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Abstract: The rapid emergence of resistance in plant pathogens to the limited number of chemical
classes of fungicides challenges sustainability and profitability of crop production worldwide. Under-
standing mechanisms underlying fungicide resistance facilitates monitoring of resistant populations
at large-scale, and can guide and accelerate the development of novel fungicides. A majority of
modern fungicides act to disrupt a biochemical function via binding a specific target protein in the
pathway. While target-site based mechanisms such as alternation and overexpression of target genes
have been commonly found to confer resistance across many fungal species, it is not uncommon
to encounter resistant phenotypes without altered or overexpressed target sites. However, such
non-target site mechanisms are relatively understudied, due in part to the complexity of the fungal
genome network. This type of resistance can oftentimes be transient and noninheritable, further
hindering research efforts. In this review, we focused on crop pathogens and summarized reported
mechanisms of resistance that are otherwise related to target-sites, including increased activity of
efflux pumps, metabolic circumvention, detoxification, standing genetic variations, regulation of
stress response pathways, and single nucleotide polymorphisms (SNPs) or mutations. In addition,
novel mechanisms of drug resistance recently characterized in human pathogens are reviewed in the
context of nontarget-directed resistance.
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1. Introduction

Fungicide use is a major component in the integrated disease management for crop
production, especially in open fields. The estimated amount of fungicides and bactericides
used worldwide increased from 393 to 530 million kilograms during 1990 to 2018 (Food
and Agriculture Organization of the United Nations; http://www.fao.org/). Despite the
availability of a wide variety of fungicides, control of major diseases heavily relies on
only a few chemical classes due to efficacy or residue concerns [1,2], leading to a high
pressure of resistance selection. Fungal pathogens hitchhiking on goods or latently infected
in plants can easily be distributed between regions and countries, further challenging the
resistance management. The rate of emergence of resistant fungal populations has been
continuously rising globally since the 1980s, posing a serious threat to farming sustainability
and profitability [3]. One way to cope with fungicide resistance is through fundamental
understanding of its mechanisms, which can facilitate resistance monitoring and aid in the
development of novel fungicides.

Numerous studies have been conducted in the past to characterize modes of action of
fungicides and corresponding resistance mechanisms. Fungicides, in particular those with
single sites of action, function to block specific enzymes in critical biological pathways.
Thus, the change either in the structure or the expression level of the enzyme can largely
affect fungicide efficacy. These target site-based resistance mechanisms have been found in
many fungi with resistance to various fungicides belonging to different chemical classes [4].
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While the structural change of target sites is typically due to mutations in residues involved
in the binding site, overexpression of the target sites oftentimes results from the rearrange-
ment or mutations in its promoter region [4-6]. In either case, the resistance is considered
to be linked to a single genetic locus and heritable, and is named qualitative resistance.
The level of resistance is largely determined by specific mutations or the expression level
of a given target site [5,7]. In contrast, resistance can also be attributed to other factors or
mutations in multiple loci, termed quantitative resistance [8]. In addition, other terms such
as innate or natural resistance and epigenetic resistance are used to describe certain fungal
species that are insensitive to a given fungicide and transient resistance mediated by gene
regulation, respectively [9,10]. However, some of these alternative mechanisms of resis-
tance have not been well studied, although field-resistant isolates that lacked mutations
or had similar expression levels of target sites compared to sensitive isolates have been
reported across pathosystems [9,11-14].

The recent advancements in genome sequencing, bioinformatics, and gene manipu-
lation have greatly improved our capability to address limiting factors in understanding
resistant genotypes beyond target sites. The purpose of this review was to summarize
the known mechanisms that are not linked to target sites, in the hope of inspiring more
efforts into the exploration of unknown molecular bases of fungicide resistance. Specifically,
alternative mechanisms involving drug efflux transporters, standing genetic variations,
metabolic breakdown and circumvention, SNPs, RNAi-based epimutation, as well as
mutator genotypes were discussed.

2. Resistance Mediated by Drug Efflux Transporters

Many studies have shown associations between enhanced activity of efflux trans-
porters and emergence of resistance in a wide range of fungal pathogens [15-18], indicating
efflux transporters may have a common and critical role in fungicide sensitivity. In addi-
tion, simultaneous resistance to multiple chemical classes of fungicides was found to be
attributable to overexpression of efflux pumps in some important fungal pathogens. In this
section, the general role of drug efflux transporters and the key members that have been
linked to fungicide resistance were reviewed.

