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Figure S1: Pharmacokinetics of drug delivery in vitro. (a) Measurement of fluorescein dye diffusion through agar pad over
4 hour time-course. 5µL of 40X concentration of dye was added on top of 200µL pad immediately prior to commencing
imaging. 1:2 dilution series is shown. Minimal variation between wells (3 wells/condition) and between location in the well (3
locations/well) is observed (shaded error bars). (b) The dilution series converge to 1:2 (purple) and 1:4 (orange) of maximum
concentration within the first 100 minutes.

a

Figure S2: Elliptic segmentation. (a) After cells were segmented using a Hessian-based algorithm (white outline, see
Methods), an ellipse with major and minor axes of 1X and 1.5X segmented object length and width was used to define
the region of Ca2+ traces are extracted from. Only pixels above background within each ellipse contribute to the summary
statistics and cell growth calculations. This allows for small amounts of drift and cell growth over the course of the 4 hours
(See Video S1).
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Figure S3: Including additional features in Ca2+ dynamics beyond Ca2+ transients (GCaMP6 std) improves the classification
of sensitive and resistant cells necessitating a random forest classifier. (a) Comparing the error rate as a function of ∆t
between a simple statistical classifier (SVM) based only on Ca2+ transients (i.e. GCaMP6 std, black line) to the full random
forest classifier (pink line, matches trace in Figure 5a). Also plotted is the classifier performance of the SVM trained on cell
area (yellow, matches trace in Figure 4a). (b) The confusion matrix of the SVM based on the GCaMP std. While the SVM
classifier trained on GCaMP6 std outperforms the SVM based on cell area, including all the calculated features in an albeit
more complex random forest classifier substantially improves the overall predictivity and the speed at which this predictivity
is achieved.
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Figure S4: Random forest classifier performance for GCaMP6, cell area, and mScarlet signal in kanamycin treated samples.
(a) Receiver Operating Curve (ROC) for the full-time course classifiers (∆t=241min, blue line). As the threshold for false-
positive rate increases, the true positive rate should approach 1. Poor classifiers fall along the diagonal (red dotted line)
corresponding to a linear increase in the number of false positives as the true positive rate is increased. Optimal classifiers
approach a square meaning 100% true positive rate at a low false-positive rate. For such classifiers, the area under the ROC
curve (AUC) approaches 1. (b) The 10-fold error rate as a function of the number of learning cycles. Number cycles based on
hyperparameter optimization determined > 400 cycles optimal for both GCaMP6 and mScarlet signals. This can be observed
in the plateau in the error rate as the learning cycles exceeds 400. The SVM used for classifying based on cell area does
not include learning cycles. (c) After training, the magnitude of and variance between the loss for 10-fold cross-validation
is smaller for GCaMP6 signal than cell area and mScarlet. The small variance between folds indicates the classifier is not
overfitting the data. (d) As ∆t increases, the classifiers’ ROC AUC increases. Cyan line marks when the classifiers reach
< 5% error rate.
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Figure S5: Highly predictive features in the Ca2+-based random forest for kanamycin treatment includes Ca2+ transients.
(a) The relative predictor importance for the 58 PCA components used to train the full time-course kanamycin classifier
in E. coli. Feature importance calculated using Matlab’s predictorImportance function. PCA2 was the most important
component in discriminating between sensitive and resistant cells. (b) Waterfall chart for PCA2 eigenvalues. The most
important features in PCA2, which described 17% percent of the total variance in the dataset, include moving window
standard deviation of the mean GCaMP6 signal. This was the original definition of Ca2+ transients (see Figures 2c, 3, 4)
used to distinguish sensitive and resistant cells.
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Figure S6: Distinguishing kanamycin treated B. subtilis using Ca2+ dynamics. (a) Image of B. subtilis with genomically-
incorporated GCaMP6 (IPTG-inducible hyperspank promoter). Elliptic segmentation overlaid. Due to the formation of
chains and the lower GCaMP6 expression, the segmentation does not separate single cells as well as for E. coli (Figure S2).
(b) Error rate of the random forest classifiers as a function of ∆t. Cyan line marks where the classifiers first reach < 5%
