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Simple Summary: Camera trap wildlife surveys can generate vast amounts of imagery. A key problem
in the wildlife ecology field is that vast amounts of time is spent reviewing this imagery to identify
the species detected. Valuable resources are wasted, and the scale of studies is limited by this review
process. The use of computer software capable of extracting false positives, automatically identifying
animals detected and sorting imagery could greatly increase efficiency. Artificial intelligence has been
demonstrated as an effective option for automatically identifying species from camera trap imagery.
Currently available code bases are inaccessible to the majority of users; requiring high-performance
computers, advanced software engineering skills and, often, high-bandwidth internet connections to
access cloud services. The ClassifyMe software tool is designed to address this gap and provides users
the opportunity to utilise state-of-the-art image recognition algorithms without the need for specialised
computer programming skills. ClassifyMe is especially designed for field researchers, allowing users
to sweep through camera trap imagery using field computers instead of office-based workstations.

Abstract: We present ClassifyMe a software tool for the automated identification of animal species
from camera trap images. ClassifyMe is intended to be used by ecologists both in the field and
in the office. Users can download a pre-trained model specific to their location of interest and
then upload the images from a camera trap to a laptop or workstation. ClassifyMe will identify
animals and other objects (e.g., vehicles) in images, provide a report file with the most likely
species detections, and automatically sort the images into sub-folders corresponding to these species
categories. False Triggers (no visible object present) will also be filtered and sorted. Importantly,
the ClassifyMe software operates on the user’s local machine (own laptop or workstation)—not via
internet connection. This allows users access to state-of-the-art camera trap computer vision software
in situ, rather than only in the office. The software also incurs minimal cost on the end-user as there is
no need for expensive data uploads to cloud services. Furthermore, processing the images locally on
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the users’ end-device allows them data control and resolves privacy issues surrounding transfer and
third-party access to users’ datasets.

Keywords: camera traps; camera trap data management; deep learning; ecological software; species
recognition; wildlife monitoring

1. Introduction

Passive Infrared sensor activated cameras, otherwise known as camera traps, have proved to be a
tool of major interest and benefit to wildlife management practitioners and ecological researchers [1,2].
Camera traps are used for a diverse array of purposes including presence–absence studies [3–5],
population estimates [6–9], animal behaviour studies [10–12], and species interactions studies [12–14].
A comprehensive discussion of the applications of camera trap methodologies and applications are
described in sources including [15–17]. The capacity of camera traps to collect large amounts of visual
data provides an unprecedented opportunity for remote wildlife observation; however, these same
datasets incur a large cost and burden as image processing can be time consuming [2,18]. The user is
often required to inspect, identify and label tens-of-thousands of images per deployment, dependent
on the number of camera traps deployed. Large scale spatio-temporal studies may involve 10–100 s
of cameras deployed consecutively over months to years, and the image review requirements are
formidable and resource intensive. Numerous software packages have been developed over the last
20 years to help with analysing camera trap image data [19], but these methods often require some form
of manual image processing. Automation in image processing has been recognised internationally
as a requirement for progress in wildlife monitoring [1,2] and this has become increasingly urgent as
camera trap deployment has grown over time.

