important for WG and FE after 3 weeks did not maintain a similar effect on WG and FE after
6 weeks. The results provide insights on the potential mineral uptake by prawns, where prawns
fed mineral-deficient diets may be able to compensate through the consumption of moults and/or
prawn cannibalism. Our laboratory data indicate moult casings were on average 40% of the entire
mineral body balance of the moulting animal. Furthermore, moulting rates were 26.6%/week/prawn
(i.e., one moult every 3.8 weeks), which is far lower than the expected levels to achieve the present
5-fold increase in body mass over 42 days [40]. Thus it is likely moult consumption by prawns occurred,
despite our best attempts to remove casings and dead prawns daily. It highlights the need to manage
the consumption of minerals from other sources in mineral requirement studies and the further insight
provided by data collection at more than a single timepoint. Future studies should investigate the
effect of exposure length to diets on mineral requirements of prawns.

5. Conclusions

The application of a PB screening design identified important dietary minerals for growth
and nutrient retention parameters in juvenile P. monodon. This outcome may be a result of the
intricate allocation which can assess a high number of factors in a reduced number of treatments [9].
This strategy, coupled with high inclusion levels of minerals, ensured that the dietary mineral effects
were large enough to be detected by the two-level screening design. The most influential minerals
to influence growth and nutrient utilization in juvenile P. monodon were B, Mg, Mn, Se, Zn and Ca
+ P as a 1:1 ratio. Defining the optimal inclusion levels of these minerals, should be the focus of
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future studies. Mineral solubility can dictate the utilization of a mineral source by influencing diet
characteristics, e.g., diet stability. Therefore, the effect of mineral chemical form on diet stability and
prawn bioavailability should be considered when completing mineral requirement research.
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Abbreviations

CP crude protein
CL crude lipid
DM dry matter
FE feed efficiency
FI feed intake
GE gross energy
PB Plackett-Burman
N total nitrogen
WG weight gain

Appendix A

Table A1. Effect of twelve dietary minerals at two inclusion levels (−/+) on weight gain (g) at Day 21
and 42, moulting frequency (g/week), biomass gain (g) and survival (%) at Day 42 using two-level
screening analysis. Factors are sorted by |estimates| and significant factors are marked by an asterisk
(* p < 0.05, ** p < 0.01, *** p < 0.001).

Factor Main Effect − Main Effect + Estimate t-Ratio

Weight gain (Day 21, g)

K ** 4.02 3.57 −0.45 −2.95
Zn ** 3.58 4.02 0.44 2.90
Mn * 3.60 4.00 0.40 2.61
Se * 3.61 3.99 0.38 2.51
Cu 3.95 3.65 −0.30 −2.00
Co 3.69 3.91 0.22 1.45
Na 3.91 3.69 −0.22 −1.45

Ca + P 3.75 3.85 0.10 0.63
B 3.76 3.83 0.07 0.48

Mg 3.83 3.76 −0.07 −0.46
Sr 3.76 3.83 0.07 0.45
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Table A1. Cont.

Factor Main Effect − Main Effect + Estimate t-Ratio

Weight gain (Day 42, g)

K * 8.42 7.67 −0.75 −2.41
Se * 7.71 8.37 0.66 2.12
Cu 8.35 7.73 −0.62 −2.00
B 7.81 8.28 0.47 1.50

Zn 7.83 8.26 0.43 1.39
Na 8.23 7.86 −0.36 −1.17
Mn 7.89 8.20 0.31 1.00
Co 7.93 8.16 0.22 0.72

Ca + P 8.10 7.98 −0.12 −0.38
Mg 7.99 8.10 0.11 0.35
Sr 8.06 8.03 −0.03 −0.11

textbfFactor Main Effect − Main Effect + Estimate t-Ratio

Moult frequency (% per week)

Cu ** 30.1 23.2 −11.7 −2.8
Ca + P * 21.2 32.1 10.9 2.6

Mn * 31.4 21.9 −9.5 −2.3
Co 30.1 23.2 −6.9 −1.7
Mg 29.8 23.4 −6.4 −1.6
K 29.2 24.1 −5.1 −1.2
B 28.0 25.3 −2.7 −0.6

