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Abstract: Methanol is abundant in the phyllosphere, the surface of the above-ground parts of
plants, and its concentration oscillates diurnally. The phyllosphere is one of the major habitats for
a group of microorganisms, the so-called methylotrophs, that utilize one-carbon (C1) compounds,
such as methanol and methane, as their sole source of carbon and energy. Among phyllospheric
microorganisms, methanol-utilizing methylotrophic bacteria, known as pink-pigmented facultative
methylotrophs (PPFMs), are the dominant colonizers of the phyllosphere, and some of them have
recently been shown to have the ability to promote plant growth and increase crop yield. In addition
to PPFMs, methanol-utilizing yeasts can proliferate and survive in the phyllosphere by using unique
molecular and cellular mechanisms to adapt to the stressful phyllosphere environment. This review
describes our current understanding of the physiology of methylotrophic bacteria and yeasts living
in the phyllosphere where they are exposed to diurnal cycles of environmental conditions.
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1. Introduction

In nature, methanol is ubiquitous. Its main origin is considered to be the methyl ester
groups of pectin, one of the major components of the plant cell wall [1,2]. Methanol is
produced through the hydrolysis of pectin methyl esters by pectin methylesterase, and
released from the plant stomata. Once released, methanol can be utilized by microorgan-
isms living in the phyllosphere, defined as the aerial parts of plants, or emitted into the
atmosphere as a volatile organic compound whose global emission is estimated to be 100 Tg
per year [1,3,4]. The atmospheric concentration of methanol has been reported to fluctuate
depending on the opening and closing of stomata [5]; however, the amount of methanol in
the phyllosphere had not been quantified. Recently, we revealed that the concentration of
methanol available for microorganisms on the surface of plant leaves also oscillates during
the daily light–dark cycle. Results showed that the methanol concentration in the phyllo-
sphere was higher in the dark period and lower in the light period, which was opposite
to atmospheric methanol (Figure 1) [6,7], suggesting that phyllospheric microorganisms
utilize the methanol hydrolyzed from the plant pectin in a direct manner, rather than using
methanol present in the air.

A wide variety of microorganisms colonize the phyllosphere and the area of soil
surrounding plant roots (rhizosphere). Interactions between plants and microbes have
been considered to affect not only the growth and proliferation of both organisms, but
also the ecosystem and global environment. The total area of the global phyllosphere
is estimated to be 109 km2, twice as large as the surface of the earth, and such space
could be colonized by bacterial populations of 1026–1027 cells, as well as lower numbers
of archaea and fungi [8]. While plant–rhizobia and plant–mycorrhizae interactions in the
rhizosphere have been thoroughly investigated, studies of plant–microbe interactions in
the phyllosphere have been limited to those involving plant pathogens. As such, positive
and neutral interactions between phyllospheric microbes and their host plants have been
closely researched only in the last decade [9,10].
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Figure 1. Colonization of methanol-utilizing methylotrophs in the phyllosphere where methanol 
concentrations oscillate diurnally. Methanol-utilizing bacteria (one-carbon (C1) bacteria, pink-
pigmented facultative methylotrophs (PPFMs)) and yeasts (C1 yeasts) colonize the surface of plant 
leaves and acquire nutrients produced by plants. Concentrations of methanol in the phyllosphere 
oscillate diurnally, with lower concentrations in the light period (L) and higher concentrations in 
the dark period (D). After the leaf printing on the agar medium containing methanol as the sole 
carbon source, pink-pigmented colonies were observed (left panel photo). Candida boidinii cells 
expressing the fluorescent protein Venus proliferate on Arabidopsis thaliana leaves (right panel 
photo). 