error rate (52 minutes). Shaded error bars are the standard deviation in the error rate between 10-folds (80/20 split). (c)
Confusion matrix for the full time course classifier distinguishing treated and untreated B. subtilis cells based on GCaMP6
signal. 100% of the untreated cells are correctly classified after 4 hours. (d),(e) The most important predictor used by
the full time course classifier was PCA7 despite containing only 1.9% of the total variance in the dataset. The feature with
the largest eigenvalue in PCA7 is the minimum of the cells’ GCaMP6 signal over time. (f) Examining the distribution
of minimum GCaMP6 signal for treated (blue boxplot) and untreated (black boxplot) cells reveals a significant difference
(p-val< 1e− 10). (g),(h) The classifier loss between different folds in cross validation (h) and the error rate as a function of
learning cycle (g) shows the full time course classifier is not being over trained.
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Figure S7: Ca2+ dynamics in drug action for 5 different antibiotics. (a) Confusion matrix of the full-time-course classifiers
trained on Ca2+ traces for each drug. A confusion matrix was generated on 20% of the data withheld from the initial training
which used 80/20, 10-fold cross-validation. (b) ROC curves for each drug’s full-time-course classifier. (c) Learning cycles for
each drug classifier. (d) Error rate as a function of ∆t for each drug. All axes are the same. Cyan-line marks when classifiers
reach < 5% error in single-cell classification.
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Figure S8: Aligning GCaMP6 blinks in Polymyxin B treated cells. (a) Shown are three GCaMP6 traces for single cells from
the 10µg/mL Polymyxin B treatment. A blink is defined as the last point in the 3-frame, moving average of the derivative
greater than 5 standard deviations above the mean derivative after 150 minutes. The vertical dashed line (color-matched) is
the point the algorithm found as the last point the derivative exceeded this threshold. (b) The 3-frame, moving average of
the GCaMP6 signal derivative. The horizontal dotted line indicates the threshold for each trace.
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Figure S9: External Ca2+ modifies the magnitude and duration of the Polymyxin B-induced blink. (a),(b),(c),(d) Time
aligned average GCaMP6 (green line) and PI (red dashed line) traces from single cells when treated with Polymyxin B
(10µg/mL) and EGTA (a), Ca2+ (b), and each with CCCP (c,d). See Figure S8 for description of time alignment. The
EGTA, Ca2+, PI, and CCCP was added to the liquid agarose before pouring mold. This allowed the cells time to equilibrate
(> 1hr) before seeing the Polymyxin B. Both the duration and magnitude of the two-phases depend on external Ca2+ as well
as membrane potential (dissipated by CCCP). The standard PMM media has 3.6 µM free Ca2+. In 5mM EGTA at pH 7.5
and 30◦C, there are <1e-11 free Ca2+ ions per mL (See Methods for calculation).
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Figure S10: External Ca2+ modifies the time for Polymyxin B induced membrane destabilization. (a) The mean time to
PI entry in the cell as a function of Polymyxin B dose. Shown are the single-cell distributions for time for PI entry. PI entry
was defined as signal 5 standard deviations above the mean signal calculated over the first 40 frames. The p-values were
calculated using a one-tail Mann–Whitney U test. The null hypothesis for both tests was Median(Lower PmB Concentra-
tion)>Median(Higher PmB Concentration). The black line indicates the mean. (b) Time to PI entry after Ca2+ blink. Ca2+
blink as defined in Figure S8. p-value calculated as in panel a. The time to PI entry after last blink does not change between
different doses. (c) The presence of EGTA in the pad decreases the time to PI entry in the cell, consistent with the classifier
of Ca2+ as a competitive binder with Polymyxin B in the LPS. Correspondingly, increasing Ca2+ in the pad increases the
time to PI entry. p-value calculated using one-tail Mann-Whitney U test. The null hypotheses for these calculations in
decending order: Median(PmB)>Median(+Ca2); Median(+EGTA)>Median(+Ca); and Median(+EGTA)>Median(PmB).
This change mimics the effective dose trend in panel a. (d),(e) However, the presence of EGTA lengthens the time from
the blink to the entry of PI in both 10µg/mL (d) and 1µg/mL (e) conditions. p-value calculated using one-tail Mann-
Whitney U test. The null hypotheses for these calculations in decending order: Median(+EGTA)>Median(+Ca) and Me-
dian(PmB)>Median(+EGTA). This suggests the lack of a prolonged secondary spike in Ca2+ alters the rate of membrane
poration through an unknown mechanism.