The identification of information within camera trap imagery can be tackled using (a) paid staff,
(b) internet crowd-sourcing, (c) citizen science, or (d) limiting the study size. All approaches involving
human annotators can encounter errors due to fatigue. Using staff requires access to sufficient budget
and capable personnel and constitutes an expensive use of valuable resources in terms of both time
and money. The quality of species identification is likely to be high, but the time of qualified staff is
otherwise lost for other tasks, such as field work and data interpretation. Internet crowd-sourcing
involves out-sourcing and payment to commercial providers. This approach can be economical with
fast task completion; however, there is potential for a large variation between annotators, influenced by
experience and skill. Volunteer citizen scientists can also provide image annotation services typically
via the access to web sites such as Zooniverse [20]. Costs are lower than employing staff, but reliable
species identification might require specialized training and errors have important implications for any
subsequent machine algorithms developed [21]. Limited control of data access, sharing and storage
raises concerns around sensitive ecological datasets (e.g., endangered species) along with privacy
legislation [22]. Nonetheless, the use of volunteers or citizen scientists has proved effective in the field
of camera trapping—notably via TEAM Network [23] and the Snapshot Serengeti project [24]—but for
some, taxa human identification has been shown to be problematic [25]. Meek and Zimmerman [26]
discuss the challenges of using citizen science for camera trap research, particularly how managing
such teams along with the data can incur enormous costs to the researchers. Limiting the design of
studies by reducing the number of camera traps deployed, reviewing data for the presence of select
species only, or evaluating only a proportion of the available data and archiving the remainder are
unpalatable options. Such approaches constrain the data analysis methodologies available and limit
the value of research findings [27,28].

To overcome the limitations of approaches outlined above, including human error and operator
fatigue, we have utilised computer science to develop automated labelling. As well as being able to
confirm results, key strengths of this approach, compared to existing options, include it being consistent,
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comparatively fast, standardised, and relatively free from biases associated with operator fatigue.
Advances in computer vision have been pronounced in recent years, with successful demonstrations
of image recognition in fields as diverse as autonomous cars, citrus tree detection from drone imagery,
and the identification of skin cancer [29–31]. Recent work has also demonstrated the feasibility of Deep
Learning approaches for species identification in camera trap images [32] and more widely across
agricultural and ecological monitoring [33–37]. In the context of camera traps it is worth noting that
such algorithms have been used in prototype software for this purpose since at least 2015, in projects
such as Wild Dog Alert (https://invasives.com.au/research/wild-dog-alert/) [38]—building on earlier
semi-automated species recognition algorithms [39]. The practical benefit of this research for end-users
has been limited, because they cannot access software to automatically process camera trap images.
We therefore developed ClassifyMe as a software tool to reduce the time and costs of image processing.
The ClassifyMe software is designed to be used on constrained hardware resources—such as field
laptops—although it can also be used on office workstations. This is a challenging requirement for a
software application because it is required to operate across diverse computer hardware and software
configurations while providing the end-user with a high-level of control and independence of their data.
To elaborate on how we tackle these issues we outline the general structure and operation of ClassifyMe
and provide an evaluation of its performance using an Australian species case study along with
Supplementary Materials evaluating performance across Africa, New Zealand and North America.

2. Materials and Methods

2.1. Workflow

The software is developed so it can be installed on individual computers under an End User
Licence Agreement. The intent is that the user will upload an SD card of camera trap images, select the
relevant model and then run ClassifyMe on this dataset to automatically identify and sort the images
(Figure 1).
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Figure 1. The data collection-analysis pipeline using the ClassifyMe software.

The proposed workflow allows camera trap images to be processed on the user’s machine.
This provides high level of control on the use and access to the data, alleviating concerns around the
sharing, privacy and security of using web services. Furthermore, ClassifyMe avoids the need for the
user to upload their data to cloud infrastructure, which can be prohibitive in terms of accessibility, time
and cost. ClassifyMe adopts a ‘tethered’ service approach, whereby the user needs only intermittent
internet access (every 3 months), to verify security credentials to ensure continued access to the
software. The ‘tethered’ service approach was adopted as a security mechanism to obstruct misuse
and the unauthorised proliferation of the software for circumstances such as poaching. A practitioner
can therefore validate security credentials and download the appropriate regional identification model
(e.g., New England model) prior to travel into the field. When in the field, ClassifyMe can be used to
evaluate deployment success (e.g., after several weeks of camera trap data collection) and can be used
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in countries with limited or no internet connectivity. Validation services are available for approved
users (e.g., ecology researchers or managers) who require extensions of the tethered renewal period.