2.1. Drug Efflux Transporter in Fungi

In all living organisms, drug efflux transporters are integral membrane-bound proteins
that transport a wide range of substrates, such as protein macromolecules, ions, or small
molecules across a biological membrane [19]. Thus, they can mediate the efflux of a variety
of toxic substrates from the cell, preventing toxin accumulation. In fungi, toxins can be
self-produced or come from the environment. Synthetic fungicides are typically regarded as
toxins to fungal populations, of which the efficacy can therefore be affected by the activity of
drug efflux transporter. Two major groups of drug transporters have been characterized in
fungi, including ATP-binding cassette (ABC) transporters and major facilitator superfamily
(MFS) transporters.

The ABC superfamily is the dominant drug transporter, consisting of a transmem-
brane domain (TMDs) and a structurally conserved nucleotide-binding domain (NBDs)
(Figure 1A,C). One important property of ABC transporters is their low substrate speci-
ficity, which allows them to transport a variety of structurally different compounds [20].
Based on the “architectures” of the protein, the ABC transporters were grouped into seven
sub families (A-G). Unlike ABC transporters that export toxic compounds by tight coupling
of ATP cleavage, the MFS transporters transfer compounds by the proton-motive force
across the fungal plasma membrane (Figure 1B). In total, the MFS transporters contain
74 families, with each usually responsible for a specific substrate type [21]. Table 1 lists
the ABC and MFS transporters currently identified in phytopathogenic fungi. The known
functions of MFS transporters include drug efflux systems, transfer endogenously pro-
duced toxins, metabolites of the Krebs cycle, organophosphate /phosphate exchangers, and
bacterial aromatic permeases [19].
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Figure 1. Biological structures of ATP-binding cassette (ABC) and major facilitator superfamily
(MFS) transporters. (A) Domain arrangements of ABC transporters in the plane of the membrane;
(B) working model of MFS transporter in the plane of the membrane; (C) schematic of “normal”
arrangement of transmembrane domain (TMD), nucleotide-binding domain (NBD): Example of the
ABC-G and ABC-B families.

Table 1. ABC and MFS transporters identified in plant pathogenic fungi 2.

. . . Fungicide
Species Host Protein Group Function Substrate Reference
Fusaritim Cereals FcABC1 ABC.G  Virulence fungicide DMIs [22,23]
culmorum sensitivity
Fusarium Fungicide sensitivity;
. Wheat FgABCC9 ABC-C growth and DMlIs [24]
graminearum -
pathogenicity
F. graminearum Wheat FgARB1 ABC-F Penetration; infection; n.d. [25]
growth
F. graminearum Wheat FgABC1 ABC-C Secretion of fung.al n.d. [26]
secondary metabolites
F. graminearum Wheat FgABC3 ABC-G Vlrulence., fun gicide DMIs [26]
sensitivity
F. graminearum Wheat FgATM1 ABC-B Iron homeostasis n.d. [27]
) FgABC1 .
F. graminearum Wheat (FGSG._04580) ABC-G Virulence n.d. [28]
Fusarium Potato GpABC1 ABC-G Virulence n.d. [29]
sambucinum
Nectria Pea NhABC1 ABC-G Virulence nd. [30]
haematococca
Grosmunma Pine trees GcABC1 ABC-G Virulence n.d. [31]
clavigera
Mag fyaf :erthe Rice MoABC1 ABC-G Pathogenicity n.d. [32]
. . e Blasticides, DMIs,
M. oryzae Rice MoABC2 ABC-G Multidrug sensitivity antibiotics [33]
M. oryzae Rice MoABC3 ABC-B I“fecf“"“ structure n.d. [34]
ormation
M. oryzae Rice MoABC4 ABC-A Pathogenicity n.d. [35]
M. oryzae Rice MoABC5 ABC-C Pathogenicity n.d. [36]
M. oryzae Rice MoABC6 ABC-C Hyphal growth n.d. [36]
M. oryzae Rice MoABC7 ABC-C Conidiation n.d. [36]
Botrytis cinerea Fruits, vegetables BcATRA ABC-G Multidrug transporter ~ Cycloheximide, catechol [37]
B. cinerea Fruits, vegetables BcATRB ABC-G  Multidrug sensitivity PPs, MBCs, APs, [15]

tolnaftate
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Table 1. Cont.