A wide variety of microorganisms colonize the phyllosphere and the area of soil sur-
rounding plant roots (rhizosphere). Interactions between plants and microbes have been 
considered to affect not only the growth and proliferation of both organisms, but also the 
ecosystem and global environment. The total area of the global phyllosphere is estimated 
to be 109 km2, twice as large as the surface of the earth, and such space could be colonized 
by bacterial populations of 1026–1027 cells, as well as lower numbers of archaea and fungi 
[8]. While plant–rhizobia and plant–mycorrhizae interactions in the rhizosphere have 
been thoroughly investigated, studies of plant–microbe interactions in the phyllosphere 
have been limited to those involving plant pathogens. As such, positive and neutral inter-
actions between phyllospheric microbes and their host plants have been closely re-
searched only in the last decade [9,10]. 

Among phyllospheric microorganisms, methanol-utilizing bacteria, known as pink-
pigmented facultative methylotrophs (PPFMs), are the dominant colonizers of plant leaf 
surfaces (Figure 1) [11,12]. Methylotrophs are a diverse group of microorganisms that uti-
lize reduced one-carbon (C1) compounds, such as methanol and methane, as their sole 
sources of carbon and energy. C1-utilizing microorganisms include bacteria, archaea, and 
fungi. Most methylotrophic fungi are yeasts. PPFMs are members of the genus Methylo-
bacterium, although some have recently been reclassified into Methylorubrum [13], and 
some of these are known to have the ability to promote plant growth [14,15]. Along with 
PPFMs (C1 bacteria), some methylotrophic yeasts (C1 yeasts), which belong to the genera 
Candida and Komagataella, also colonize the phyllosphere (Figure 1) [6]. These yeasts can 
grow vigorously on methanol-containing media and have been used as hosts for heterol-
ogous protein production using strong and regulatable methanol-induced gene promot-
ers [7,16–19]. Because of their intracellular dynamics, these yeasts have also been used as 

Figure 1. Colonization of methanol-utilizing methylotrophs in the phyllosphere where methanol concentrations oscillate
diurnally. Methanol-utilizing bacteria (one-carbon (C1) bacteria, pink-pigmented facultative methylotrophs (PPFMs)) and
yeasts (C1 yeasts) colonize the surface of plant leaves and acquire nutrients produced by plants. Concentrations of methanol
in the phyllosphere oscillate diurnally, with lower concentrations in the light period (L) and higher concentrations in the
dark period (D). After the leaf printing on the agar medium containing methanol as the sole carbon source, pink-pigmented
colonies were observed (left panel photo). Candida boidinii cells expressing the fluorescent protein Venus proliferate on
Arabidopsis thaliana leaves (right panel photo).

Among phyllospheric microorganisms, methanol-utilizing bacteria, known as pink-
pigmented facultative methylotrophs (PPFMs), are the dominant colonizers of plant leaf
surfaces (Figure 1) [11,12]. Methylotrophs are a diverse group of microorganisms that
utilize reduced one-carbon (C1) compounds, such as methanol and methane, as their sole
sources of carbon and energy. C1-utilizing microorganisms include bacteria, archaea, and
fungi. Most methylotrophic fungi are yeasts. PPFMs are members of the genus Methylobac-
terium, although some have recently been reclassified into Methylorubrum [13], and some of
these are known to have the ability to promote plant growth [14,15]. Along with PPFMs
(C1 bacteria), some methylotrophic yeasts (C1 yeasts), which belong to the genera Candida
and Komagataella, also colonize the phyllosphere (Figure 1) [6]. These yeasts can grow vigor-
ously on methanol-containing media and have been used as hosts for heterologous protein
production using strong and regulatable methanol-induced gene promoters [7,16–19]. Be-
cause of their intracellular dynamics, these yeasts have also been used as model organisms
to investigate the molecular and cellular mechanisms of the development and degradation
peroxisomes, which are essential organelles for methanol metabolism.
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In addition to methanol, plants emit methane, which is anaerobically generated by
methanogens in soil via their aerenchyma, although some plants aerobically produce
methane, which is assumed to be formed during the synthesis of pectin methyl ester
groups coupled with photosynthesis [20,21]. Methane-utilizing methylotrophs, known
as methanotrophs, also colonize the surface of plants [22–26]. Methane- and methanol-
utilizing methylotrophs inhabit various environments in nature besides the phyllosphere,
and play important roles in the global carbon circulation of two major greenhouse gases,
methane and CO2.