2.2. Software Design Attributes

The software design and stability of ClassifyMe was complicated by our choice to operate solely on
the user’s computer. As such, the software is capable of operating on a plethora of different operating
systems and hardware designs. To limit stability issues in ClassifyMe, however, we have decided to
only currently release and support the Windows 10TM operating system, which is widely used by
field ecologists. Different hardware options are supported including CPU-only and GPU; the models
used by ClassifyMe are best supported by NDVIDIA GPU hardware and, as a result, users with this
hardware will experience substantially faster processing times (up to 20 times faster per dataset).

The ‘tethered’ approach and corresponding application for software registration might be viewed
as an inconvenience by some users. However, these components are essential security aspects of
the software. The ClassifyMe software is a decentralised system; individual users access a web site,
download the software and the model and then process their own data. The ClassifyMe web service
does not see the user’s end data and—without the registration and ‘tethering’ process—the software
could be copied and redistributed in an unrestricted manner. When designing ClassifyMe, the authors
were in favour of free, unrestricted software, which could be widely redistributed. During the course
of development, it occurred to the team that the software was also at risk of misuse. In particular
ClassifyMe could be used to rapidly scan camera trap images whilst in field to detect the presence of
particular species such as African elephants which are threatened by poaching [40]. To address this
concern, a host of security features were incorporated into ClassifyMe. These features include software
licencing, user validation and certification, and extensive undisclosed software security features.
Disclosed security features include tethering and randomly generated licence keys, and facilities to
ensure that ClassifyMe is used only on the registered hardware and unauthorised copying is prevented.
In the event of a breach attempt, a remote shutdown of the software is initiated.

All recognition models are restricted, and approval is issued to users on a case-by-case basis.
This security approach is implemented in a privacy-preserving context. The majority of security
measures involve hidden internal logic along with security provisions of the communications with
the corresponding ClassifyMe web service at https://classifymeapp.com/ (to ensure the security of
communications with the end user and their data). Information provided by the user and the
corresponding hardware ‘fingerprinting’ identification is performed only with user consent and all
information is stored on secured encrypted databases.

A potential disadvantage of the local processing approach adopted by ClassifyMe is that user’s
software resources are utilised, which potentially limits the scale and rate of data processing.
An institutional cloud service—for instance—can auto-scale (once the data is uploaded) to accommodate
data sets from hundreds of camera trap SD card simultaneously. In contrast, the ClassifyMe user will
only be able to only process one camera trap dataset at a time. The ClassifyMe user will also have to
implement their own data record management system—there is no database system integrated within
ClassifyMe, which has the benefit of reducing software management complexity for end users but
the disadvantage of not providing a management solution for large volumes of camera trap records.
ClassifyMe is designed simply to review camera trap data for species identification, to auto-sort images
and to export the classifications (indexed to image) to a csv file.

2.3. Graphical User Interface

When ClassifyMe is initiated, the main components consist of: (a) an image banner which displays
thumbnails of the camera trap image dataset, (b) a model selection box (in this example set as
‘New England NSW’), and (c) the dialogue box providing user feedback (e.g., ‘Model New England
NSW loaded’)—along with a series of buttons (‘Load’, ‘Classify’, ‘Cancel’, ‘Clear’, ‘Models’) to provide
the main mechanisms of user control (Figure 2).

https://classifymeapp.com/
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The image banner provides a useful way for the user to visually scan the contents of the image
data set to confirm that the correct data set is loaded. The ‘Models’ selection box allows users to select
the most appropriate detection model for their data set. ClassifyMe offers facilities for multiple models
to be developed and offered through the web service. A user might—for instance—operate camera
trap surveys across multiple regions (e.g., New England NSW and SW USA). Selection of a specific
model allows the user to adapt the model to the specific fauna of a region. Access to specific models
is dependent on user approval by the ClassifyMe service providers. Facilities exist for developing as
many classification models as required but dependent on the provision of model training datasets.