Zn 25.5 27.8 2.3 0.6
Na 26.9 26.3 −0.6 −0.2
Se 26.3 26.9 0.6 0.2
Sr 26.8 26.5 −0.3 −0.1

Factor Main Effect − Main Effect + Estimate t-Ratio

Biomass gain (Tank weight gain; g)

Mn ** 45.9 57.3 11.4 3.1
Ca + P * 56.4 46.8 −9.6 −2.6

B * 47.2 56.0 8.8 2.4
Co 48.0 55.2 7.2 2.0
Zn 54.8 48.4 −6.4 −1.8
Cu 53.9 49.3 −4.6 −1.3
Sr 53.5 49.7 −3.8 −1.0

Mg 49.8 53.4 3.6 1.0
Se 50.5 52.7 2.3 0.6
Na 52.2 51.0 −1.3 −0.4
K 51.9 51.3 −0.5 −0.1

Factor Main Effect − Main Effect + Estimate t-Ratio

Survival (Day 42; %)

Zn ** 80.7 88.0 12.5 3.1
Mn ** 80.7 88.0 −11.5 −2.8

Ca + P ** 84.9 83.9 11.5 2.8
B 78.7 90.1 −7.3 −1.8

Co 85.4 83.3 −7.3 −1.8
K 85.9 82.8 −5.2 −1.3

Mg 90.6 78.1 −4.2 −1.0
Sr 90.1 78.7 3.1 0.8
Se 83.9 84.9 2.1 0.5
Cu 82.3 86.5 1.0 0.3
Na 81.8 87.0 −1.0 −0.3
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Appendix B

Table A2. Effect of twelve dietary minerals at two inclusion levels (−/+) on diet stability (% DM after
5 h), feed intake (g/prawn/day) at day 21 and 42 and feed efficiency (FE) at Day 21 and 42 over the
6-week trial period using two-level screening analysis. Factors are sorted by |estimates| and significant
factors are marked by an asterisk (* p < 0.05, ** p < 0.01, *** p < 0.001).

Factor Main Effect − Main Effect + Estimate t-Ratio

Diet stability (% DM after 5 h)

K *** 87.6 67.1 −20.6 −5.1
Zn 73.8 80.9 7.0 1.7
Na 80.4 74.3 −6.0 −1.5
Sr 80.3 74.4 −5.9 −1.5
Co 78.8 75.9 −2.8 −0.7
Cu 76.6 78.1 1.5 0.4
Mg 76.6 78.1 1.5 0.4

Ca + P 77.0 77.7 0.7 0.2
B 77.1 77.7 0.6 0.2
Se 77.6 77.1 −0.5 −0.1

Mn 77.5 77.2 −0.4 −0.1

Factor Main Effect − Main Effect + Estimate t-Ratio

Feed intake (Day 21; g/prawn/day)

Mg * 0.372 0.341 −0.03 −2.70
Ca + P * 0.371 0.342 −0.03 −2.54

Cu 0.367 0.346 −0.02 −1.81
Mn 0.365 0.348 −0.02 −1.52
Se 0.364 0.349 −0.01 −1.29
Co 0.350 0.363 0.01 1.20
Na 0.350 0.363 0.01 1.16
B 0.360 0.353 −0.01 −0.63
Sr 0.353 0.360 0.01 0.55
K 0.359 0.354 −0.01 −0.46

Zn 0.354 0.358 0.00 0.34

Factor Main Effect − Main Effect + Estimate t-Ratio

Feed intake (Day 42; g/prawn/day)

Ca + P ** 0.467 0.417 −0.05 −3.48
Mn * 0.459 0.425 −0.03 −2.42
Mg * 0.458 0.426 −0.03 −2.20
Cu 0.453 0.431 −0.02 −1.48
K 0.452 0.432 −0.02 −1.39
Sr 0.434 0.45 0.02 1.10
B 0.448 0.436 −0.01 −0.85
Se 0.446 0.438 −0.01 −0.60
Na 0.438 0.446 0.01 0.59
Co 0.438 0.446 0.01 0.51
Zn 0.44 0.444 0.00 0.24
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Table A2. Cont.

