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Abstract: Rice monoculture in acid sulfate soils (ASSs) is affected by a wide range of abiotic and
biotic constraints, including rice blast caused by Pyricularia oryzae. To progress towards a more
sustainable agriculture, our research aimed to screen the biocontrol potential of indigenous Bacillus
spp. against blast disease by triggering induced systemic resistance (ISR) via root application and
direct antagonism. Strains belonging to the B. altitudinis and B. velezensis group could protect
rice against blast disease by ISR. UPLC–MS and marker gene replacement methods were used to
detect cyclic lipopeptide (CLiP) production and construct CLiPs deficient mutants of B. velezensis,
respectively. Here we show that the CLiPs fengycin and iturin are both needed to elicit ISR against
rice blast in potting soil and ASS conditions. The CLiPs surfactin, iturin and fengycin completely
suppressed P. oryzae spore germination resulting in disease severity reduction when co-applied
on rice leaves. In vitro microscopic assays revealed that iturin and fengycin inhibited the mycelial
growth of the fungus P. oryzae, while surfactin had no effect. The capacity of indigenous Bacillus spp.
to reduce rice blast by direct and indirect antagonism in ASS conditions provides an opportunity to
explore their usage for rice blast control in the field.

Keywords: Bacillus altitudinis; Bacillus velezensis; fengycin; iturin; surfactin; rice blast; Pyricularia
oryzae; acid sulfate soil

1. Introduction

Acid sulfate soils (ASSs) account for more than 1.7% of the global cultivated land
worldwide and are distributed over as much as 24 million hectares [1,2]. Most of these
soils are cultivated with rice because of its tolerance to acidic conditions [3]. In Vietnam,
more than 1.6 million hectares of ASSs in the Mekong Delta have been ameliorated for rice
cultivation by managing submergence or drainage, applying phosphate fertilizer and lime,
and using resistant cultivars [4,5]. Rice monoculture in ASSs has recently been intensified
with three cropping seasons per year, instead of the single or double cropping seasons of
the past decades. This leads to a higher disease pressure, resulting in a drastic reduction
in rice yield [6–8]. A prevailing disease which ravages rice fields and reduces annual
rice production, especially in Vietnam, is the foliar rice blast disease caused by Pyricularia
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oryzae (syn: Magnaporthe oryzae). P. oryzae is a hemibiotrophic pathogen with biotrophic
and necrotrophic growth stages [9,10]. The penetration of this pathogen is initiated by
asexual spores which attach to the leaf surface and germinate in high humidity within four
to six hours [11]. Appressoria, melanin pigmented unicellular structures [9], are formed
after germination and the extension of a short germ tube (15–30 µm), and penetrate the
leaf surface by mechanical force [11]. Blast disease spreads and becomes more serious
in favorable environmental conditions, such as a high relative humidity, 26–28 ◦C air
temperature, and susceptible rice cultivars. Therefore, rice blast is especially severe in
Vietnam because of its humid and tropical climate conditions [12]. In order to curtail this
disease, farmers have resorted to the excessive use of fungicides, leading to pathogen
resistance. As a result, chemical fungicides are gradually becoming inoperative. Therefore,
the use of bacterial biocontrol agents to control rice blast is gaining attention [13–23].

Among plant growth promoting rhizobacteria (PGPR) strains, Pseudomonas and Bacil-
lus spp. have been explored for induced systemic resistance (ISR) to rice pathogens [24,25].
Bacillus isolates are good candidates for biological control in view of their unique charac-
teristics, including metabolite production with antagonistic activity against diverse phy-
topathogens, ease of formulation, and a high viability compared with vegetative cells [26].
They are capable of forming endospores that are highly resistant to adverse environment
conditions and can easily be applied in farming systems [27]. Bacillus spp. are known
to produce five different cyclic lipopeptide families, namely, fengycins/plipastatins, sur-
factins, iturins, kurstakins [28] and locillomycins [29]. Especially, Bacillus isolates belonging
to B. velezensis, B. thuringiensis and B. pumilus have been reported as valuable biocontrol
agents against diverse phytopathogens through the production of cyclic lipopeptides
(CLiPs) [15,30–32]. CLiPs, which are amphiphilic molecules, are bioactive compounds that
can control plant pathogens by both direct antagonism or via ISR [25,33].

In previous work, B. subtilis BBG111, which produces both surfactin and fengycin, and
B. subtilis RFB104, which synthesizes surfactin and mycosubtilin, could elicit ISR against rice
sheath blight caused by Rhizoctonia solani, but not against rice blast caused by P. oryzae [31].
He et al. [15] showed that cell-free supernatants of B. subtilis BJ-1 could suppress P. oryzae via
both direct and indirect mechanisms, but they did not demonstrate the effects of individual
metabolites/compounds (fengycin, surfactin, subtilin and bacilysin) in disease control.
The genome of B. velezensis GA1 (previously called B. subtilis GA1) has been studied,
demonstrating the antimicrobial potential of the strain due to its secondary metabolite
diversity comprising surfactin, iturin A, fengycin and the siderophore bacillibactin [34]. To
the best of our knowledge, no study has been done to investigate the capacity of Bacillus
strains to induce resistance against rice blast under adverse soil conditions such as acid
sulfate soils or in direct antagonism against P. oryzae spores using mutants impaired in
CLiP production.

Thus, the goal of our study was: (i) to test the ISR capacity of indigenous Bacillus spp.
isolated from the rice rhizosphere in ASSs in Vietnam, hypothesizing that these strains
might be best adapted to the harsh conditions encountered in these soils; (ii) to compare
the ISR capacity of B. velezensis strains GA1 and RHF4.1–25, a rice rhizospheric isolate
from acid sulfate soils in Vietnam; (iii) to investigate the role of surfactin, fengycin and
iturin in ISR and direct antagonism against rice blast using single and double CLiP mutants
of B. velezensis GA1. The novelty of this work is that we demonstrated the capacity of
indigenous Bacillus spp., found in the rhizosphere of rice grown in ASSs, to control rice
blast disease. Moreover, we could show the power of using mutants impaired in CLiP
production to determine the role of these metabolites in biocontrol.

2. Materials and Methods
2.1. Plant Material, Strains, Media and Growth Conditions

Rice (Oryza sativa L.) indica cv. CO39 was used as the plant material for bioassays
in this study. For experiments in ASSs, the rice cultivar Jasmine 85 (a local rice variety
in Vietnam) was used. Rice seeds were prepared as described previously [24,25]. Rice
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seeds were dehusked and dipped for 20 min in 2% (w/v) sodium hypochlorite solution
at room temperature. Seeds were washed several times with sterile water, air dried and
pregerminated for 2 days in Petri dishes containing sterile moistened filter paper at 28 ◦C in
dark conditions. Subsequently, two day old rice seedlings were placed under greenhouse
conditions with a 12 h light photoperiod at 30 ± 4 ◦C for 2 days to use for the experiment.
Rice plants were maintained in a rice room (photoperiod with 12 h light; 30 ± 4 ◦C)
afterwards. Bacillus isolates used in this study are listed in Table 1. The Bacillus isolates
RHF4.1–25, RHF4.1–26, RHF3.1–20 and RHF2.1–7 originate from the rhizosphere of rice
plants grown in ASSs in Vietnam. B. velezensis GA1 (formerly B. subtilis GA1) is a well-
studied biocontrol agent that was originally isolated from strawberry fruit [35]. All Bacillus
isolates were cultured on Luria–Bertani (LB) agar at 28 ◦C for 24 h. Broth cultures of Bacillus
strains were cultured in LB broth at 150 revolutions per minute (rpm) and 28 ◦C for 24 h.
P. oryzae VT5M1 [12] was maintained on complete medium (CM) plates [36] at 28 ◦C for
5–8 days.