Phyllospheric microorganisms are exposed to a variety of environmental factors,
such as low nutrients, temperature, drafts, and UV light, which change diurnally [9].
Methylotrophs living in the phyllosphere have therefore evolved physiological adaptations
to grow and survive under such stressful conditions. In this review, we summarize our
recent studies and current understanding of the physiology of methylotrophs with respect
to their dominant colonization and survival on the surface of plant leaves. Finally, we
describe our recent results on the improvement of rice crop yields by foliar spraying of
PPFM cells in paddy fields.

2. Physiology of Methylotrophic Yeasts in the Phyllosphere
2.1. Proliferation of Methylotrophic Yeasts on Plant Leaves Where Methanol Concentrations
Fluctuate Diurnally

The ability to utilize methanol as a carbon source is considered to be one of the reasons
why methylotrophs are the dominant colonizers of the phyllosphere. This hypothesis
is supported by the fact that Methylorubrum extorquens AM1 mutant strains defective in
methanol metabolism are less competitive than the wild-type strain during colonization on
plant leaves [27,28].

While methylotrophic yeasts have often been isolated from various plant resources,
it was unknown until recently whether these yeasts can proliferate in the phyllosphere.
The methylotrophic yeasts Candida boidinii and Komagataella phaffii (Pichia pastoris) were
found to proliferate on the leaf surface of growing Arabidopsis thaliana plants [6]. Yeast
cells expressing a fluorescent protein were inoculated onto plant leaves and their growth
was observed by fluorescence microscopy and quantitative PCR analysis for two weeks.
We found that C. boidinii cells grew slowly, replicating approximately 3−4 times within
11 days of inoculation. Furthermore, C. boidinii aod1∆ and das1∆ strains in which genes
encoding the peroxisomal methanol-metabolizing enzymes alcohol oxidase (AOD) and
dihydroxyacetone synthase (DAS), respectively, were disrupted could not proliferate on
leaves, indicating that methanol metabolism is necessary for growth in the phyllosphere.

Another question that had not been answered until recently was how much methanol
is present on plant leaves and available to methylotrophs. To examine the methanol con-
centration in the phyllosphere, we developed a cell-based methanol sensor using the
methylotrophic yeast C. boidinii expressing the fluorescent protein Venus under the control
of the methanol-induced DAS1 gene promoter [6]. The sensor cells were inoculated on
the surface of leaves of A. thaliana plants that had been growing for 2–3 weeks after ger-
mination in a plant growth chamber with a daily light-dark cycle (14 h light, 10 h dark).
After a 4 h incubation, the fluorescence intensity was measured. The estimated methanol
concentration was higher in the dark period (25–60 mM) than in the light period (0–5 mM),
suggesting that the local methanol concentration in the phyllosphere of growing young
leaves oscillates during the daily light-dark cycle (Figure 1). In addition, transcript levels of
the methanol-induced genes AOD1 and DAS1 corresponded to the phyllospheric methanol
concentration measured by the sensor cells. In contrast to young leaves, the methanol
concentration on wilting or dead leaves was estimated to be greater than 250 mM, and did
not show diurnal oscillation. Given that the amount of methanol available to phyllospheric
microorganisms fluctuates naturally, it is reasonable to propose that methanol-induced
gene expression in methylotrophic yeasts was acquired through evolution to adapt to the
phyllospheric environment.
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We also investigated the nitrogen sources utilized by C. boidinii in the phyllosphere [29].
Since C. boidinii can utilize nitrate and methylamine as nitrogen sources, we focused on
YNR1, encoding nitrate reductase, and AMO1, encoding amine oxidase, and examined
their physiological functions in the phyllosphere. The wild-type and amo1∆ strains were
able to proliferate on growing young leaves of A. thaliana plants, whereas the ynr1∆ strain
could not. The YNR1 gene, but not the AMO1 gene, was expressed in cells inoculated
on young leaves, and its expression level fluctuated diurnally, indicating that the nitrate
concentration fluctuates diurnally. Further observation, however, found that expression
of the AMO1 gene was induced on wilting leaves. These results suggest that available
nitrogen sources for C. boidinii change from nitrate on young leaves to methylamine on
wilting leaves. Subsequently, we investigated the in vitro fate of YNR1 after alternating
the nitrogen source from nitrate to methylamine, and found that a selective autophagic
pathway was involved in the nitrate metabolic change. Together, these results indicate that
carbon and nitrogen sources available to methylotrophs in the phyllosphere change not
only during the day–night cycle, but also during the life cycle of the plant.