Factor Main Effect − Main Effect + Estimate t-Ratio

FE (Day 21; gain:feed)

Mn *** 0.471 0.553 0.45 5.34
Se *** 0.474 0.550 0.41 4.95
Zn *** 0.483 0.540 0.31 3.70
K ** 0.539 0.485 −0.29 −3.51

Ca + P ** 0.485 0.538 0.29 3.42
Na ** 0.535 0.489 −0.25 −2.97
Mg * 0.494 0.529 0.19 2.28

B 0.502 0.522 0.11 1.26
Co 0.506 0.517 0.06 0.71
Cu 0.515 0.508 −0.04 −0.46
Sr 0.512 0.512 0.00 −0.03

Factor Main Effect − Main Effect + Estimate t-Ratio

FE (Day 42; gain:feed)

Mn *** 0.423 0.482 0.40 3.88
Se ** 0.427 0.478 0.35 3.40

Ca + P ** 0.430 0.475 0.30 2.97
Mg ** 0.432 0.473 0.28 2.75

B * 0.433 0.472 0.26 2.53
Na 0.466 0.439 −0.19 −1.82
K 0.466 0.439 −0.18 −1.79

Zn 0.443 0.463 0.14 1.33
Sr 0.459 0.446 −0.09 −0.91
Cu 0.458 0.447 −0.07 −0.72
Co 0.450 0.455 0.03 0.32

Appendix C

Table A3. Effect of twelve dietary minerals at two inclusion levels (−/+) on CL, ash, CP and GE content
of prawn bodyes using two-level screening analysis. Factors are sorted by |estimates| and significant
factors are marked by an asterisk (* p < 0.05, ** p < 0.01, *** p < 0.001).

Factor Main Effect − Main Effect + Estimate t-Ratio

CL (% body)

Cu *** 6.81 5.90 −0.91 −4.08
Se * 6.06 6.65 0.59 2.67
Zn 6.57 6.14 −0.42 −1.90

Ca + P 6.55 6.16 −0.39 −1.76
Mg 6.17 6.54 0.38 1.70
B 6.18 6.53 0.35 1.58

Na 6.23 6.47 0.24 1.08
Co 6.27 6.44 0.17 0.75
K 6.42 6.29 −0.12 −0.55

Mn 6.39 6.32 −0.08 −0.34
Sr 6.32 6.39 0.07 0.30
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Table A3. Cont.

Factor Main Effect − Main Effect + Estimate t-Ratio

Ash (% body)

B *** 13.48 12.45 −1.02 −4.01
Sr 12.75 13.18 0.43 1.68

Mn 12.77 13.16 0.39 1.55
Se 13.11 12.82 −0.29 −1.14
Co 13.09 12.84 −0.24 −0.95
Cu 13.08 12.85 −0.24 −0.92
Mg 12.86 13.07 0.21 0.81
K 12.88 13.05 0.18 0.69

Zn 13.04 12.89 −0.14 −0.56
Ca + P 12.94 12.99 0.06 0.22

Na 12.98 12.95 −0.03 −0.13

Factor Main Effect − Main Effect + Estimate t-Ratio

CP (% body)

Ca + P 72.6 74.9 2.23 3.03
B 74.5 73.0 −1.42 −1.93

Mn 74.3 73.2 −1.09 −1.48
Cu 73.2 74.3 1.09 1.47
Se 74.2 73.3 −0.84 −1.15
Sr 73.4 74.1 0.63 0.86
K 74.0 73.5 −0.51 −0.69

Zn 73.6 73.9 0.32 0.44
Mg 73.7 73.8 0.18 0.24
Co 73.7 73.8 0.11 0.15
Na 73.7 73.8 0.03 0.04

Factor Main Effect − Main Effect + Estimate t-Ratio

GE (MJ/kg body)

Se 18.5 18.8 0.32 1.72
Sr 18.6 18.8 0.18 0.99
K 18.8 18.6 −0.16 −0.86

Co 18.6 18.7 0.12 0.64
Cu 18.7 18.6 −0.08 −0.46
Mn 18.7 18.7 0.03 0.15
Zn 18.7 18.7 0.03 0.14
Na 18.7 18.7 −0.03 −0.14
B 18.7 18.7 0.02 0.09