Table 1. Microorganisms used in this study and their relevant characteristics.

Strain Relevant Characteristics References

Bacillus altitudinis group

RHF4.1–26 Pumilacidin-producer from rice rhizosphere grown in ASS, Vietnam This study

RHF3.1–20 Pumilacidin-producer from rice rhizosphere grown in ASS, Vietnam This study

Bacillus marisflavi group

RHF2.1–7 Non-CLiP-producer from rice rhizosphere grown in ASS, Vietnam This study

Bacillus velezensis group

RHF4.1–25 Surfactin, iturin and fengycin-producer from rice rhizosphere grown in ASS, Vietnam This study

GA1wt Wild type: srf+, itu+, fen+ [35]

GA1∆srfaA Surfactin mutant: srf−, itu+, fen+ [37]

GA1∆ituA Iturin mutant: itu−, srf+, fen+ [37]

GA1∆fenA Fengycin mutant: fen−, itu+, srf+, [37]

GA1∆srfaA-ituA Surfactin and iturin mutant: srf−, itu−, fen+ This study

GA1∆srfaA-fenA Surfactin and fengycin mutant: srf−, fen−, itu+ This study

GA1∆fenA-ituA Iturin and fengycin mutant: itu−, fen−, srf+ This study

Pyricularia oryzae VT5M1 Rice blast pathogen from Vietnam [12]

Abbreviations: ASS: acid sulfate soil; Srf: surfactin; Itu: iturin; Fen: Fengycin.

2.2. Construction of Bacillus velezensis GA1 Mutants

Bacillus velezensis GA1 mutants deficient in the production of a single CLiP were
constructed by marker gene replacement, as previously described [37]. To construct CLiP
double mutants, a recombinant fragment containing a phleomycin cassette flanked by
1000 bp of the upstream region and 1000 bp of the downstream region of the targeted gene
was generated by overlap PCR with specific primers (Table A1) (see Appendix A) [37].
The recombinant fragment was introduced into B. velezensis GA1 derivative mutants
(GA1∆srfaA, GA1∆ituA, GA1∆fenA) by inducing natural competence, as previously de-
scribed [37]. Gene replacement was selected by phleomycin resistance on LB medium.
Gene deletions were confirmed by PCR analysis realized with the corresponding UpF and
DwR specific primers (Table A1).

2.3. Preparation of Cell-Free Supernatants and UPLC–MS for Detection of CLiPs

To obtain cell-free culture filtrates of each isolate, a colony was transferred into 5 mL LB
broth and incubated at 28 ◦C, 150 rpm for 24 h, then cultures were centrifuged at 13,000× g
for 10 min. Subsequently, supernatants were filter sterilized through a Millipore filter
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(Millex-GV, 0.22 µm) to exclude bacterial cells. Cell free supernatants were collected for
UPLC–MS analysis to detect and quantify CLiPs, as previous described [37], and utilized
for direct antagonism assays in this study.

2.4. Potential of Indigenous Bacillus Strains to Trigger ISR against Rice Blast Caused by P. oryzae
in Potting and Acid Sulfate Soil

Experiments performed to screen the ISR capacity of indigenous Bacillus spp. against
rice blast caused by P. oryzae VT5M1, in both potting and ASS conditions, were conducted
as described previously [24,25]. Briefly, for the preparation of bacterial inoculum, 15 mL of
Bacillus seed culture was grown in 50 mL LB broth for 24 h at 28 ◦C. The amount of bacterial
cell suspension was applied based on 600 g of sterile potting soil (Structural; Snebbout,
Kaprijke, Belgium) or 800 g of sterile ASSs (a natural soil taken from representative ASSs
in Kien Giang province, Vietnam), and adjusted to a final density of 1 × 107 CFU g−1.
S-methyl 1,2,3-benzothiadiazole-7-carbothioate (BTH) (Syngenta Crop Protection, Brussels,
Belgium), a salicylic acid analogue that is known to induce resistance against rice blast [25],
was included as a positive control at a concentration of 25 µM. BTH (stock solution of
50 mM) and cell suspensions were diluted in 100 mL of water and mixed with 600 g
of potting soils or 800 g of ASS for 4 min. Healthy and diseased control treatments
received the same amount of tap water. Roots of rice seedlings were inoculated with the
standardized bacterial inoculum by soaking for 10 min before planting them in plastic trays
(23 cm× 16 cm× 6 cm) containing inoculated potting soil or acid sulfate soil. Then, bacteria
were applied as soil drench 3 days before inoculation with P. oryzae VT5M1. Plants were
watered every two days and trays were weekly supplied with 200 mL of nutrient solution
[FeSO4; 2 g/L and (NH4)2SO4; 1 g/L]. Pathogen inoculation was performed as described
previously [25]. Spores of 8 day old P. oryzae VT5M1 [12] were dispersed in 0.5% (w/v)
gelatin to obtain a final concentration of 5 × 104 spores mL−1. One mL of spore solution
was uniformly sprayed on each plant by using an airbrush compressor (Badger Airbrush
model 150TM). Inoculated plants were placed for 22–24 h in a growth chamber in the dark
(relative humidity ≥ 90%; 27 ± 5 ◦C), and further incubated in a greenhouse for disease
development. Disease rating was performed 6 days after inoculation by counting the
number of sporulating lesions on the youngest unfolded leaves. Photos of representative
disease symptoms were taken after disease evaluation. For each treatment, three replicates
of 7 plants (potting soils) or 5 plants (ASSs) each were used.

2.5. Role of Cyclic Lipopeptides in ISR Triggered by B. velezensis against P. oryzae in Potting and
Acid Sulfate Soil Conditions

Based on the results of previous experiments, the most effective Bacillus isolate, namely,
B. velezensis RHF4.1–25, was selected for further use and its efficacy was compared with
B. velezensis GA1. In these assays cyclic lipopeptide mutants of B. velezensis GA1 were also
included. Single mutants (∆srfaA, ∆ituA and ∆fenA) were tested in both potting and ASSs.
Complementation of ∆ituA and ∆fenA isolates was carried out in potting soil by combining
each isolate at half dose. Based on consistent results obtained in both acid sulfate soils
and potting soils, and because of the limited availability of the acid sulfate soil, assays
with double mutants (∆srfaA-ituA, ∆srfaA-fenA and ∆fenA-ituA) were only performed in
potting soils. Bacterial inoculum preparation, experimental set up, disease infection, and
evaluation were carried out in a similar manner as were performed in the assay above.
For all experiments, treatments were performed in three replications, each comprising of
7 plants (potting soil) or 5 plants (ASSs).

2.6. Root Colonization Assay

Root colonization was evaluated as described previously [25,38]. At the time of disease
rating, five rice roots per treatment were randomly chosen and gently washed in water to
remove soil. The roots were weighed after air-drying for 2 min. Subsequently, roots were
ground in 10 mL sterile saline (0.85% sodium chloride, w/v) and sterile sand by using a
mortar and pestle. Following this, 100 µL of serially diluted suspensions were plated on



Microorganisms 2021, 9, 1441 5 of 25

LB agar and incubated for 24 h at 28 ◦C before counting Bacillus colonies based on their
morphological characteristics. The data were log10 transformed prior to statistical analysis.