Video S1. Ellipse segmentation for simultaneously extracting GCaMP6 signal and cell growth in E. coli. Both fields of
view are treated with 100µg/mL kanamycin. The left panel is mntH KanR cells. The right panel is sensitive BW25113. The
GcAMP6 channel is shown for both panels. Images at 1 frame/minute for 240 minutes.

Video S2. Ellipse segmentation for simultaneously extracting GCaMP6 signal and cell growth in B. subtilis. The left panel
is untreated cells. The right panel is treated 100µg/mL. The GCaMP6 channel is shown for both panels. Images at 1
frame/minute for 240 minutes.

Video S3. GCaMP6 and PI signal in Polymyxin B [10µg/mL] treated cells with and without CCCP, left and right panel,
respectively. PI staining in red. GCaMP6 signal in green. Time frames match between two panels.
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Table S1: Hyperparameters for the different drugs’ random forest classifier. Hyperparameters optimized using the full-time-
course data and Bayesian optimization using the fitcensemble method in Matlab. First boosting algorithm was optimized
followed by hyper-parameter selection. For all classifiers, we found AdaBoostM1 boosting was preferred. 200 objective
evaluations were performed during hyper-parameter selection.

Drug Max Conc. (µg/mL) # Learning Cycles Learning Rate Min Leaf Size Max # Splits

Kan 100 442 0.94414 7 34
Cipro 10 217 0.40054 177 5519
Chlor 100 482 0.69145 23 15
Trim 10 423 0.90351 117 64
PmB 10 436 0.59427 10 58
Gent 100 387 0.82293 55 6

Kan (B. subtilis) 100 451 0.98779 59 21

Feature calculation from fluorescent traces
To calculate features from the Ca2+ traces, a mixture of convolution functions and normalization protocols are applied to

different moments of the GCaMP6 fluorescence measured for each cell. Specifically, for the min, max, mean, and standard
deviation of the pixels’ fluorescent intensity inside the segmentation ellipse over time, the following moments are computed
for a particular ∆t: mean, median, std, max, and min of the zero, first and second-order derivatives. The moving mean and
moving standard deviation are used as convolution filters with window sizes equal to 20% and 10% of ∆t. All features are
calculated again after normalizing the signal by the first time point. What follows is the Matlab-code for recreating these
features.

%Function f o r c a l c u l a t i n g f e a t u r e matrix o f t r a c e s
function [ master_data , mastLab ] = ca lcFeatureMatr ix (S , deltaT )

%For each o f the f i e l d names in the s t r u c t u r e S (Mean/Min/Max/Std o f GCaMP6 over time )
nms = f i e ldnames (S ) ;
master_data = [ ] ; mastLab = [ ] ; %Feature matrix and f e a t u r e l a b e l s l i s t
for j = 1 : length (nms) %For each o f the mean ,min ,max , and s t d c a l c u l a t e the f o l l ow i n g

%Ca l cu l a t e moments us ing ca l cTra jFea tures ( see be low )
[ mat1 , l ab s ] = ca l cTra jFeature s (S . ( nms{ j } ) ) ;
for l =1: length ( l ab s ) %Keep t rack o f l a b e l s f o r each f e a t u r e

l ab s { l } = [ l ab s { l } ’_’ nms{ j } ] ;
end
master_data = [ master_data , mat1 ] ; %append the data
mastLab = [ mastLab , l ab s ] ;
%Ca lcu l a t e the f e a t u r e s convo l v ing by t a k ing the mean
%fo r 20% and 10% t r a j e c t o r y l en g t h
for i = [5 ,10 ]

[ mat1 , l ab s ] = ca l cTra jFeature s (movmean(S . ( nms{ j }) , ce i l ( deltaT/ i ) , 2 ) ) ;
for l =1: length ( l ab s )

l ab s { l } = [ l ab s { l } ’_’ nms{ j } ’_movmean_ ’ num2str( ce i l ( deltaT/ i ) ) ] ;
end
master_data = [ master_data , mat1 ] ;
mastLab = [ mastLab , l ab s ] ;

end
%Ca lcu l a t e the f e a t u r e s convo l v ing by t a k ing s t d f o r 20% and 10% t r a j e c t o r y l e n g t h
for i = [5 ,10 ]