Mg 18.7 18.7 0.01 0.07
Ca + P 18.7 18.7 0.00 0.01
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Appendix D

Table A4. Effect of twelve dietary minerals at two inclusion levels (−/+) on GE retention, CP retention,
CL retention, ash retention and total mineral retention of prawn body using two-level screening analysis.
Factors are sorted by |estimates| and significant factors are marked by an asterisk (* p < 0.05, ** p < 0.01,
*** p < 0.001).

Factor Main Effect − Main Effect + Estimate t-Ratio

GE retention (MJ/kg)

Mn ** 11.7 13.9 2.20 3.45
B * 12.0 13.6 1.56 2.44
Mg 12.2 13.4 1.18 1.85
Se 12.2 13.4 1.18 1.85

Ca + P 12.4 13.2 0.74 1.15
Co 12.5 13.2 0.71 1.11
Sr 13.1 12.5 −0.56 −0.88
Na 13.0 12.6 −0.41 −0.65
K 12.9 12.7 −0.18 −0.29

Cu 12.9 12.7 −0.18 −0.28
Zn 12.8 14.4 −0.01 −0.02

Factor Main Effect − Main Effect + Estimate t-Ratio

CP retention (%)

Mn ** 17.2 20.1 2.95 3.40
B * 17.6 19.6 2.01 2.32
Mg 17.8 19.4 1.61 1.86

Ca + P 18.1 19.2 1.16 1.34
Se 18.1 19.2 1.12 1.30
Co 18.1 19.2 1.09 1.26
Sr 19.1 18.1 −0.98 −1.13
K 19.0 18.3 −0.69 −0.80

Na 18.8 18.5 −0.29 −0.33
Zn 18.8 18.5 −0.27 −0.32
Cu 18.7 18.5 −0.19 −0.22

Factor Main Effect − Main Effect + Estimate t-Ratio

CL retention (%)

Mg ** 13.1 16.2 3.12 3.25
Mn ** 13.3 16.1 2.83 2.94
Se * 13.5 15.8 2.29 2.38
B * 13.7 15.7 2.04 2.13

Cu * 15.7 13.7 −2.05 −2.14
Ca + P 14.0 15.3 1.28 1.33

Co 14.1 15.3 1.21 1.26
Na 14.2 15.2 1.04 1.08
Zn 14.9 14.4 −0.51 −0.53
K 14.4 14.9 0.47 0.49
Sr 14.8 14.5 −0.31 −0.32
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Table A4. Cont.

Factor Main Effect − Main Effect + Estimate t-Ratio

Total mineral retention (%)

Ca + P *** 7.22 4.24 −2.98 −5.77
K *** 7.02 4.44 −2.57 −4.98

Na *** 6.97 4.50 −2.47 −4.78
Mn ** 4.77 6.69 1.92 3.72
Sr ** 6.50 4.97 −1.53 −2.97
Se * 5.06 6.41 1.34 2.60
Zn * 5.14 6.33 1.19 2.31
Co 6.17 5.30 −0.88 −1.70
Cu 5.30 6.16 0.86 1.67
Mg 5.43 6.04 0.61 1.19
B 5.83 5.63 −0.20 −0.38
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Appendix E

Table A5. Effect of dietary mineral inclusions on prawn body mineral concentrations (mg/Kg) using two-level screening analysis. PB statistical values for each mineral
is outlined. t-ratios with asterisks (*, **, ***) denote significant p-values defined as * p < 0.05, ** p < 0.01, *** p < 0.001.