2.2. Molecular and Cellular Mechanisms of Adaptation to the Phyllosphere Environment in
Methylotrophic Yeasts

During growth on methanol, methylotrophic yeasts develop large numbers of per-
oxisomes that contain AOD, DAS, and other key enzymes for methanol metabolism [17].
When cells are shifted to a glucose or ethanol medium from a methanol medium, perox-
isomes are degraded by peroxisome-specific autophagy, which is termed pexophagy. In
the phyllosphere environment, where methanol concentrations oscillate diurnally, per-
oxisome dynamics should be determined by the methanol concentration. We observed
that the number of peroxisomes in C. boidinii cells on young leaves increased in the dark
period and decreased in the light period, corresponding to the methanol concentration [6].
Furthermore, our results demonstrated that C. boidinii mutants with disruptions in Pex5
(responsible for peroxisomal protein import), Atg1 (a pivotal kinase for all autophagic path-
ways), and Atg30 (a receptor molecule on peroxisomes recognized by core Atg proteins)
were unable to proliferate on plant leaves, which revealed that regulation of peroxisome
dynamics is essential for the proliferation of methylotrophic yeasts in the phyllosphere.

To adapt to the phyllosphere environment and regulate cellular functions in response
to the methanol concentration, methylotrophic yeasts must be able to sense a wide range
of methanol concentrations in the phyllosphere. We found that the cell-surface proteins
Wsc1 andWsc3 in K. phaffii are responsible for sensing the environmental concentration
of methanol and for regulating methanol-induced gene expression, i.e., genes encod-
ing proteins involved in peroxisome synthesis and methanol metabolism [30]. Moreover,
KpWsc1 and its downstream MAPK (a mitogen-activated kinase) cascade negatively
regulate pexophagy in the presence of methanol (higher than 0.15%) through suppres-
sion of Atg30 phosphorylation [31]. These results indicate that Wsc1 regulates not only
methanol-induced gene expression followed by the development of peroxisomes, but also
pexophagy in response to the methanol concentration sensed by the two distinct signaling
pathways (Figure 2).
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Figure 2. The cell-surface protein Wsc1 senses the methanol concentration in the phyllosphere and 
regulates peroxisome dynamics in methylotrophic yeast. Wsc1 senses a wide range of methanol 
concentrations that oscillate diurnally in the phyllosphere. A signal from Wsc1 is transmitted to 
the transcription factors, activating expression of methanol-induced genes followed by the devel-
opment of peroxisomes. Under lower methanol concentrations and carbon source-depleted condi-
tions, peroxisomes are degraded by pexophagy. Wsc1 and the downstream MAPK cascade repress 
pexophagy in the presence of methanol concentrations higher than 0.15%. 
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Specific Interactions 
3.1. Distribution of Methane- and Methanol-Utilizing Bacteria in the Phyllosphere 

Plant leaf surfaces support a large microbial community. The dominant microbial 
inhabitants are considered to be bacteria, whose population on leaves is estimated to be 
106–107 cells/cm2 [8]. We have investigated the distribution of methane- and methanol-
utilizing bacteria in the phyllosphere and isolated many strains from plant-associated ma-
terials [22,23]. In contrast to PPFMs, little was known about the habitation and distribution 
of methanotrophs in the phyllosphere. Some previous metagenomic and metaproteomic 
analyses did not detect methanotrophs on plant leaves [32,33], but other studies did in 
fact detect small populations [12,34]. We set up enrichment cultures with methane to ob-
tain methanotrophs living on plants and demonstrated that methanotrophs could be cul-
tivated from 12% of the phyllosphere samples [22]. Furthermore, we found that both sub-
merged and floating aquatic plants associated with methanotrophs have high methane 
consumption activity, and revealed that these hydrophytes serve a niche purpose for 
methanotrophs, functioning together as an important sink of methane [23,35]. 