. . . Fungicide
Species Host Protein Group Function Substrate Reference
Dicarboximides, SDHISs,
B. cinerea Fruits, vegetables BcMFSM2 MFS Multidrug sensitivity ~ tolnaftate, APs, PPs, KRlIs, [15]
DMISs, cycloheximide
B. cinerea Fruits, vegetables BcMFS1 MFS Multidrug sensitivity DMlIs [38]
B. cinerea Fruits, vegetables BcATRD ABC-G Fungicides sensitivity DMIs [39]
hSclerotmm Turf grass ShATRD ABC-G Fungicides sensitivity DMIs [40]
omoeocarpa
l;e‘m‘czlllum Citrus PMR1 ABC-G Fungicides sensitivity Azole [41]
igitatum
P. digitatum Citrus PMR5 ABC-G  Multidrug sensitivity MBCs, quinone, [17]
resveratrol, camptothecin
P. digitatum Citrus PAMFS1 Mps ~ ungicides sensitivity; DMIs [18]
virulence
Zymoseporia Wheat MgATR1 ABC.G ~ [ransportationof DMIs [42]
tritici various chemicals
Z. tritici Wheat MgATR2 ABC-G ~ ransportation of DMIs [42]
various chemicals
Virulence factor that
Z. tritici Wheat MgATR4 ABC-G affects colonization, DMIs [43]
fungicides sensitivity
Z. tritici Wheat MgATR7 ABC-G Iron homeostasis n.d. [44]
Clonostachys rosea Soil-borne CrABCG29 ABC-G H,0, tolerance nd. [45]
saprotroph
Asexual and sexual
. development;
Colletotrl;hym Apple CgABCF2 ABC-F appressorial n.d. [46]
gloeosporioides £ S
ormation; plant
infection
) Hyphal morphology;
‘;l‘?”‘ff"”,“h”m Arabidopsis thaliana ChMEFS1 MFS conidiation; nd. [47]
igginsianum .
pathogenicity
Colletotrichum Hot pepper CaABC1 ABC-G Cg;é‘:?:ﬁﬁ;ﬁaiﬁﬁc Phosphorothiolates, Qols, 48]
acutatum pepp ; muthdrug MBCs
sensitivity
Gibberella pulicaris Potato GpABCl1 ABC-G Virulence n.d. [29]
. Cellular resistance to .
Alternaria Citrus AaMFS19 MFS oxidative stress and Clot.rlmazol‘e » PPs, [49]
alternata . . Inorganics
fungicides
CB'VCO'SP ora Tobacco CTB4 MFS Virulence n.d. [50]
nicotianae
Monilinia Peach MFABC1 ABC-G  Fungicides sensitivity DMIs [51]
fructicola

2 According to previous publications. DMIs: Demethylation inhibitors; MBCs: Methyl benzimidazole carbamates; APs: Anilino-pyrimidines;
PPs: Phenylpyrroles; Qols: Quinone outside inhibitors; KRIs: Ketoreductase inhibitors; SDHIs: Succinate dehydrogenase inhibitors; n.d.:
Not determined.

2.2. ABC/MFS Genes in Plant Pathogenic Fungi

Overall, ascomycetes, zygomycetes, and basidiomycetes tend to have a significantly
smaller number of ABC superfamily proteins and MFS transporters, compared to oomycetes
and ancient Chytridiomycota [52]. In ascomycetes, approximately 40 to 50 ABC trans-
porters and over 200 MFS transporters have been revealed, with 100 MFS transporters
more or less belonging to the multidrug resistance (MDR) proteins [16,52,53]. For example,
50, 44, and 54 genes were predicted to be ABC transporters in Magnaporthe oryzae, Botrytis
cinerea, and Fusarium spp., respectively [26,52,54]. A total of 229 putative MFS transporter
genes and 44 putative ABC transporter genes were identified from the Zymoseptoria tritici
IPO323 genome database available at the JGI database (www.jgi.doe.gov) [55].