2.7. In Vitro Antagonism against P. oryzae Using Cell-Free Supernatants of B. velezensis Strains
and GA1 CLiP Mutants

To investigate the effect of cell-free supernatants on the growth of P. oryzae mycelium,
in vitro tests were carried out using plastic slides with five replications of each treatment.
Sterile microscopic plastic slides covered with a thin, flat layer of water agar (Difco Bacto
agar; BD Diagnostics, Le Pont-deClaix, France) were placed in a plastic Petri dish containing
sterile, moist absorbent paper [39]. Subsequently, an agar plug (diameter = 8 mm) taken
from an actively growing Complete Media (CM) plate of P. oryzae VT5M1 was inoculated
at the center of each plastic slide. Two droplets (15 µL each) of a cell-free supernatant of
the isolates were placed on two sides of the plastic slide (about 2 cm from the P. oryzae
plug) while for the control treatment, two droplets of LB broth were used on both sides
of the plug. All plates were incubated at 28 ◦C for five days. Microscopic slides were
assessed by using an Olympus BX51 Microscope. Additionally, the diameter of mycelial
growth was determined, and converted to the percentage growth inhibition based on the
following formula:

(Growth diameter of untreated control − Growth diameter of treated control)× 100
Growth diameter of untreated control

2.8. Influence of Cell-Free Culture Filtrates on P. oryzae Spore Germination and Appressoria Formation

For this experiment, filter sterilized supernatants were derived from strains RHF4.1–
25, GA1 and its CLiP mutants (Table 1). Spore suspensions were diluted to obtain a
final concentration of 5 × 104 spores mL−1 and mixed with 100 µL of Bacillus cell-free
supernatants to get a final concentration of 50% (v/v). The same amount of LB broth was
used for the control treatment. Subsequently, a plastic slide (Fisher Scientific, Merelbeke,
Belgium) containing fifty µL of the mixture was incubated in the dark at 28 ◦C. After a 4 h
incubation period, spore germination was recorded by counting the number of germination
tubes. Eight hours post incubation (hpi), fifty randomly selected spores were evaluated
for appressoria formation. An Olympus BX51 Microscope was used to observe spore
germination and appressoria formation. The assay was conducted twice.

2.9. Direct Effect of Cell-Free Supernatants to Reduce Rice Blast Symptoms Caused by P. oryzae Spores

To obtain 4 week old rice plants for disease infection, rice seedlings were planted in
sterile potting soils (600 g per tray) and maintained under controlled conditions. Spore
suspensions of P. oryzae VT5M1 were prepared as previously described [12]. Spores ob-
tained from 8-day old P. oryzae VT5M1 cultures were added into 0.5% (w/v) gelatin to
obtain a concentration of 5 × 104 spores mL−1. One mL of cell-free supernatants was
mixed with 1 mL of spore suspension to secure a final concentration of 50% (v/v). A
compressor-powered air brush gun was used to spray the mixture onto rice plants (1 mL of
the mixture per plant) and the trays were frequently rotated during this spraying process.
The healthy treatment was sprayed with a mixture of 0.5% gelatin suspension and the same
amount of sterile water, whereas the diseased treatment received a mixture of 0.5% gelatin
and 5 × 104 spores mL−1. Pathogen inoculation and disease assessment were performed
as depicted above. Treatments were performed in three replications, each comprising of
7 plants.

2.10. Statistical Data Analysis

The data of all experiments were statistically analyzed using the software package
SPSS 25.0. To compare mean values among treatments, univariate ANOVA followed by
Duncan’s post hoc tests were used and results had statistically significant differences when
p < 0.05.
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3. Results
3.1. Potential of Indigenous Bacillus Strains to Control Rice Blast by ISR in Potting Soil and
ASS Conditions

The four indigenous Bacillus strains used in this study were obtained from ASSs
in Vietnam. Full details about their isolation, taxonomy and metabolic profile will be
published elsewhere. Initially, they were tested for their ability to trigger ISR against
rice blast disease in potting soil conditions. Three representative isolates belonging to
B. velezensis (RHF4.1–25) and B. altitudinis (RHF4.1–26 and RHF3.1–20) could trigger ISR
against rice blast caused by P. oryzae VT5M1, while B. marisflavi RHF2.1–7 was not effective
(Figure 1). The most effective strain in triggering ISR was B. velezensis RHF4.1–25. The
two isolates belonging to B. altitudinis were significantly less effective than B. velezensis
RHF4.1–25. All tested Bacillus isolates effectively colonized the rice roots with densities
ranging from 7.70 to 8.41 log CFU g−1 of fresh root (Table 2).
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Figure 1. (A) Potential of Bacillus spp. isolated from the rice rhizosphere in acid sulfate soils to in-
duce systemic resistance against P. oryzae in rice (variety CO39) grown in potting soil. Bacteria were 
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Figure 1. (A) Potential of Bacillus spp. isolated from the rice rhizosphere in acid sulfate soils to
induce systemic resistance against P. oryzae in rice (variety CO39) grown in potting soil. Bacteria were
applied by inoculating the roots of rice seedlings before transplanting and by a soil drench three days
before pathogen inoculation. Four-week old rice plants were inoculated with 5 × 104 spores mL−1 of
P. oryzae VT5M1. Disease was evaluated six days post pathogen inoculation by counting the number
of susceptible lesions. The experiment was carried out once in three repetitions, with seven plants
each. Data are presented as boxplots (n = 21). One way ANOVA followed by Duncan’s post hoc tests
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were used and different letters among these treatments indicate statistically significant differences
(p < 0.05). HC: healthy control; DC: diseased control; RHF2.1–7: B. marisflavi; RHF4.1–25: B. velezen-
sis; RHF4.1–26 and RHF3.1–20: B. altitudinis; BTH: S-methyl 1,2,3-benzothiadiazole-7-carbothioate.
(B) Representative pictures of disease symptoms taken at the time of disease evaluation. The scale
bar represents 1 cm.

Table 2. Population of Bacillus isolates applied in ISR assay on rice roots grown in potting soil (Figure 1).

Treatment Population Density
(log CFU g−1 of Fresh Root)

B. marisflavi RHF2.1–7 8.41 ± 0.06 c

B. velezensis RHF4.1–25 7.97 ± 0.11 b

B. altitudinis RHF4.1–26 7.70 ± 0.08 a

B. altitudinis RHF3.1–20 8.15 ± 0.32 b

No used Bacillus bacteria were found in noninoculated treatments. Means and standard deviation are presented.
Values followed by distinct letters are significantly different (Duncan’s test, p < 0.05).