Many PPFMs have been isolated from plant-related materials, and the community 
composition and population size of PPFMs in the phyllosphere have been analyzed with 

Figure 2. The cell-surface protein Wsc1 senses the methanol concentration in the phyllosphere and
regulates peroxisome dynamics in methylotrophic yeast. Wsc1 senses a wide range of methanol
concentrations that oscillate diurnally in the phyllosphere. A signal from Wsc1 is transmitted to the
transcription factors, activating expression of methanol-induced genes followed by the development
of peroxisomes. Under lower methanol concentrations and carbon source-depleted conditions, per-
oxisomes are degraded by pexophagy. Wsc1 and the downstream MAPK cascade repress pexophagy
in the presence of methanol concentrations higher than 0.15%.

3. Ubiquitous Colonization of PPFMs on the Surface of Plants and Species-Level
Specific Interactions
3.1. Distribution of Methane- and Methanol-Utilizing Bacteria in the Phyllosphere

Plant leaf surfaces support a large microbial community. The dominant microbial
inhabitants are considered to be bacteria, whose population on leaves is estimated to be
106–107 cells/cm2 [8]. We have investigated the distribution of methane- and methanol-
utilizing bacteria in the phyllosphere and isolated many strains from plant-associated
materials [22,23]. In contrast to PPFMs, little was known about the habitation and distri-
bution of methanotrophs in the phyllosphere. Some previous metagenomic and metapro-
teomic analyses did not detect methanotrophs on plant leaves [32,33], but other studies
did in fact detect small populations [12,34]. We set up enrichment cultures with methane
to obtain methanotrophs living on plants and demonstrated that methanotrophs could
be cultivated from 12% of the phyllosphere samples [22]. Furthermore, we found that
both submerged and floating aquatic plants associated with methanotrophs have high
methane consumption activity, and revealed that these hydrophytes serve a niche purpose
for methanotrophs, functioning together as an important sink of methane [23,35].
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Many PPFMs have been isolated from plant-related materials, and the community
composition and population size of PPFMs in the phyllosphere have been analyzed
with culture-independent approaches [11,12]. A proteogenomics analysis revealed that
alphaproteobacterial Methylobacterium and Sphingomonas are the major genera among phyl-
lospheric bacteria; for example, each genus represented more than 20% of the population
on soybean leaves [33].

3.2. Species Level Specificity between PPFMs and Plants

We investigated the number of PPFMs (colony forming units (CFU)/g fresh leaves)
on various kinds of vegetable leaves planted in a home farm (ca. 100 m2) and discovered
that the value varied from 105 to 107 CFU/g [36]. These results suggest that the plant
species affects the population size of PPFMs on leaves. Furthermore, we found that the red
perilla plant (Perilla frutescens crispa (Thunb.) Makino) harbored a dominant population of
PPFMs, and isolated the representative strain Methylobacterium sp. OR01 from red perilla
seeds. PPFMs with an identical 16S rRNA gene sequence to Methylobacterium sp. OR01
were dominant in almost all PPFM communities of red perilla plants cultivated at four
geographically different places in Japan, confirming geographically-independent species-
level specific PPFM-perilla plant associations [37]. Thus, the plant species influences the
dominant Methylobacterium species regardless of geographical and environmental factors.