Some ABC transporters have been functionally characterized from plant pathogenic fungi
(Table 1), yet the role of most remains unknown. Studies of ABC transporters in plant pathogens
are often focused on their involvement in the development of multi-fungicide resistance, such
as the BcATRB and the BcATRD in B. cinerea [39,56], and the PMR1 and PMRS5 in Penicillium
digitatum [17,57]. In addition, some ABC transporters have been associated with plant patho-
genesis, presumably due to the export of plant defense compounds [58] (Table 1). With regard
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to MFS transporters, they are generally less understood compared with ABC transporters. The
constitutive overexpression of MFS genes in several fungi have been shown to cause MDR
phenotypes, including the MgMFS1 in Z. tritici [16], the PAMFS]1 in P. digitatum [18], and the
BcMFSM2 in B. cinerea [15]. The deficiency of some MFS transporters was found to be linked with
increased sensitivity to a variety of chemicals, confirming their roles in MDR. Similarly, MFSs in
plant pathogens can secrete host-specific toxins, affecting plant pathogenesis [52] (Table 1).

2.3. Efflux Transporter-Mediated Mechanisms of Fungicides Resistance

In phytopathogenic fungi, the first MDR phenotype was described in P. digitatum iso-
lates from lemon fruit, which showed resistance to DMI fungicides including triflumizole,
fenarimol, bitertanol, and pyrifenox [41]. Thereafter, field-relevant resistance to multiple
chemical classes of fungicides were found in isolates of Z. tritici [16], B. cinerea [15], Oculi-
macula yallundae [59], Sclerotinia homoeocarpa [40], and Penicillium expansum [60]. Although
exact mechanism(s) of MDR remained unknown in some pathogens (e.g., O. yallundae), it
was typically caused by the overexpression of certain efflux transporters.

2.3.1. Expression of Efflux Transporters

The majority of efflux transporters are silent or weakly expressed in the absence of
toxic compounds, but their expressions can be rapidly induced by the addition of those
drugs or phytoalexins [8]. Further, fungal sensitivity to antifungal agents could increase
significantly without functional efflux transporters [61]. Although the expression of efflux
transporters could be induced in as short as 10 to 15 minutes, this “lag period” seems to be
sufficient for toxins to diffuse into fungal cells, leading to growth inhibition. However, if
the transporters regulating fungal sensitivity are expressed constitutively, the drug uptake
would be blocked and the resistance is thus conferred [20].

The constitutive overexpression of ABC transporter BcCATRB and MFS transporter
BcMFSM2 causing MDR phenotypes has been discovered in B. cinerea. Specifically, overex-
pression of BcATRB was found to confer resistance to fludioxonil, carbendazim, cyprodinil,
and tolnaftate, and the associated phenotype was termed MDR1, whereas the phenotype
displaying resistance to iprodione, boscalid, tolnaftate, cyprodinil, fludioxonil, fenhexamid,
tebuconazole, bitertanol, and cycloheximide, caused by overexpression of BE(MFSM2, was
defined as MDR2 [15]. In addition, the natural hybridization of MDR1 and MDR?2 was also
revealed, designated as the MDR3 phenotype, which showed a combined resistance profile of
MDR1 and MDR2 phenotypes [15]. Later on, a stronger MDR1 phenotype strain, MDR1h,
with a higher expression level of the BcATRB was found to have more resistance to fludioxonil
and cyprodinil than the MDRI strains [62]. In Z. tritici, the causal agent of Septoria leaf blotch
on wheat, overexpression of the major facilitator gene MgMFS1 was linked to strong resis-
tance towards DMIs, and weak resistance towards Qols and SDHIs [63,64]. Disruption of the
Mgmfs1 gene increased its sensitivity to several chemicals, including tolnaftate, epoxiconazole,
boscalid [16], several Qols, and an unrelated compound cercosporin [65]. In P. digitatum, over-
expression of PMR1, PAMFS1, and PAMFS2 was correlated with complete or partial resistance
to triflumizole [41], imazalil [66], and prochloraz [67]. In S. homoeocarpa, reduced propicona-
zole sensitivity was identified from five New England sites during a 2-year field efficacy
study, with the ECsj values greater than 50-fold compared with those of the sensitive isolates.
The overexpression of the PDR (pleiotropic drug resistance) transporter ShATRD was found
to be strongly correlated with practical field resistance to propiconazole via transcriptomic
and molecular analyses. Overexpression of the target gene of DMIs, ShCYP51b, only presents
a minor factor affecting the sensitivity [40]. In addition to ShATRD, the overexpression of
ShPDR1 is also correlated with practical field resistance to DMI fungicide propiconazole and
reduced sensitivity to dicarboximide iprodione and SDHI fungicide boscalid [68].