A similar trend was observed when the Bacillus isolates were tested in an ASS.
B. velezensis RHF4.1–25, and B. altitudinis RHF4.1–26 and RHF3.1–20 could significantly
protect rice plants against P. oryzae in comparison to the diseased control. Among these
strains, B. velezensis RHF4.1–25 and B. altitudinis RHF4.1–26 were as effective as the BTH
treatment (Figure 2). In contrast, B. marisflavi RHF2.1–7 could not trigger ISR against rice
blast. Furthermore, all tested isolates colonized rice roots ranging from 6.56 until 7.54 log
CFU g−1 fresh roots (Table 3).
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Figure 2. (A) Potential of Bacillus spp. isolated from the rice rhizosphere in acid sulfate soils to induce
systemic resistance against P. oryzae in rice (variety Jasmine 85) grown in acid sulfate soil. Bacteria
were applied by inoculating the roots of rice seedlings before transplanting and by a soil drench three
days before pathogen inoculation. Four-week old rice plants were inoculated with 5 × 104 spores
mL−1 of P. oryzae VT5M1. Disease was evaluated six days post pathogen inoculation by counting
the number of susceptible lesions. The experiment was carried out once in three repetitions, with
five plants each. Data are presented as boxplots (n = 15). One way ANOVA followed by Duncan’s
post hoc tests were used and different letters among these treatments indicate statistically significant
differences (p < 0.05). HC: healthy control; DC: diseased control; RHF2.1–7: B. marisflavi; RHF4.1–25:
B. velezensis; RHF4.1–26 and RHF3.1–20: B. altitudinis; BTH: S-methyl 1,2,3-benzothiadiazole-7-
carbothioate. (B) Representative pictures of disease symptoms taken at the time of disease evaluation.
Scale bar represents 1 cm.

Table 3. Population of Bacillus isolates applied in ISR assay on rice roots grown in acid sulfate soil (Figure 2).

Treatment Population Density
(log CFU g−1 of Fresh Root)

B. marisflavi RHF2.1–7 7.31 ± 0.59 b

B. velezensis RHF4.1–25 6.56 ± 0.59 a

B. altitudinis RHF4.1–26 7.41 ± 0.65 b

B. altitudinis RHF3.1–20 7.54 ± 0.37 b

No used Bacillus bacteria were found in noninoculated treatments. Means and standard deviation are presented.
Values followed by distinct letters are significantly different (Duncan’s test, p < 0.05).

3.2. CLiP Production in B. altitudinis, B. velezensis and Mutants

UPLC–MS analysis was performed to detect and quantify CLiPs produced by B.
velezensis RHF4.1–25 and its CLiP profile was compared with B. velezensis GA1 (Figure 3,
Table A2) (see Appendix A). B. velezensis RHF4.1–25 produces surfactins, fengycins and
iturins, similar to the CLiPs produced by B. velezensis GA1. The CLiP profile of the various
GA1 mutants including single and double CLiP mutants is also depicted in Figure 3 and
Table A2. Both B. altitudinis strains RHF4.1–26 and RHF3.1–20 produce pumilacidins, as
shown in Figure 3B.



Microorganisms 2021, 9, 1441 9 of 25
Microorganisms 2021, 9, x FOR PEER REVIEW 9 of 25 
 

 

(A) 

Figure 3. Cont.



Microorganisms 2021, 9, 1441 10 of 25
Microorganisms 2021, 9, x FOR PEER REVIEW 10 of 25 
 

 

a) 

 

 Detected m/z Molecule Ion species 
A 1036.85 Pumilacidin C14 [M+H] 
B 1050.88 Pumilacidin C15 [M+H] 
C 1058.84 Pumilacidin C14 [M+Na] 
D 1072.87 Pumilacidin C15 [M+Na] 
E 1086.90 Pumilacidin C16 [M+Na] 
F 1100.86 Pumilacidin C17 [M+Na] 

  
 
b) 

 

 Detected m/z Molecule Ion species 
B 1050.88 Pumilacidin C15 [M+H] 
C 1058.84 Pumilacidin C14 [M+Na] 
D 1072.87 Pumilacidin C15 [M+Na] 
E 1086.90 Pumilacidin C16 [M+Na] 
F 1100.86 Pumilacidin C17 [M+Na] 

  
(B) 

Figure 3. (A) Comparative LC–ESI–MS chromatograms of cell-free culture supernatant of (a) B. velezensis RHF4.1–25; (b) 
GA1: wild type of B. velezensis; (c) ∆sfra: surfactin mutant; (d) ∆ituA: iturin mutant; (e) ∆fenA: fengycin mutant; (f) ∆sfra-ituA: 
double mutant impaired in surfactin and iturin production; (g) ∆sfrA-fenA: double mutant impaired in surfactin and 
fengycin production; (h) ∆fenA-ituA: double mutant impaired in iturin and fengycin production after 24 h incubation. (B) 
LC–ESI–MS chromatograms of cell-free culture supernatant of the B. altitudinis strains RHF3.1–20 (a) and RHF4.1–26 (b). 

Retention time (min) 
Time

1.00 2.00 3.00 4.00

%

0

100
Pu

m
 C

14
 

Pu
m

 C
15

 
Pu

m
 C

16
 Pu

m
 C

17
 

m/z (value) 

D 

C 

E 

A 

B 

F 

m/z
1000 1025 1050 1075 1100 1125 1150

%

0

100 1072.87

1050.88

1036.85

1058.84

1059.81

1100.86
1073.84

1086.90

1087.72

1088.78

1101.83

Retention time (min) 
Time

1.00 2.00 3.00 4.00

%

0

100

Pu
m

 C
14

 
Pu

m
 C

15
 

Pu
m

 C
16

 
Pu

m
 C

17
 

m/z
1000 1025 1050 1075 1100 1125 1150

%

0

100 1072.87

1058.84

1050.88 1059.74

1100.93

1073.77

1086.90

1087.80

1088.93

1101.76

1102.81

1116.84

m/z (value) 

B 

C 

D 

E 

F 

Figure 3. (A) Comparative LC–ESI–MS chromatograms of cell-free culture supernatant of (a) B. velezensis RHF4.1–25; (b)
GA1: wild type of B. velezensis; (c) ∆sfra: surfactin mutant; (d) ∆ituA: iturin mutant; (e) ∆fenA: fengycin mutant; (f) ∆sfra-
ituA: double mutant impaired in surfactin and iturin production; (g) ∆sfrA-fenA: double mutant impaired in surfactin and
fengycin production; (h) ∆fenA-ituA: double mutant impaired in iturin and fengycin production after 24 h incubation. (B)
LC–ESI–MS chromatograms of cell-free culture supernatant of the B. altitudinis strains RHF3.1–20 (a) and RHF4.1–26 (b).
Various isoforms of pumilacidins (Pum) were detected, including Pum C14, Pum C15, Pum C16, and Pum C17 after 24 h
incubation with the m/z values displayed in corresponding tables.
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3.3. Role of Cyclic Lipopeptides Produced by B. velezensis in ISR against P. oryzae VT5M1 in
Potting Soil