The dialogue box of ClassifyMe provides the primary mechanism of user interaction with the
software. It provides textual responses and prompts which guide the user through use of the software
and the classification process. Finally, the GUI buttons provide the main mechanism of user control.
The ‘Load’ button is used to load an image dataset from the user’s files into the system; the ‘Classify’
button to start the classification of the loaded image data using the selected model; the ‘Cancel’ button
to halt the current classification task, and the ‘Clear’ button to remove all current text messages from
the dialogue box.

When an image dataset is loaded and the classification process started (Figure 3), each image is
scanned sequentially for the presence of an animal (or other category of interest) using the selected
model. ClassifyMe automatically sorts the images into sub-directories corresponding to the most likely
classification and can also automatically detect and sort images where no animal or target category is
found. The results are displayed on-screen via the dialogue box which reports the classification for
each image as it is processed. The full set of classification results, which includes the confidence scores
for the most likely categories, is stored as a separate csv file. ClassifyMe creates a separate sub-directory
for each new session. The full Unified Modelling Language (UML) structure of ClassifyMe (omitting
security features) is described in Supplementary Material S1.
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2.4. Recognition Models

The primary machine learning framework behind ClassifyMe is DarkNet and YOLOv2 [41].
The YOLOv2 framework is an object detector deep network, based on a Darknet-19 convolutional neural
network structure. YOLOv2 provides access to not only a classifier (e.g., species recognition) but
also a localiser (where in image) and a counter (how many animals) which facilitates multi-species
detections. ClassifyMe at present is focused on species classification but future models could incorporate
these additional capabilities due to the choice of YOLOv2. YOLOv2 is designed for high-throughput
processing (40–90 frames per second) whilst achieving relatively high-accuracy (YOLOv2 544 × 544
mean Average Precision 78.6@49 frames per second on Pascal VOC 2007 dataset using a NVIDIA
GeForce GTX Titan X GPU, [36]. A range of other competitive object detectors such as SSD [42],
Faster R-CNN [43] and R-FCN [44] could also have been selected for this task. Framework choice was
governed by a range of factors including: Accuracy of detection and classification; processing speed
on general purpose hardware; model development and training requirements; ease of integration into
other software packages, and licencing. Dedicated object classifiers such as ResNet [45] also provide
high-accuracy performance on camera trap data [46], however such models lack the future design
flexibility of an object detector.

ClassifyMe is designed for the end-user to install relevant models from a library accessed via the
configuration panel. The model is then made available for use in the model drop-down selector box
e.g., the user might install the Australian and New Zealand models via the configuration panel and
when analysing a specific data set select the New Zealand model. These models are developed by the
ClassifyMe development team. Models are developed in consultation with potential end-users and
when the image data provided meets the ClassifyMe data requirements standard (Refer Supplementary
Material S2). Importantly, ClassifyMe recognition models perform best when developed for the specific
environment and species cohort to be encountered—and the specific camera trap imaging configuration
to be used—in each study. When used outside the scope of the model, detection performance and
accuracy might degrade. ClassifyMe is designed primarily to support end-users who have put effort
into ensuring high-quality annotated datasets and who value the use of automated recognition software
within their long-term study sites.
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2.5. Model Evaluation

ClassifyMe has currently been developed and evaluated for five recognition models. These are
Australia (New England New South Wales), New Zealand, Serengeti (Tanzania), North America
(Wisconsin) and South Western USA models. The Australia (New England NSW) dataset was
developed from data collected at the University of New England’s Newholme Field Laboratory,
Armidale NSW. The New Zealand model was developed as part of a predator monitoring program
in the context of the Kiwi Rescue project [47]. The Serengeti model was produced from a subset of
the Snapshot Serengeti dataset [24]. The North America (Wisconsin) model was developed using the
Snapshot Wisconsin dataset [48], whilst the South West USA model was developed using data provided
by Caltech camera traps data collection [49]. Source datasets were sub-set according to minimum
data requirements for each category (comparable to the data standard advised in Supplementary
Material S2) and in light of current project developer resources.