We also confirmed the direct transmission of Methylobacterium sp. OR01 from red
perilla seeds to their leaves and the competitiveness of this strain on red perilla plants [37].
We compared the colonization ability of Methylobacterium sp. OR01 and M. extorquens AM1
on red perilla plants using different antibiotic-resistant strains. Although both strains colo-
nized the red perilla leaves when inoculated separately onto seeds, only Methylobacterium
sp. OR01 colonized leaves when both strains were inoculated together in a mixed cell
suspension. These results indicate that Methylobacterium sp. OR01 has a greater ability to
colonize red perilla plants than M. extorquens AM1.

3.3. Pantothenate Auxotrophy of Methylobacterium sp. OR01 and Fitness Advantage in the
Phyllosphere Environment

In addition to carbon and nitrogen sources, some trace cofactors such as vitamins can
be utilized by microorganisms in the phyllosphere [38]. We found that most PPFMs isolated
from living plant samples, including Methylobacterium sp. OR01, required pantothenate
(vitamin B5) for growth on a minimal medium. Since pantothenate is synthesized by the
condensation of pantoate and β-alanine in bacteria, we tested whether these compounds
could restore the ability of Methylobacterium sp. OR01 to grow on a minimal medium.
Results showed that the addition of β-alanine and its biosynthetic precursors, spermine,
spermidine, 5,6-dihydrouracil, N-carbamoyl-β-alanine, and 3-hydroxypropanoate, restored
growth, indicating that pantothenate auxotrophy of Methylobacterium sp. OR01 occurs due
to the absence of the β-alanine biosynthetic pathway.

Methylobacterium sp. OR01 could colonize the leaf surface of A. thaliana cultivated on a
plant medium that did not contain pantothenate or its precursors, and we confirmed that
pantothenate, β-alanine, and several precursor compounds were present on the A. thaliana
leaves [38]. These results suggest that the pantothenate-auxotrophic strain OR01 colonizes
the surface of plant leaves by utilizing not only pantothenate, but also β-alanine and
some other precursors produced by the host plant (Figure 1), and that the ability of
the pantothenate auxotrophic strain to synthesize β-alanine from multiple compounds
enabled this strain to adapt to various environments, including the phyllosphere. When
Methylobacterium sp. OR01 was inoculated on A. thaliana seeds with M. extorquens AM1,
which is able to synthesize pantothenate as well as other B vitamins, the pantothenate-
auxotrophic strain OR01 dominated over the nonauxotrophic strain AM1 on the leaves.
One possible reason for the auxotrophic strain having greater colonization ability than
the nonauxotrophic strain might be attributed to the fact that the auxotrophic strain does
not need to consume energy for the synthesis of pantothenate. Methylobacterium sp. OR01
might gain increased fitness by acquiring pantothenate and its precursors, which are
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sufficiently present in the phyllosphere, thus saving the energy costs of the biosynthesis of
these compounds.

4. Survival Strategy to Adapt to Various Environmental Stresses in the Phyllosphere
4.1. General Stress Response Regulator PhyR in Methylotrophs

Phyllosphere microorganisms are exposed to various kinds of environmental stresses,
such as extreme temperatures, UV radiation, drafts, osmotic pressure, reactive oxygen
species (ROS), and low nutrients, and must therefore adapt to these diurnally changing
stresses. Regulating the expression of stress-response genes is one strategy to adapt to such
environmental stresses. The general stress response regulator, PhyR, was first identified
as an abundantly produced protein in M. extorquens AM1 and was found to be involved
in plant colonization [39–41]. PhyR, which is exclusively found in Alphaproteobacteria
bacteria, is an anti-anti-sigma factor in a conserved signal cascade consisting of PhyR,
NepR, and SigT [42]. The M. extorquens AM1 phyR mutant strain was not only impaired in
phyllosphere colonization, but also demonstrated increased sensitivity to general stresses,
such as heat, UV light, osmolarity, and ROS. Since Alphaproteobacteria bacteria are dominant
in the phyllosphere as mentioned above, the general stress response system regulated by
PhyR might contribute to enhanced fitness in phyllosphere environments. We isolated an
alphaproteobacterial methanotroph, Methylosinus sp. B4S, from a plant leaf and revealed
that PhyR in this strain was also involved in resistance to heat shock and UV light [43].