Since B. velezensis RHF4.1–25, an indigenous isolate obtained from rice roots in Viet-
nam, was the most effective in triggering ISR in previous experiments, its effect was
compared with the closely related isolate B. velezensis GA1, a well-studied biocontrol agent
that produces the CLiPs surfactin, iturin and fengycin. To study the role of CLiPs in ISR,
in a first experiment single mutants of GA1 impaired in surfactin, iturin or fengycin were
included in the assay. Figure 4 shows that B. velezensis RHF4.1–25, B. velezensis GA1 wild
type (GA1wt) and its surfactin mutant (∆srfaA) could trigger the ISR against rice blast
caused by P. oryzae VT5M1. These treatments could significantly protect rice plants in
comparison with the diseased control (DC), corresponding to approximately 30%, 54%
and 46% relative infection, respectively (Figures S1 and S2). In contrast, iturin (∆ituA) and
fengycin (∆fenA), mutants of B. velezensis GA1, lost the ability to trigger ISR, showing that
both fengycin and iturin are needed to trigger ISR against P. oryzae VT5M1. The ISR capacity
could be partially restored when both mutants were applied together (∆ituA + ∆fenA). It
should be noted that in this experiment, B. velezensis RHF4.1–25 was more effective than
B. velezensis GA1 (Figure 4).
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Figure 4. (A) Potential of B. velezensis isolates RHF4.1–25 and GA1 and GA1 mutants impaired in
CLiP production to induce systemic resistance against P. oryzae in rice (variety CO39) grown in
potting soil. Bacteria were applied by inoculating the roots of rice seedlings before transplanting and
by a soil drench three days before pathogen inoculation. Four-week old rice plants were inoculated
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with 5 × 104 spores mL−1 of P. oryzae VT5M1. Disease was evaluated six days post pathogen
inoculation by counting the number of susceptible lesions. The experiment was conducted once in
three repetitions with seven plants each. Data are presented as boxplots (n = 21). Univariate ANOVA
followed by Duncan’s post hoc tests were used and different letters among these treatments indicate
statistically significant differences (p < 0.05). RHF4.1–25 and GA1wt: wild type B. velezensis; ∆srfaA:
surfactin mutant of GA1; ∆ituA: iturin mutant of GA1; ∆fenA: fengycin mutant of GA1; ∆fenA +
∆ituA: combined inoculation with fengycin and iturin mutant of GA1. (B) Representative pictures of
disease symptoms taken at the time of disease evaluation. Scale bar represents 1 cm.

In this experiment the root colonization of the tested Bacillus was in the range of 106

CFU g−1 fresh root (Table 4). Root colonization of the CLiP mutants was not impaired in
comparison with the wild type strain GA1.

Table 4. Population of Bacillus isolates applied in ISR assay on rice roots grown in potting soils (Figure 4).

Treatment CLPs Produced Population Density
(in log CFU g−1 of Fresh Root)

B. velezensis RHF4.1–25 Surfactin, iturin and fengycin 6.16 ± 0.63 a

B. velezensis GA1wt Surfactin, iturin and fengycin 6.12 ± 0.57 a

B. velezensis GA1∆srfaA Iturin and fengycin 6.60 ± 0.31 a

B. velezensis GA1∆ituA Surfactin and fengycin 6.41 ± 0.52 a

B. velezensis GA1∆fenA Surfactin and iturin 6.38 ± 0.50 a

B. velezensis GA1∆fenA-ituA Surfactin, iturin and fengycin 6.26 ± 0.40 a

No used Bacillus bacteria were found in noninoculated treatments. Means and standard deviation are presented.
Values followed by distinct letters are significantly different (Duncan’s test, p < 0.05).

In a second experiment, double mutants of B. velezensis that are impaired in the
production of two of the three CLiPs were also included (Figure 5).

All double mutants lost their ability to trigger ISR against rice blast, while the wild
type strain B. velezensis GA1 and the surfactin mutant ∆srfaA were equally effective. In this
experiment, B. velezensis RHF4.1–25 was significantly more effective than B. velezensis GA1.
Root colonization of all isolates was in the range of 106 CFU g−1 of fresh root (Table 5).

Table 5. Population of Bacillus isolates applied in ISR assay on rice roots grown in potting soils (Figure 5).

Treatment CLPs Produced Population Density
(in log CFU g−1 of Fresh Root)

B. velezensis RHF4.1–25 Surfactin, iturin and fengycin 6.32 ± 0.42 a

B. velezensis GA1wt Surfactin, iturin and fengycin 6.49 ± 0.23 a

B. velezensis GA1∆srfaA Iturin and fengycin 6.46 ± 0.45 a

B. velezensis GA1∆ituA Surfactin and fengycin 6.52 ± 0.30 a

B. velezensis GA1∆fenA Surfactin and iturin 6.38 ± 0.29 a

B. velezensis GA1∆srfaA-ituA Fengycin 6.54 ± 0.28 a

B. velezensis GA1∆srfaA-fenA Iturin 6.45 ± 0.30 a

B. velezensis GA1∆fenA-ituA Surfactin 6.70 ± 0.64 a

No used Bacillus bacteria were found in noninoculated treatments. Means and standard deviation are presented.
Values followed by distinct letters are significantly different (Duncan’s test, p < 0.05)
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Figure 5. (A) Potential of B. velezensis isolates RHF4.1–25 and GA1, and GA1 mutants impaired
in CLiP production to induce systemic resistance against P. oryzae in rice (variety CO39) grown in
potting soil. Bacteria were applied by inoculating the roots of rice seedlings before transplanting and
by a soil drench three days before pathogen inoculation. Four-week old rice plants were inoculated
with 5 × 104 spores mL−1 of P. oryzae VT5M1. Disease was evaluated six days post pathogen
inoculation by counting the number of susceptible lesions. The experiment was conducted once in
three repetitions, with seven plants each. Data are presented as boxplots (n = 21). Univariate ANOVA
followed by Duncan’s post hoc tests were used and different letters among these treatments indicate
statistically significant differences (p < 0.05). HC: healthy control; DC: diseased control: RHF4.1–25
and GA1wt: wild type B. velezensis; ∆srfaA: surfactin mutant; ∆ituA: iturin mutant; ∆fenA: fengycin
mutant. ∆srfaA-ituA: double mutant impaired in surfactin and iturin production; ∆srfaA-fenA: double
mutant impaired in surfactin and fengycin production; ∆fenA-ituA: double mutant impaired in iturin
and fengycin production. (B) Representative pictures of disease symptoms taken at the time of
disease evaluation. Scale bar represents 1 cm.

3.4. Role of Cyclic Lipopeptides in ISR of B. velezensis against P. oryzae VT5M1 in Acid Sulfate Soil

With regard to ISR against rice blast under ASS conditions, Bacillus strains including
RHF4.1–25, GA1wt and only GA1 single mutants were chosen to investigate the capacity of
these strains to protect the rice plants against P. oryzae VT5M1 due to the limited availability
of Vietnamese ASSs to set up experiments and the consistent results above in potting soils.
The results show that the ISR capacity of those isolates which could effectively protect rice
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plants in potting soils, worked consistently under ASS conditions. Specifically, B. velezensis
RHF4.1–25, B. velezensis GA1wt and ∆srfaA isolates could significantly protect the rice
plants against P. oryzae compared to the diseased control. Among these strains, RHF4.1–25
was again most effective, but not significantly different from the ∆srfaA mutant (Figure 6).
In contrast, mutants unable to produce iturin or fengycin could not significantly trigger ISR
in rice blast and reduced disease severity only by 5% (Figure S3). Furthermore, all tested
isolates colonized rice roots in the range of 106 CFU g−1 fresh roots (Table 6).
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Figure 6. (A) Potential of B. velezensis isolates RHF4.1–25 and GA1, and GA1 mutants impaired in
CLiP production to induce systemic resistance against P. oryzae in rice (variety Jasmine 85) grown in
acid sulfate soil. Bacteria were applied by inoculating the roots of rice seedlings before transplanting
and by a soil drench three days before pathogen inoculation. Four-week old rice plants were
inoculated with 5 × 104 spores mL−1 of P. oryzae VT5M1. Disease was evaluated six days post-
pathogen inoculation by counting the number of susceptible lesions. The experiment was performed
once in three repetitions with five plants each. Data are presented as boxplots (n = 15). Univariate
ANOVA followed by Duncan’s post hoc tests were used and different letters among these treatments
indicate statistically significant differences (p < 0.05). HC: healthy control; DC: diseased control:
RHF4.1–25 and GA1wt: wild type B. velezensis; ∆srfaA: surfactin mutant of GA1; ∆ituA: iturin mutant
of GA1; ∆fenA: fengycin mutant of GA1. (B) Representative pictures of disease symptoms taken at
the time of disease evaluation. Scale bar represents 1 cm.
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Table 6. Population of Bacillus isolates applied in ISR assay on rice roots grown in acid sulfhate
soils (Figure 6).