Object detection models were developed for each dataset using YOLOv2. Hold-out test data
sets were used to evaluate the performance of each model on data not used for model development.
These hold-out test data sets were formulated via the random sampling of images from the project
repository of images. Sample size varied based on data availability, but the preferred approach was
balanced designs (equal images per class) with an 80% training-10% validation-10% testing split,
with the training set used for network weight estimation, the validation set for optimizing algorithm
hyper-parameters and the testing set used for obtaining model performance metrics. No further
constraints were imposed, such as ensuring test data was sourced from different sites or units.
This approach is reasonable for large, long-term monitoring projects involving tens to hundreds of
thousands of images captured from a discrete number of cameras in fixed locations. Excessive levels of
visual correlation in small, randomly sampled data subsets are generally minimal in such situations.
In this case, the algorithms developed are intended to process further imagery captured from these
specific cameras and locations, with model assessment approaches needing to adequately reflect this
scenario. The model performance assessment does not correspond to generalised location-invariant
learning; which requires a different approach, with model assessment occurring on image samples
from different cameras, locations or projects. This is not the presently intended use of ClassifyMe,
whose models are optimised to support specific large projects and not a general use case for any
camera trap study. Generalised location-invariant models require further evaluation before they can
be incorporated in future editions of ClassifyMe. Model training was performed on a Dell XPS 8930
Intel Core i7-8700 CPU @ 3.20 GHz NVIDIA GeForce GTX 1060 6 GB GPU 16 GB RAM 1.8 TB HDD
drive, running a Windows 10 Professional x64 operating system using YOLOv2, via the “AlexeyAB”
Windows port [50]. Training consisted of 9187 epochs, 16,000 iterations and 23 h for the natural
illumination model, and 9820 epochs, 17,000 iterations and 25 h for the infrared illumination model.

3. Results

Overall recognition accuracies were 98.6% natural illumination, 98.7% infrared illumination for
Australia (New England, NSW), 97.9% natural and infrared illumination for New Zealand, 99.0%
natural and flash illumination for Serengeti, 95.9% natural illumination, 98.0% infrared illumination
for North America (Wisconsin), and 96.8% natural illumination, 98.5% infrared illumination for the
South West USA models. A range of model evaluation metrics were recorded including accuracy,
true positive rate, positive predictive value, Matthew’s Correlation Coefficient and AUNU (Area
Under the Receiver Operating Characteristic Curve of each class against the rest, using the uniform
distribution) [51]. In this section, we will focus on the Australia (New England, NSW) model, further
results of the other models are provided in Supplementary Material S3.

The Australian (New England, NSW) consisted of nine recognition classes and a total of
8900 daylight illumination images and 8900 infrared illumination images. Specific details of the
Australian (New England, NSW) data set are provided in Table 1. Observe that the models developed
only distinguish between visually distinct classes, the current versions of ClassifyMe models do
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not perform fine-grained recognition between visually similar classes, such as different species of
Macropods. The component-based software design of ClassifyMe allows the incorporation of such
fine-grained recognition models if they are developed in the future. Another important consideration
is that model evaluation has been performed for ‘in-bag’ samples, that is, the data was sourced
from particular projects with large annotated data sets and the model developed is intended for use
only within this project and network of cameras to automate image review. The application of the
models to ‘out-of-bag’ samples from other sites or projects is not intended and can produce unstable
recognition accuracy.

Table 1. Composition of New England, New South Wales, Australia data set. Data was partitioned
according to ‘Natural’ daylight illumination and ‘IR’ Infrared Illumination along with Category.