4.2. Role of KaiC Family Proteins in M. Extorquens AM1

As already stated, phyllosphere microorganisms adapt to various environmental cues
affected by the day-night cycle. We have investigated the role of the M. extorquens AM1
KaiC proteins, which are homologues of the circadian clock generator components in
cyanobacteria, and found that they function to adapt to multiple environmental stresses,
namely temperature and UV light in M. extorquens AM1 (Figure 3) [44].
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Figure 3. Proposed regulatory network for integrative control of temperature-dependent UV resistance in M. extorquens
AM1. When cells are exposed to UV light and/or high temperatures, the positive regulator KaiC1 is induced and the
negative regulator KaiC2 is phosphorylated. The expression level of KaiC1 and the phosphorylation state of KaiC2 regulate
genome-wide gene expression through the downstream regulator LabA. Both the kaiC1 and kaiC2 genes are regulated by
downstream effectors.
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KaiC proteins are the central component of the circadian clock system in cyanobacteria
and perform both autokinase and autophosphatase functions [45,46]. KaiC phosphory-
lation is stimulated by KaiA, and KaiB reduces the effects of KaiA. The phosphorylation
level of KaiC exhibits an environment-independent oscillation with an approximately 24 h
period and the Kai protein complex regulates global gene expression through downstream
regulators such as LabA. KaiC family proteins are conserved among many bacterial and
archaeal species, including Methylobacterium spp. and Methylorubrum spp.; however, the
physiological role and regulation of phosphorylation of KaiC proteins in noncyanobacterial
microorganisms is unclear.

M. extorquens AM1 has two kai gene clusters, kaiC1-kaiB2-kaiB1-kaiR1 and kaiC2-kaiR2.
Both KaiC1 and KaiC2 from strain AM1 have conserved serine residues corresponding
to the phosphorylation sites of the cyanobacterial KaiC. We investigated the phosphory-
lation states of KaiC1 and KaiC2 by immunoblot analysis [44]. Mutations in the serine
residues in KaiC1 (S432A and S433A, KaiC1m) and KaiC2 (S426A, KaiC2m) resulted in
the disappearance of the phosphorylated bands, indicating that both KaiC1 and KaiC2 are
phosphorylated on these conserved residues.

In order to study the importance of the kaiC genes and the labA gene for plant col-
onization by M. extorquens AM1, competitive colonization tests between the wild-type
and gene-disrupted strains were conducted on A. thaliana plants. Colonization by the
∆kaiC2, ∆kaiC1∆kaiC2, and ∆labA strains was significantly lower than that of the wild-
type strain, indicating that KaiC2 and LabA are necessary for optimal colonization of
strain AM1 in the phyllosphere. In addition, since the phosphorylation-defective mutant
KaiC2m was unable to restore the colonization ability of the ∆kaiC2 strain, the conserved
serine residue at position 426 in KaiC2 and its phosphoregulation seem to be necessary for
plant colonization.

Further analyses revealed that the ∆kaiC1 strain was more sensitive to UV light than
the wild-type strain, but both ∆kaiC2 and ∆labA strains were more resistant to UV light
and high temperatures than the wild-type strain. These results suggest that KaiC1 and
KaiC2 have opposing regulatory functions. When the wild-type strain was exposed to
UV stress at different temperatures, the survival ratio of the wild-type strain after UV
treatment increased with increasing growth temperatures (24–32 ◦C). Thus, M. extorquens
AM1 exhibited temperature-dependent UV resistance (TDR). At all tested temperatures
(24 ◦C, 28 ◦C, and 32 ◦C), the ∆kaiC1 strain had lower viability than the wild-type strain
under UV stress conditions. It is interesting to note that while the ∆kaiC2 strain had a
higher survival ratio than the wild-type strain at 24 ◦C and 28 ◦C, the viability of the
two strains was comparable at 32 ◦C. The ∆kaiC1∆kaiC2 strain exhibited an intermediate
phenotype between those of the ∆kaiC1 and ∆kaiC2 strains. We therefore concluded that
KaiC1 and KaiC2 function as positive and negative regulators, respectively, in the TDR
phenotype. Based on analyses of KaiC1 and KaiC2 protein levels and their phosphorylation
status at different temperatures, we found that the amount of KaiC1 protein and the
phosphorylation level of KaiC2 decreased with increasing growth temperatures. These
results indicate that the amount of KaiC proteins and the phosphorylation state of KaiC2
control the UV resistance pathway in an integrated manner according to the growth
temperature, thus allowing cells to adapt to changing environmental conditions (Figure 3).