2.3.2. Modulator

Compounds able to modulate the activity of ABC or MFS transporters may reverse
MDR, due to their inhibitory activity towards drug efflux from cells. Such compounds are
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usually called “modulators” or “inhibitors”. Among them, some modulators have been
tested for their activity in plant pathogenic fungi. For B. cinerea, the phenothiazine chlorpro-
mazine and the macrolide tacrolimus have modulator activity towards oxpoconazole [69].
In MDR?2 and/or MDR3 isolates, synergism was found between modulator verapamil and
tolnaftate, fenhexamid, fludioxonil, or pyrimethanil, suggesting that verapamil may inhibit
the MFS transporter B-MFSM2 [70]. Similar inhibitory activity of verapamil, amitriptyline,
and chlorpromazine toward the efflux was also observed in Z. tritici displaying MDR phe-
notype [16]. Whether modulators could be implemented for improving fungicide efficacy
under field conditions needs to be further investigated.

2.4. Genetic Factors Underlying Overexpression of Efflux Pumps
2.4.1. Transcription Factors

Two different mechanisms have been attributed to the overexpression of efflux pumps
that are responsible for fungicide resistance. The most common one is amino acid changes
in certain transcription factors that escalate expression levels of efflux pumps. As noted
above, all B. cinerea isolates with MDR1 phenotype possessed point mutations in the MRR1,
a transcriptional factor of BcATRB [15]. The mutations transform the transcription factors
from a drug-inducible state to a permanently active state, resulting in the overexpression of
an ABC transporter BcATRB. Transformation of the MDR1-type MRR1 confirmed that those
point mutations are responsible for permanent activation of MRR1 and overexpression
of BcATRB [15]. Furthermore, in MDR1h isolates, a deletion of 3-bp resulting in loss of
amino acid (L*”) in MRR1 caused overexpression of BcCATRB than MDR1 isolates. In S.
homoeocarpa, a gain-of-function mutation (M853T) in the activation domain of ShXDR1
renders constitutive overexpression of ABC transporters (ShPDR1 and ShATRD) and
several CYP450 genes (CYP561, CYP65, CYP68), leading to the MDR phenotype [71].
However, expression of ATRB or other ABCs may not be exclusively regulated by a single
transcription factor (e.g., MRR1) [72].

Interestingly, both MRR1 and ShXDR1 contain a Zny;Cysg domain. Similarly, Wang
et al. showed that MoIRR encoding a Zn,Cysg transcription factor is associated with resis-
tance in M. oryzae to isoprothiolane, a dithiolane fungicide used for rice blast control [73].
Mutations including R343W, R345C, and a 16-bp insertion in MoIRR were found in three
lab mutants of M. oryzae with a moderate level of isoprothiolane resistance. In addition,
cross-resistance with iprobenfos was observed, indicating that MoIRR may pay a significant
role in resistance to choline biosynthesis inhibitors [73]. However, whether MoIRR regu-
lates efflux pump(s) and whether those mutations may lead to differential expressions of
other genes in the same mutants is largely unknown [74]. Transcription factors or activators
containing fungal-specific Zny-Cysq DNA-binding domain were also found to contribute
to DMI fungicide resistance in Rhynchosporium commune [75]. Apart from Zn,Cysg, leucine
zipper transcription factors CaBEN1 and YAP 1, and zinc finger CRZ 1 have been involved
in resistance or reduced sensitivity to benomyl in Colletotrichum acutatum [76], to several
fungicide groups (i.e., clotrimazole, fludioxonil, vinclozolin, and iprodione) in Alternaria
alternata [77], and to DMlIs in P. digitatum [78], respectively. Collectively, these examples
suggest that transcription factors may play a critical role in mediating fungicide resistance
via regulating drug efflux pumps in most cases.