Treatment CLPs Produced Population Density
(in log CFU g−1 of Fresh Root)

B. velezensis RHF4.1–25 Surfactin, iturin and fengycin 6.77 ± 0.31 a

B. velezensis GA1wt Surfactin, iturin and fengycin 6.66 ± 0.40 a

B. velezensis GA1∆srfaA Iturin and fengycin 6.21 ± 0.13 a

B. velezensis GA1∆ItuA Surfactin and fengycin 6.33 ± 0.16 a

B. velezensis GA1∆fenA Surfactin and iturin 6.50 ± 0.17 a

No used Bacillus bacteria were found in noninoculated treatments. Means and standard deviation are presented.
Values followed by distinct letters are significantly different (Duncan’s test, p < 0.05).

3.5. In Vitro Antagonism of P. oryzae Using Cell-Free Supernatants of B. velezensis Wild Type
Strains and CLiP Mutants

Microscopic assays were conducted to investigate direct effects of CLiP containing
supernatants on the mycelial growth of P. oryzae VT5M1. Figure 7 shows that application of
cell-free supernatants obtained from the wild type B. velezensis strains RHF4.1–25 and GA1
strongly suppressed the growth of P. oryzae VT5M1 with more than 94%. More importantly,
abnormal hyphal fragments were also formed by those treatments (Figure 7A), as compared
with that of the LB control. Supernatants containing two CLiPs (obtained from ∆srfaA,
∆ituA and ∆fenA) also strongly inhibited the growth of P. oryzae VT5M1 (from 63% to
80%), supernatants that contained both surfactin and iturin gave the best results (about
80% inhibition). Additionally, supernatants that only contained fengycin or iturin gave an
intermediate inhibition from 41% to 52%. No inhibition zone was formed between fungus
and supernatant that only contained surfactin (Figure 7B).
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Figure 7. (A) Microscopic assay showing the effect of cell-free supernatants obtained from CLiPs-producing B. velezensis
RHF4.1–25, B. velezensis GA1wt and its mutants on mycelial growth of P. oryzae VT5M1. Treatments include (a,a’) control
(LB broth); (b,b’) B. velezensis RHF4.1–25; (c,c’) B. velezensis GA1 wild type (GA1wt), (d,d’) B. velezensis GA1-∆srfaA;
(e,e’) B. velezensis GA1-∆ituA; (f,f’) B. velezensis GA1-∆fenA; (g,g’) B. velezensis GA1-∆srfaA-ituA; (h,h’) B. velezensis GA1-
∆srfaA-fenA; (i,i’) B. velezensis GA1-∆fenA-ituA. (B) Direct antagonistic effects of cell-free supernatants obtained from
CLiPs-producing B. velezensis RHF4.1–25, B. velezensis GA1wt and GA1 mutants against P. oryzae VT5M1. Results are
expressed as relative inhibition in comparison with the control. ∆srfaA: surfactin mutant; ∆ituA: iturin mutant; ∆fenA:
fengycin mutant. ∆srfaA-ituA: double mutant impaired in surfactin and iturin production; ∆srfaA-fenA: double mutant
impaired in surfactin and fengycin production; ∆fenA-ituA: double mutant impaired in iturin and fengycin production.
Each treatment was repeated five times and the experiment was done twice. Univariate ANOVA followed by Duncan’s post
hoc tests were used and different letters among these treatments indicate statistically significant differences (p < 0.05).
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3.6. Influence of Cell-Free Culture Filtrates on P. oryzae Spore Germination and Appressoria Formation

This experiment was performed to study the role of CLiPs on P oryzae VT5M1 spore
germination and appressoria formation. Following incubation in favorable environmental
conditions for fungal growth, the percentage of conidial germination and appressoria forma-
tion in the LB control were 97% and 100%, respectively (Table 7). Interestingly, all cell-free
culture filtrates obtained from wild type and mutant B. velezensis strains effectively inhibited
conidial germination. More so, appressorium formation was not recorded since there was
no spore germination in inoculated treatments. In addition to this, the CLiPs-containing
supernatants damaged the spores and caused malformation of germ tubes (Figure 8).

Table 7. Effects of cell-free culture supernatant obtained from B. velezensis RHF4.1–25, B. velezensis
GA1 or its CLiP mutants on spore germination of P. oryzae VT5M1 (Figure 8).

Treatment CLPs Produced Spore Germination (%)

Control (LB broth) - 97 ± 1
B. velezensis RHF4.1–25 Surfactin, iturin and fengycin 0 ± 0
B. velezensis GA1wt Surfactin, iturin and fengycin 0 ± 0
B. velezensis GA1∆srfaA Iturin and fengycin 0 ± 0
B. velezensis GA1∆ituA Surfactin and fengycin 0 ± 0
B. velezensis GA1∆fenA Surfactin and iturin 0 ± 0
B. velezensis GA1∆srfaA-ituA Fengycin 6 ± 3
B. velezensis GA1∆srfaA-fenA Iturin 0 ± 0
B. velezensis GA1∆fenA-ituA Surfactin 0 ± 0

Values indicate percentage of spore germination ± standard deviation (n = 50).
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Figure 8. Effect of cell-free supernatants obtained from CLiPs-producing B. velezensis RHF4.1–25,
B. velezensis GA1wt and its mutants on spore germination (at four hours post incubation) and
appressorium formation (at eight hours post incubation) of P. oryzae VT5M1. Treatments include:
(a) (4 hpi) and (a’) (8 hpi), control (LB broth); (b) (4 hpi) and (b’) (8 hpi), RHF4.1–25; (c) (4 hpi) and
(c’) (8 hpi); GA1wt, (d) (4 hpi) and (d’) (8 hpi); GA1∆srfaA; (e) (4 hpi) and (e’) (8 hpi), GA1∆ituA;
(f) (4 hpi) and (f’) (8 hpi), GA1∆fenA; (g) (4 hpi) and (g’) (8 hpi), GA1∆srfaA-ituA; (h) (4 hpi) and
(h’) (8 hpi), GA1∆srfaA-fenA; (i) (4 hpi) and (i’) (8 hpi), GA1∆fenA-ituA. Scale bar represents 100 µm.