5. Improvement of Crop Yield by PPFMs

Some PPFMs have the ability to promote plant growth through the production of
phytohormones, such as auxins and cytokinins, and induce systemic resistance against
pathogens and diseases [14]. Additionally, PPFMs have some functions that may improve
plant nutrition, such as siderophore production, phosphate solubilization, and N2 fixation.
Since Methylobacterium spp. and Methylorubrum spp. can be cultivated to very high cell
densities using methanol as a carbon source [47], it is easy to prepare large amounts of cells
for use in the field. Thus, the use of PPFMs as plant biostimulants might contribute to the
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methanol bioeconomy, in which a variety of useful compounds are biologically produced
from natural gas- or biomass-derived methanol.

Scattered reports have demonstrated the promotion of plant seedling growth and
an increase of total plant biomass following treatment with PPFMs (via seed inoculation
or foliar spraying) under laboratory conditions or pot-scale cultivation, particularly for
vegetables [48–51]. However, improvement of crop yields at the field level has not been
well investigated. We recently reported improved rice crop yields following foliar spraying
of PPFMs in a commercial paddy field [52]. After selection of PPFM strains and rice
(Oryza sativa) cultivars based on the results of in vitro seedling growth tests, we conducted
paddy field experiments. Our results demonstrated that the crop yield of the sake-brewing
rice cultivar Hakutsurunishiki was reproducibly improved in a commercial paddy field for
over a five-year period by foliar spraying of PPFMs. We tested and optimized the timing of
PPFM inoculation and found that foliar spraying of not only living cells but also killed cells
or a cell wall polysaccharide fraction improved rice crop yields. Furthermore, we found
that a one-time foliar spray of PPFM after the heading date was effective in increasing
the rate of ripening and crop yield. Although the underlying mechanism regarding how
PPFMs or their components act after the heading date of rice is unclear, our results suggest
that the positive effect is due to a direct stimulation by PPFM cell wall components during
the translocation stage of rice growth.

6. Future Perspectives

The phyllosphere environment is quite different from the rhizosphere for microor-
ganisms and is affected by diurnal changes of light, temperature, and nutrients derived
from plant metabolism, including photosynthesis. In order to elucidate the mechanism of
interactions between plants and phyllosphere microorganisms that significantly influence
the global ecosystem, it is necessary to deepen our understanding of the phyllosphere
environment and the physiology of both plants and microorganisms. In this paper, we
described our current understanding of the physiology of methylotrophs that colonize
the phyllosphere. Methanol-utilizing bacteria and yeasts were revealed to have diverse
metabolic and physiological functions that allow them to adapt to and dominate in the
phyllosphere environment. Another key discovery was that there is species-level specificity
between PPFMs and plants not only in dominant colonization in the phyllosphere, but also
for improving crop yields. Further studies will focus on the principles of the symbiotic
interactions between methylotrophs and plants at the molecular level, particularly by
examining the molecular basis of species-level specificity and the mechanism of coloniza-
tion dominance. In addition, since PPFM cells can be cultivated at high-cell density with
methanol, which can be derived from methane or renewable biomass, application of PPFMs
to agriculture has the potential to increase the input of natural gas-derived carbon atoms
into biomass. The practical use of the synergistic interactions between methylotrophs and
plants should facilitate explorations in agriculture and in environmental technology.
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