Mineral
Parameters

Prawn Body Mineral Concentrations (t-Ratio)

B mg/Kg Ca mg/Kg Co mg/Kg Cu mg/Kg K mg/Kg Mg mg/Kg Mn mg/Kg Na mg/Kg P mg/Kg Se mg/Kg Sr mg/Kg Zn mg/Kg

B −0.29 −0.82 1.36 2.8 ** −0.21 −1.15 1.25 −1.77 0.89 1.28 0.48 1.91

Ca + P 0.43 0.56 −1.71 −0.66 0.35 0.5 −1.37 0.78 1.77 1.87 0.82 −0.88

Co 0.29 −0.56 3.09 ** 0.7 −1.34 0.5 1.14 −0.85 −1.75 1.95 −0.85 −0.05
Cu 0.42 −1.15 0.27 17.16 *** −1.22 −1.94 −0.87 −1.53 −2.07 * −0.64 0.16 2.47 **
K 0.38 0.97 1.62 −0.61 −0.32 0.41 1.94 −0.79 0.27 −0.47 1.38 0.64

Mg −0.39 1.95 0.4 −1.19 1.03 2.36 * −1.46 1.21 0.47 0.91 −0.35 −0.52
Mn −0.41 0.5 −0.54 −2.44 0.3 0.35 11.42 *** 0.04 0.63 −1.52 −0.7 −0.76
Na 0.13 0.57 0.66 −1.9 2.24 * 0.86 −1.15 1.98 1.93 −1.52 0.14 0.01
Se −0.39 −0.14 0.02 −0.35 −0.15 −0.37 −0.91 −0.41 0.19 6.68 *** −0.78 −0.79
Sr −0.03 −1.54 0.71 0.51 −1.2 −1.27 0 −0.14 −0.39 −1.63 −1.48 −1.46
Zn −0.67 −1.27 −0.68 −0.57 −1.7 −1.81 0.07 −0.96 −1.05 −1.9 −0.84 −1.43
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Appendix F

Table A6. Effect of dietary mineral inclusions on prawn body mineral retention (%) using two-level screening analysis. PB statistical values for each mineral is outlined.
t-ratios with asterisks (*, **, ***) denote significant p-values defined as * p < 0.05, ** p < 0.01, *** p < 0.001.

Mineral
Parameters

Prawn Body Mineral Retention (t-Ratio)

B
(%)

Ca
(%)

Co
(%)

Cu
(%)

K
(%)

Mg
(%)

Mn
(%)

Na
(%)

P
(%)

Se
(%)

Sr
(%)

Zn
(%)

B −12.52 *** 0.44 1.37 3.33 ** 2.74 ** 3.66 *** 3.47 ** 3.31 ** 1.87 4.42 *** −0.19 4.07 ***
Ca + P −7.31 *** −11.24 *** −0.15 1.69 0.90 −2.64 * −4.25 *** −10.63 *** −13.54 *** 0.93 −3.31 ** 1.94

Co 7.07 *** 0.59 −4.83 *** −0.42 −2.56 * 2.81 *** −1.31 −3.37 ** 0.28 −0.78 1.28 0.37
Cu 9.05 *** −1.11 −0.37 −7.58 *** −0.27 −3.87 *** −0.22 2.96 ** −2.51 * −3.78 *** −1.87 0.09
K −7.21 *** 1.07 0.67 1.46 −20.60 *** 1.28 2.00 3.39 ** 0.85 −0.52 0.74 1.30

Mg −11.03 *** 2.60 * 0.53 0.67 0.97 −26.85 *** 0.63 3.35 ** 0.47 2.19 * 1.57 1.86
Mn 9.53 *** 1.85 −0.12 2.69 * 1.33 4.26 *** −8.17 *** 4.38 *** 1.41 2.45 * 1.87 1.45
Na 8.84 *** −1.07 0.01 0.74 0.45 −5.13 *** 0.11 −14.74 *** −0.31 −0.92 −1.22 0.77
Se −8.73 *** 1.41 −0.53 −0.52 1.40 0.89 1.39 −3.02 ** 0.94 −9.12 *** 0.95 0.02
Sr 9.18 *** −2.72 ** 0.68 −1.77 −3.37 ** −0.72 0.93 −3.99 *** −1.80 −3.05 ** −10.60 *** −2.17 *
Zn −9.33 *** −0.21 −1.05 −1.81 −1.21 0.38 −2.30 * 3.72 *** 0.71 −1.09 0.49 −7.23 ***
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