2.4.2. Promoter Rearrangement

The insertion in the promoter region of an efflux transporter has also been reported to
cause MDR. In B. cinerea, two types of rearrangements in the promoter region of BcMFSM2
were correlated with multidrug resistance. In the type A rearrangement, the BA(MFSM2
promoter contained a 1326-bp insertion in conjunction with a 678-bp deletion. The type
B rearrangement contained a 1011-bp insertion and a 76-bp deletion [79]. The MDR2 and
MDR3 strains with the type A insertion occurred in the French (in Medoc, Champagne,
Alsace regions), and German Wine Road regions, while the type B insertion was only found
in the champagne region of France. MDR? isolates harboring either the type A or type B
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rearrangement showed the same resistance phenotypes, with similar levels of BcMFSM2
overexpression [79]. Constitutive activation of the BE(MFSM2 promoter by the rearrange-
ment was confirmed by using reporter gene fusions [15]. Similarly, three different types of
insertion (types I, 11, or III, depending on the length of the insertion in the MFS1 promoter)
have been reported to be present in the promoter region of the MgMFS1 promoter in Z.
tritici. Through gene replacement, the insertions were verified to be responsible for MgMFS1
overexpression and the MDR phenotype [64]. The type I insertion was a long terminal repeat
(LTR)-retrotransposon that could drive MgMFS1 expression by itself, as LTR elements typi-
cally contain cis-regulatory sequences. The type II insertion also possess similar upstream
activation sequences (UASs), while the type Il insert seemed devoid of regulatory elements.
All those insertions resulted in the overexpression of MgMFS1, and thus cause MDR [64].

3. Standing Genetic Variation

Standing genetic variation typically refers to the presence of alternative forms of a gene
(i.e., alleles) at a given locus in a population [80]. When environmental conditions change,
the alternative allele may become beneficial. Thus, in addition to de novo mutations that
subsequently sweep through the population, a fungal pathogen can possibly adapt to
a new fungicide using alleles originating from the standing genetic variations [81]. In
this review, heteroplasmy was also considered in the broad context of standing genetic
variation. Up to date, resistance attributed to allele or gene variants is mostly documented
for DMI fungicides, while the heteroplasmy phenomenon was found to be associated with
resistance to Qol fungicides.

3.1. Paralogs of CYP51 and Its Mediated DMI Sensitivity

CYP51, as the target of DMI fungicides, mediates a critical step of the synthesis of
ergosterol, which is a fungal-specific sterol [82]. Multiple CYP51 paralogs have been found in
ascomycete fungi. For example, two paralogs, CYP51A and CYP51B, were found in some
Aspergillus species [83], Colletotrichum species [84], and M. oryzae [85], while Fusarium species
possess three CYP51 paralogs [86]. Among CYP51s, CYP51B is considered the most conserved
across ascomycetes, and CYP51A has been lost from multiple lineages [86,87]. It is noteworthy
that a single paralog is typically not essential for fungal growth or infection when multiple
paralogs exist, and only simultaneous inactivation of all paralogs is lethal [82,88].

Because protein structures are somewhat variable among CYP51s, the binding affinity
of specific DMIs to the protein may therefore vary, which in term can result in selection
for resistance in some populations with off-target CYP51 variants. Liu et al. showed that
sensitivity to more DMI fungicides increased in CYP51A deletion mutants than CYP51C
mutants, while no change in DMI sensitivity was observed for CYP51B deletion mu-
tants [89]. Similarly, disruption of CYP51A in A. fumigatus [90] and F. graminearum [91] led
to increased DMI sensitivity. Interestingly, Hawkins et al. showed that the re-emergence
of CYP51A in the barley pathogen R. commune is responsible for resistance to various
DMIs [87], and that the link between resistance and presence of CYP51A was observed
in the global populations [92]. In some cases, CYP51 variants present in the same species
could both mediate DMI sensitivity. Chen et al. reported that the disruption of CYP51A led
to increased sensitivity to eight of nine DMIs tested in both C. fioriniae and C. nymphaeae,
while disruption of CYP51B made mutants increasingly sensitive to five DMIs, suggest-
ing species-specific, differential binding of DMI fungicides onto the two CYP51 enzymes.
However, mutants expressing CYP51B largely had similar sensitivities to all fungicides
tested regardless of species, suggesting a greater impact of CYP51A on DMI sensitivity due
to its less conserved nature [84].