Category Natural Sample Size (Training)
{Validation} [Test]

Infrared Sample Size (Training)
{Validation} [Test]

Cat (800) {100} [100] (800) {100} [100]
Dog (800) {100} [100] (800) {100} [100]
Fox (800) {100} [100] (800) {100} [100]

Human (800) {100} [100] (800) {100} [100]
Macropod (800) {100} [100] (800) {100} [100]

Sheep (800) {100} [100] (800) {100} [100]
Vehicle (800) {100} [100] (800) {100} [100]
Other (800) {100} [100] (800) {100} [100]
NIL (800) {0} [100] (800) {0} [100]

As previously stated, model performance was assessed using a randomly held-out test data set;
the detection summary (Table 2), the confusion matrix of the specific category performance (Table 3),
and the model performance metrics were evaluated (Table 4) using PyCM [52]. Figure 4 displays
examples of detection outputs, including the rectangle detection box that is overlaid on the location of
the animal in the image and the detected category.

Table 2. Detection Summary results: New England NSW model (daylight). Randomly selected
model training dataset with 800 images per class. Using threshold (Th = 0.24) to achieve a mean
average precision (mAP) = 0.896067 (89.61%), 2967 detections, 993 unique truth count, and average
Intersection of Union (IoU) = 75.04% and 902 True positives, 69 False Positives and 91 False Negatives.
Total detection time was 20 s.

Class Average Precision

Cat 99.65%
Dog 90.91%
Fox 90.91%

Human 90.91%
Macropod 80.87%

Sheep 86.46%
Vehicle 100.00%
Other 77.14%
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Table 3. Confusion Matrix: New England NSW (natural illumination) model as assessed on a randomly
selected hold-out test dataset.

Predicted

Actual

Cat Dog Fox Human Macropod NIL Other Sheep Vehicle Precision

Cat 100 0 0 0 0 0 0 0 0 1.00
Dog 0 100 0 0 0 0 0 0 0 1.00
Fox 0 0 99 0 0 0 3 0 0 0.97

Human 0 0 0 100 0 0 0 0 0 1.00
Macropod 0 0 1 0 97 0 1 0 0 0.98

NIL 0 0 0 0 2 100 8 0 0 0.91
Other 0 0 0 0 0 0 91 0 0 1.00
Sheep 0 0 0 0 1 0 0 100 0 0.99

Vehicle 0 0 0 0 0 0 0 0 100 1.00

Recall 1.00 1.00 0.99 1.00 0.97 1.00 0.91 1.00 1.00 Overall Model
Accuracy: 0.99

Table 4. Key Test Metrics of the New England, NSW (natural illumination) test data set. Note: AUNU
denotes Area Under Receiver Operating Characteristic Curve comparing each class against rest using a
uniform distribution.

Metric Magnitude

Overall Accuracy 0.98556
Overall Accuracy Standard Error 0.00398

95% Confidence Interval [0.97776,0.99335]
Error Rate 0.01444

Matthews Correlation Coefficient 0.98388
True Positive Rate (Macro) 0.98556
True Positive Rate (Micro) 0.98556

Positive Predictive Value (Macro) 0.98655
Positive Predictive Value (Micro) 0.98556

AUNP 0.99187
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The results of our testing indicate that ClassifyMe provides a high level of performance which is
accessible across a wide range of end-user hardware with minimal configuration requirements.

4. Discussion

4.1. Key Features and Benefits

ClassifyMe is the first application of its kind, it provides a software tool which allows field
ecologists and wildlife managers access to the latest advances in artificial intelligence. Practitioners can
utilise ClassifyMe to automatically identify, filter and sort camera trap image collections according to
categories of interest. Such a tool fills a major gap in the operational requirements of all camera trap
users irrespective of their deployments.

There are additional major benefits to localised processing on the end-user’s device.
Most importantly, the local processing offered by ClassifyMe provides a high degree of privacy
protection of end-user data. By design, ClassifyMe does not transfer classification information of
user image data back to third parties, rather, all the processing of the object recognition module is
performed locally, with minimal user information transferred back, via encryption, to the web service.
The information transferred to the web service concerns the initial registration and installation process
and the on-going verification services aimed at disrupting un-authorised distribution (which is targeted
specifically at poachers and similar mis-uses of ClassifyMe software). These privacy and data control
features are known to be appealing to many in our wider network of ecological practitioners, because
transmitting and sharing images with third parties compromises (1) human privacy when images
contain people, (2) the location of sensitive field equipment, and (3) the location of rare and endangered
species that might be targeted by illegal traffickers. Researchers and wildlife management groups also
often want control over the end-use of their data and sometimes have concerns about the unforeseen
consequences of unrestricted data sharing.