3.7. Direct Effect of Cell-Free Supernatants to Reduce Rice Blast Symptoms Caused by P. oryzae Spores

Since significantly effective inhibition of CLiPs-producing Bacillus isolates on mycelial
growth as well as on spore germination of P. oryzae VT5M1 was shown in experiments
above, this assay was carried out to evaluate the capacity of the CLiPs in disease severity
reduction by in planta direct antagonism. Based on the results of this plant experiment
(Figure 9), application of all CLiPs-producing Bacillus isolates could significantly reduce
lesion numbers compared to that of the untreated control (DC, disease control).
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Figure 9. (A) Direct antagonistic activity of cell-free supernatants obtained from CLiPs-producing
B. velezensis RHF4.1–25, B. velezensis GA1 wild type and its mutants against P. oryzae VT5M1. Cell-free
supernatants of the different bacterial isolates were mixed with a spore suspension of P. oryzae
VT5M1 and sprayed on 4–week old rice plants grown in potting soil. Disease was evaluated six
days post pathogen inoculation by counting the number of susceptible lesions. The experiment
was performed once in three repetitions, with seven plants each. Data are presented as boxplots
(n = 21). Univariate ANOVA followed by Duncan’s post hoc tests were used and different letters
among these treatments indicate statistically significant differences (p < 0.05). HC: healthy control;
DC: diseased control: RHF4.1–25 and GA1wt: wild type B. velezensis; ∆srfaA: surfactin mutant; ∆ituA:
iturin mutant; ∆fenA: fengycin mutant. ∆srfaA-ituA: double mutant impaired in surfactin and iturin
production; ∆srfaA-fenA: double mutant impaired in surfactin and fengycin production; ∆fenA-ituA:
double mutant impaired in iturin and fengycin production. (B) Representative pictures of disease
symptoms taken at the time of disease evaluation. Scale bar represents 1 cm.

Furthermore, there were remarkable differences in disease symptom reduction be-
tween these treatments caused by spraying a 50% (v/v) concentration of mixed cell-free
supernatants and spores. Interestingly, in comparison with B. velezensis GA1wt and its
mutants, cell-free culture filtrates from B. velezensis RHF4.1–25 were more effective in
disease suppression (Figure S4). Among GA1wt strain and its mutants, the supernatants of
GA1wt, ∆srfaA and ∆fenA provided a significant reduction in lesion numbers, as well as
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relative infection, compared to that of the remaining GA1 mutants. Along with supernatant-
producing ∆ituA, double mutants, namely, ∆srfaA-ituA, ∆srfaA-fenA and ∆fenA-ituA were
less effective than other tested GA1 strains, but could decrease disease symptoms by 20%
to 35% compared to the diseased control.

4. Discussion

In this study, we screened the capacity of four representative Bacillus isolates from
ASSs in Vietnam to elicit ISR against rice blast disease and selected potential biocontrol
agents for further studies. B. marisflavi could not successfully induce resistance to rice
blast, in contrast, B. altitudinis and B. velezensis strains could effectively protect the rice
plants against blast disease by inducing resistance upon root inoculation. These strains
consistently triggered resistance to the blast disease in rice grown in both potting and acid
sulfate soil conditions. B. velezensis RHF4.1–25 was the most successful in triggering ISR
against blast disease. Our study is the first report on the capacity of indigenous Bacillus
isolates to trigger ISR against blast disease on rice grown in ASSs.

The two used B. altitudinis strains could protect rice against blast disease by triggering
ISR. B. altitudinis has been implicated in biocontrol in rice against the sheath blight pathogen
Rhizoctonia solani by ISR [40] and against the bacterial blight pathogen Xanthomonas oryzae
pv. oryzae via direct effects [41]. Both strains produce the pumilacidin-type of CLiPs.
Pumilacidins are members of the surfactin family. The compounds differ from surfactin
with a leucine in position 4 instead of a valine and an isoleucine or valine at position
7 instead of a leucine [42]. Pumilacidins are known to be produced by B. pumilus [43,44]
and by B. safensis [45], two species closely related to B. altitudinis. To our knowledge, there
are no studies showing that B. altitudinis strains produce pumilacidins or that they are
active against rice blast. In this context, it should be noticed we could not demonstrate a
role for surfactin produced by B. velezensis GA1 in triggering ISR against P. oryzae. However,
variations in molecular structure of the peptide part can impact the physicochemical
properties of a CLiP. The presence of a Leu4 in pumilacidin instead of a Val4, as in surfactin,
appears to increase the critical micellar concentration value [42]. The final surface tension
value of pumilacidin is also higher when compared to surfactin [45], so it cannot be
excluded that this has an effect on ISR in rice. It remains to be investigated whether
pumilacidins do play a role in the observed ISR against P. oryzae.

The ISR determinants of B. velezensis were deciphered in this study. Our studies have
revealed that upon root inoculation, surfactin-, fengycin- and iturin-type CLiPs-producing
RHF4.1–25 and B. velezensis GA1 could effectively protect rice plants against blast disease
by triggering ISR. Furthermore, to shed more light on the ISR capacity of these CLiPs, single
(∆srfaA, ∆ituA and ∆fenA) and double mutants (∆srfaA-ituA, ∆srfaA-fenA and ∆fenA-ituA)
of GA1 were tested in this study to investigate their ISR capacity against P. oryzae VT5M1
in rice. Both fengycin and iturin are needed to trigger ISR against rice blast disease, since
mutants impaired in fengycin or iturin or in both fengycin and iturin production could
no longer protect the plants against rice blast disease. Additionally, mutant strains that
only produce a single CLiP could not successfully protect plant against P. oryzae VT5M1 by
triggering ISR. These data suggest that fengycin and iturin act synergistically to cause the
ISR response, while surfactin appears not to play a role in ISR. This is in contrast with a
previous study in which surfactin triggered ISR against P. oryzae in perennial ryegrass [46],
indicating that the monocots rice and ryegrass do not react to lipopeptides in a similar
way. Our findings are in agreement with a previous study in which surfactin and fengycin
could elicit resistance against sheath blight caused by Rhizoctonia solani in rice, but were
not effective against P. oryzae [31]. Another recent study showed that B. subtilis strain BJ–1,
a strain isolated from a contaminated P. oryzae culture plate, could trigger ISR against
rice blast on rice by seed inoculation, however, the study did not determine the effect
of individual lipopeptides [15]. In many previous studies, the role of surfactin, iturin,
or surfactin and fengycin together in triggering ISR in various pathosystems could be
demonstrated. It has been reported that surfactin and fengycin produced by B. subtilis strain
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S499 could protect bean plants against Botrytis cinerea by triggering ISR [30]. Furthermore,
iturin family CLiPs such as mycosubtilin and bacillomycin have also consistently triggered
ISR activity against phytopathogens in various host plants [47]. These results clearly show
that the capacity of CLiPs to induce resistance is pathogen and plant dependent. In addition
to Bacillus, CLiP-producing Pseudomonas strains have also successfully been used to control
rice blast by ISR. The capacity of the ISR-inducing Pseudomonas strains COR10, COW10 and
COR5 to protect rice plants against P. oryzae was demonstrated to be due to the production
of the CLiPs lokisin, WLIP and entolysin, respectively [25].