[ mat1 , l ab s ] = ca l cTra jFeature s (movstd (S . ( nms{ j } ) , ce i l ( deltaT/ i ) , [ ] , 2 ) ) ;
for l =1: length ( l ab s )

l ab s { l } = [ l ab s { l } ’_’ nms{ j } ’_movstd__ ’ num2str( ce i l ( deltaT/ i ) ) ] ;
end
master_data = [ master_data , mat1 ] ;
mastLab = [ mastLab , l ab s ] ;

end

%Now normal ize matrix to T==0
%And compute same f e a t u r e s
tmp = S . ( nms{ j } ) ; tmp = tmp ./ tmp ( : , 1 ) ;
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[ mat1 , l ab s ] = ca l cTra jFeature s (tmp ) ;
for l =1: length ( l ab s )

l ab s { l } = [ l ab s { l } ’_’ nms{ j } ’_norm ’ ] ;
end
master_data = [ master_data , mat1 ] ;
mastLab = [ mastLab , l ab s ] ;
for i = [5 ,10 ]

[ mat1 , l ab s ] = ca l cTra jFeature s (movmean(tmp , ce i l ( deltaT/ i ) , 2 ) ) ;
for l =1: length ( l ab s )

l ab s { l } = [ l ab s { l } ’_’ nms{ j } ’_norm_movmean_ ’ num2str( ce i l ( deltaT/ i ) ) ] ;
end
master_data = [ master_data , mat1 ] ;
mastLab = [ mastLab , l ab s ] ;

end
for i = [5 ,10 ]

[ mat1 , l ab s ] = ca l cTra jFeature s (movstd (tmp , ce i l ( deltaT/ i ) , [ ] , 2 ) ) ;
for l =1: length ( l ab s )

l ab s { l } = [ l ab s { l } ’_’ nms{ j } ’_norm_movstd_ ’ num2str( ce i l ( deltaT/ i ) ) ] ;
end
master_data = [ master_data , mat1 ] ;
mastLab = [ mastLab , l ab s ] ;

end
end

end

function [ mat , l ab s ] = ca l cTra jFeature s (A)
men = mean(A, 2 ) ; %Mean o f t race
md = median(A, 2 ) ; %Median o f t race
sd = std (A, [ ] , 2 ) ; %Std o f t race
mx = max(A, [ ] , 2 ) ; %Max of t race
mn = min(A, [ ] , 2 ) ; %Min of t race
men_dt = mean( d i f f (A, 1 , 2 ) , 2 ) ; %Mean o f 1 s t d e r i v a t i v e o f t r ace
md_dt = median( d i f f (A, 1 , 2 ) , 2 ) ; %Median o f 1 s t d e r i v a t i v e o f t r ace
sd_dt = std ( d i f f (A, 1 , 2 ) , [ ] , 2 ) ; %Std o f 1 s t d e r i v a t i v e o f t r ace
mx_dt = max( d i f f (A, 1 , 2 ) , [ ] , 2 ) ; %Max of 1 s t d e r i v a t i v e o f t r ace
mn_dt = min( d i f f (A, 1 , 2 ) , [ ] , 2 ) ; %Min of 1 s t d e r i v a t i v e o f t r ace
men_dtdt = mean( d i f f (A, 2 , 2 ) , 2 ) ; %Mean o f 2nd d e r i v a t i v e o f t r ace
md_dtdt = median( d i f f (A, 2 , 2 ) , 2 ) ; %Median o f 2nd d e r i v a t i v e o f t r ace
sd_dtdt = std ( d i f f (A, 2 , 2 ) , [ ] , 2 ) ; %Std o f 2nd d e r i v a t i v e o f t r ace
mx_dtdt = max( d i f f (A, 2 , 2 ) , [ ] , 2 ) ; %Max of 2nd d e r i v a t i v e o f t r ace
mn_dtdt = min( d i f f (A, 2 , 2 ) , [ ] , 2 ) ; %Min of 2nd d e r i v a t i v e o f t r ace
%Append l a b e l s
l ab s = { ’Mean ’ , ’Median ’ , ’ Std ’ , ’Max ’ , ’Min ’ , . . .

’ dtMean ’ , ’ dtMedian ’ , ’ dtStd ’ , ’dtMax ’ , ’ dtMin ’ , . . .
’ dtdtMean ’ , ’ dtdtMedian ’ , ’ dtdtStd ’ , ’ dtdtMax ’ , ’ dtdtMin ’ } ;

mat = [men ,md, sd ,mx,mn,men_dt ,md_dt , sd_dt ,mx_dt ,mn_dt , . . .
men_dtdt ,md_dtdt , sd_dtdt , mx_dtdt ,mn_dtdt ] ;

end
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