4.2. Software Comparisons

At present, there are few alternatives to ClassifyMe for the wildlife manager wanting to implement
artificial intelligence technologies for the automated revision of their camera trap images. The most
relevant alternative is the MLWIC: Machine Learning for Wildlife Image Classification in R package [53].
The MLWIC package provides the option to run pre-trained models, and also for the user to develop
their own recognition models suited to their own data sets. Whilst of benefit to a subset of research
ecologists skilled with R, the approach proposed by Tabak et al. [53] is not accessible to a wider
audience as it requires a considerable investment of time and effort in mastering the intricacies of
the R Development Language and Environment, along with the additional challenges of hardware
and software configuration associated with this software. Integration of the MLWIC package within
R is sensible if the user wants to incorporate automated image classification within their own
workflows. However, such automated image recognition services are already offered in other leading
machine learning frameworks, particularly TensorFlow [54] and PyTorch [55]. Such frameworks offer
extensive capabilities with much more memory efficient processing for a similar investment in software
programming know-how (Python) and hardware configuration. In fact, our wider research team
routinely uses TensorFlow and PyTorch—along with other frameworks such as DarkNet19 [41]—for
camera-trap focused research. Integration with R is straight-forward, via exposure to a web-service API
or via direct export of framework results as csv files. Within R, there are Python binding libraries which
also allow access to Python code from within R and the TensorFlow interface package [56] also provides
a comparatively easy way of accessing the full TensorFlow framework from within R. In summary,
there a range of alternative options to the MLWIC package which are accessible with programming
knowledge. AnimalFinder [19] is a MATLAB 2016a script available to assist with the detection of
animals in time-lapse sequence camera trap images. This process is—however—semi-automated,
and does not provide species identification, it also requires access to a MATLAB software licence and
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corresponding software scripting skills. AnimalScanner [57] is a similar software application providing
both a MATLAB GUI and a command line executable to scan sequences of camera trap images and
identify three categories (empty frames, humans or animals), based on foreground object segmentation
algorithms coupled with deep learning.

The Wildlife Insights (https://wildlifeinsights.org) [58] promises to provide cloud-based analysis
services, including automated species recognition. The eMammal project provides both a cloud
service and the Leopold desktop application [59]. The Leopold eMammal desktop application uses
computer vision technology to search for cryptic animals within a sequence and places a bounding box
around the suspected animal [60]. The objectives and functions of eMammal are—however—quite
broad, and support citizen science identifications, expert review, data curation and training within
the context of monitoring programs and projects. This approach is very different from the approach
adopted by ClassifyMe, which is a dedicated, on-demand application focused on automated species
recognition on a user’s local machine with no requirement to upload datasets to third-party sources.
The iNaturalist project (https://www.inaturalist.org) [61] is of a similar nature to eMammal but focused
on digital or smartphone camera-acquired imagery from contributors across the world, and uses
deep learning convolutional neural network models to perform image recognition within its cloud
platform to assist with review by citizen scientists. Whilst very useful with a wide user base, iNaturalist
does not specifically address the domain challenges of camera trap imagery. Motion Meerkat is a
software application which also utilises computer vision in the form of mixture of Gaussian models
to detect motion in videos which reduces the number of hours required for researcher review [62].
DeepMeerkat provides similar functionality using convolutional neural networks to monitor for the
presence of specific objects (e.g., hummingbirds) in videos [63]. There is a further, wide range of
software available including Renamer [64] and VIXEN [65] to support camera trap data management.
Young, Rode-Margono and Amin [66] have provided a detailed review of currently available camera
trap software options.