Beside indirect antagonism by inducing resistance, direct effects of cell-free super-
natants produced by B. velezensis on mycelial growth, spore germination and appressorium
formation of P. oryzae were also investigated. Our in vitro tests suggest that iturin and
fengycin are effective in suppressing both the mycelial growth and spore germination
of P. oryzae, whereas surfactin only affects spore germination. It has been shown before
that surfactin produced by B. licheniformis BC98 could suppress the spore germination of
P. oryzae B157 at a concentration of 1 µg mL−1 [48]. Iturin appears to be the most effective at
inhibiting mycelial growth since the mutant impaired in fengycin production still showed
a high relative inhibition. Surfactin-, fengycin- and iturin-producing Bacillus spp. are
well-known for their direct antagonism against diverse phytopathogens in different host
plants [33,47,49]. Surfactins are powerful biosurfactants that interact with lipid bilayers,
and disrupt and solubilize lipid bilayers at high concentrations [33]. Fengycins and iturins
directly affect fungal cell membranes and finally cause cell death [33,43,50]. Our study
suggests that the presence of all three CLiPs types resulted in the best antagonistic effects
on the growth of P. oryzae VT5M1. Interestingly, supernatants containing these CLiPs also
completely suppressed spore germination of the fungus P. oryzae VT5M1. This result is
consistent with earlier reports about the influence of surfactin- and fengycin-type CLiPs
on conidial germination and appressorium formation in P. oryzae [15]. Besides, we tested
the mixture of bacterial cell-free supernatants and the spore solutions as a spray on rice
plants. In this case the supernatant that only contains surfactin could also significantly
reduce disease severity compared to the diseased control treatment, probably because
the compound could inhibit spore germination. Moreover, our results also show that the
combination of surfactin-, fengycin-, iturin-type CLiPs resulted in the best protective effect
on rice plants.

Interestingly, in comparison with B. velezensis GA1wt, B. velezensis RHF4.1–25 obtained
from ASS could protect rice plants more effectively in both direct and indirect antagonism
against blast disease caused by P. oryzae VT5M1. This is not due to a possibly better
adaptation to ASS, since the difference in effectiveness was also observed in potting soil
and in direct antagonism. Both strains also showed a very comparable root colonization in
all plant assays. Differences in effectiveness may be due to differences in the regulation
of CLiP production or in CLiP ratio. We are currently performing an in-depth genome
analysis of both strains to find out why B. velezensis strain RHF4.1–25 performs better than
B. velezensis GA1 in P. oryzae control.

5. Conclusions

Our study highlights that indigenous B. altitudinis and B. velezensis strains isolated
from rice rhizosphere in ASSs in Vietnam could trigger ISR against rice blast disease. Fur-
thermore, this study has elucidated the role of surfactin, fengycin, and iturin in controlling
rice blast disease by ISR and direct antagonism. Fengycin and iturin are both needed
to elicit ISR against blast disease, suggesting a synergistic interaction. Apart from ISR,
our results also highlight the important role of surfactin, fengycin and iturin in the direct
inhibition of P. oryzae. Both fengycin and iturin inhibit spore germination and mycelial
growth, while surfactin only inhibits spore germination. This work also demonstrates that
B. velezensis RHF4.1–25 isolated from rice rhizosphere in Vietnamese ASSs is more effective
than B. velezensis GA1 to control rice blast by both ISR and direct antagonism, although
both strains produce the same CLiPs. It is worthwhile to further explore the potential of
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B. velezensis strain RHF4.1–25 as biocontrol agent against rice blast in field conditions in
Vietnam by applying the strain via seed application, root inoculation and/or spraying on
rice leaves.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9071441/s1, Figure S1: potential of B. velezensis isolates RHF4.1–25 and GA1
and GA1 mutants impaired in CLiP production to induce systemic resistance against P. oryzae in rice
(variety CO39) grown in potting soil. Figure S2: potential of B. velezensis isolates RHF4.1–25 and GA1,
and GA1 mutants impaired in CLiP production to induce systemic resistance against P. oryzae in rice
(variety CO39) grown in potting soil. Figure S3: potential of B. velezensis isolates RHF4.1–25 and GA1,
and GA1 mutants impaired in CLiP production to induce systemic resistance against P. oryzae in
rice (variety Jasmine 85) grown in acid sulfate soil. Figure S4: direct antagonistic activity of cell-free
supernatants obtained from CLiPs-producing B. velezensis RHF4.1–25, B. velezensis GA1 wild type
and its mutants against P. oryzae VT5M1.
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Appendix A

Table A1. Primers used for the construction of B. velezensis GA1 mutants.

Primer Name Primer Sequence (5′->3′) Targeted Genes Reference

Deletion Mutant

B. velezensisGA1

UpsrfaAF TCAGCAAAACTGCGTGGTAG

srfaA [37]
UpsrfaAR CCAATTTTCGAATTCTTTTACCGCGATAAAAAGTTATTTCCATATGTGTGC

DwsrfAF CAGCTCCAGATCCTCTACGCCGGACACGCTTTATATCGTGCCGAA

DwsrfAR AAGAAATGATCATAAATACC

UpFenAF AGCAAAAACCGGGTCACTAA

fenA [37]
UpFenAR CCAATTTTCGAATTCTTTTACCGCGTTCGTCTGACATGACAAGCA

DwFenAF CAGCTCCAGATCCTCTACGCCGGACAAAGGACTTTAATTTCATAAAAAGGTG

DwFenAR CCTTTTTGAGAAGAGAAGAAAAAG

UpItuAF ATGCAGGAAATAGGGGTGAA

ituA [37]
UpItuAR CCAATTTTCGAATTCTTTTACCGCGGGTATACATAGGTCCCCTCCTG

DwItuAF CAGCTCCAGATCCTCTACGCCGGACCAATTGAACTTTTAGGGAAAAGCA

DwItuAR GCGACTAACGTATCGGGTTG

Antibiotic marker

PhleoF GTCATAGCTGTTTCCTGCCAAAAGGGGGTTTCATTTT
Phleomycin marker [37]

PhleoR ACTGGCCGTCGTTTTACTCCAATAAATGCGACACCAA

https://www.mdpi.com/article/10.3390/microorganisms9071441/s1
https://www.mdpi.com/article/10.3390/microorganisms9071441/s1
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Table A2. Percentage of CLiPs produced by Bacillus velezensis RHF4.1–25 and mutants of B. velezensis
GA1 in comparison with B. velezensis GA1 wild type.

Strain a
CLPs Produced (%) b

Surfactins Fengycins Iturins

B. velezensis GA1wt 100 ± 4.2 100 ± 2.2 100 ± 4.8
B. velezensis GA1∆srfaA 0 ± 0 32 ± 2.8 37 ± 4.3
B. velezensis GA1∆ituA 129 ± 1.3 82 ± 0.6 0 ± 0
B. velezensis GA1∆fenA 139 ± 1.3 0 ± 0 121 ± 0.9
B. velezensis GA1∆srfaA-ituA 0 ± 0 18 ± 9.7 0 ± 0
B. velezensis GA1∆srfaA-fenA 0 ± 0 0 ± 0 69 ± 2.1
B. velezensis GA1∆fenA-ituA 137 ± 2.9 0 ± 0 0 ± 0
B. velezensis RHF4.1–25 81 ± 15 104 ± 12.9 96 ± 18

a ∆srfaA: surfactin mutant; ∆ituA: iturin mutant; ∆fenA: fengycin mutant. ∆srfaA-ituA: double mutant impaired
in surfactin and iturin production; ∆srfaA-fenA: double mutant impaired in surfactin and fengycin production;
∆fenA-ituA: double mutant impaired in iturin and fengycin production. b Values indicate percentage of CLiP
production in comparison with B. velezensis GA1wt ± standard deviation (n = 3).
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