4.3. Model Development

An important design decision of ClassifyMe was to not allow end-users to train their own models.
This is in contrast to software such as the MLWIC package. The decision was motivated by both legal
aspects and quality control as opposed to commercial reasons. Of particular concern is use of the
software to determine field locations of prized species that poachers could then target. These concerns
are valid, with recent calls having been made for scientists to restrict publishing location data of
highly sought-after species in peer-reviewed journals [67]. Such capabilities could be of use to
technologically inclined poachers, and providing such software—along with the ability to modify that
software—presented a number of potential legal issues. Similar concerns exist concerning human
privacy legislation [22,68]. The strict registrations, legal and technological controls implemented within
ClassifyMe are designed to minimise risk of misuse.

Allowing end-users to train their own models also presents quality control issues. The deep
networks utilised within ClassifyMe (and similar software) are difficult to train to optimal performance
and reliability. Specialised hardware and its configuration are also required for deep learning
frameworks, which can be challenging even for computer scientists. Data access and the associated
labelling of datasets is another major consideration; many users might not have sufficient sighting
records nor the resources to label their datasets. The risk of developing and deploying a model which
provides misleading results in practice is high—with quite serious potential consequences for wildlife
observation programs. Schneider, Taylor and Kremer [69] compared the performance of the YOLOv2
and Faster R-CNN object detectors on camera trap imagery. The YOLOv2 detector performed quite
poorly with an average accuracy of 43.3% ± 14.5% (compared to Faster R-CNN which had an accuracy
of 76.7% ± 8.31%) on the Gold-Standard Snapshot Serengeti dataset. The authors suggested that the low
performance was due to limited data. Our results clearly indicate that YOLOv2 can perform well with
strict data quality control protocols. Furthermore, the ClassifyMe YOLOv2 model is most effective at

https://wildlifeinsights.org
https://www.inaturalist.org
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longer-term study sites, where the model has been calibrated using annotated data specific to the study
site. ClassifyMe is also designed to integrate well with a range of other object detection frameworks
including Faster-RCNN which is utilised within the software development team for research purposes.
Future editions of ClassifyMe might also explore the use of other detection frameworks or customised
algorithms based on our on-going research focused on ‘out-of-bag’ models, suited for general use as
well as the fine-grained recognition of similar species.

ClassifyMe resolves the issue of model development for practitioners by out-sourcing model
development to domain experts who specialise in the development of such technology in collaborative
academic and government joint research programs. Users can request model development, either
for private use via a commercial contract, or for public use—which is free—and on the provision of
image data sets to a protocol standard, the model will be developed and assessed for deployment as a
ClassifyMe model library. ClassifyMe is designed to enable the selection of a suitably complex model
to ensure good classification performance, but to also enable storage, computation and processing
within a reasonable time frame (benchmark range 1–1.5 s per image, Intel i7 16 GB RAM) on end
user computers. Cloud-based solutions, such as those used in the Kiwi Rescue and Wild Dog Alert
programs, have the capacity to store data in a central location using a larger neural network structure
on high-performance computer infrastructure. Such infrastructure is costly to run and is not ideal for
all end-users.

5. Conclusions

Camera trapping is commonly used to survey wildlife throughout the world, but its Achilles-heel
is the huge time and financial costs of processing data, together with the risk of human error during
processing tasks. The integration of computer science and computer vision in camera trap image
analysis has led to considerable advances for camera trap practitioners. The development of automated
image analysis systems has filled an important gap between capturing image data in the field and
analysing that data so it can be used in management decision making. ClassifyMe is a tool of un-matched
capability, specifically for field-based camera trap practitioners and organisations across the world.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/10/1/58/s1,
Supplementary Material S1: ClassifyMe UML Structure Diagram, Supplementary Material S2: Data Presentation
Standard for ClassifyMe Software, Supplementary Material S3: ClassifyMe Model Assessments, Supplementary
Material S4: NewEnglandDay.cfg YOLOv2 configuration file.
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