It was believed that CYP51A /B may have undergone a neofunctionalization process,
where CYP51A gains novel functions through gene duplication and diversification while
CYP51B retains the ancestral function [93]. As noted, CYP51 paralogs have been found
in some fungal pathogens, for which use of DMIs may present a challenge. For instance,
multiple Colletotrichum spp. are oftentimes involved in anthracnose disease in the same
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crop [2], where both paralogs especially CYP51A can be highly diverse, causing differential
sensitivity among the species to a wide range of DMIs [94,95]. However, interestingly,
mixing DMIs with different blinding affinities onto the two paralogs can result in synergistic
effects [84], shedding light on the novel use of DMI fungicides.

3.2. Qol Resistance due to Mitochondrial Heteroplasmy

Unlike nuclear genomes, multiple types of mitochondrial genomes can exist within
a cell, termed mitochondrial heteroplasmy. This has been widely demonstrated in many
eukaryotes that include fungi [96], and may confer a selective advantage under con-
stantly changing environmental conditions [97]. Qol fungicides act to block the electron
transfer in the respiration process, via binding the outer quinone oxidizing pocket of the
cytochrome bcj enzyme complex, which is encoded by the mitochondrial cytochrome b
(CYTB) gene [98]. Zheng et al. showed the CYTB heteroplasmy in the apple scab pathogen
Venturia inaequalis, where Qol-resistant mutants had both the wild-type genotype (G143)
and resistant genotype (A143), and mitochondria-containing wild-type CYTB returned
to high frequency during just two rounds of cultivations in the absence of kresoxim-
methyl [99]. The heteroplasmic CYTB was also found in the field population of V. inaequalis
and a high relative abundance of the A143 allele (>60%) was linked to the isolates highly
resistant to trifloxystrobin [100]. Similar results were also observed in some powdery
mildew fungi [101]. In some cases, the CYTB gene could remain heteroplasmic even af-
ter several years of cultivation without fungicide treatment [102]. But the frequency of
the resistance-conferring A143 allele could also be dependent on the fungicide selection
pressure, implying fitness costs in individual isolates [103].

Despite that Qol resistance due to mitochondrial heteroplasmy has been documented
in many plant pathogens, the relative abundance of the A143 required to become a resistant
phenotype seemed to vary greatly between species. Moderate resistant V. inaequalis isolates
rarely contained A143 more than 8%, and only the G143 allele was detected by regular PCR
and Sanger sequencing [100]. In Blumeria graminis, the lowest frequency of A143 detected in
resistant isolates tested was 24% [103]. In contrast, Podosphaera xanthii isolates could harbor
as much as 60% resistant allele, yet were sensitive to Qols [104]. More studies aiming to
understand the correlation between resistance level and frequency of A143 in relation to
fitness costs are needed.

4. Detoxification

Pesticides can be detoxified by oxidation, reduction, or hydrolysis to give modified
functional groups that are conjugated for excretion or deposition [105]. Some studies have
suggested a three-phase system of xenobiotic-induced transcriptional regulation of the
enzymes in mammals and arthropods, including phase I metabolizing enzymes such as
cytochrome P450s, cytochrome P proteins, and monooxygenases, phase II conjugating
enzymes such as sulfotransferase and glutathione S-transferase, and the phase III secretion
system that consists of transmembrane transporters such as ABC transporters [71,106,107].

There have been some cases where detoxification or resistance development involved
enzymes of these phases, such as overexpression of ABCs or MFSs described above. Addi-
tionally, in the Mycobacterium sp. strain SD-4, a hydrolase gene MHEL (phase I enzyme)
was found to be capable of degrading the carbendazim (MBC) fungicide. The site-directed
mutation experiment subsequently demonstrated that both Cys16 and Cys222 in MHEL
were critical during the hydrolysis of MBC [108]. In Botrytis pseudocinerea, a cytochrome
P450 monooxygenase CYP684 (phase I enzyme) was responsible for its natural resistance
to the hydroxyanilide fungicide fenhexamid through oxidation. Interestingly, B. cinerea is
highly sensitive to fenhexamid, although CYP684 is present in its genome that is closely
related to B. pseudocinerea. Overexpression of CYP684 in B. pseudocinerea was revealed,
presumably due to a 25-bp deletion in the promoter or a 10-bp insertion in the 3’ UTR of the
gene [109]. In fact, P450-mediated resistance is considered a common type of metabolism-
based resistance to insecticides [110], and has been associated with resistance in Pyricularia
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oryzae to phosphorothiolate fungicides [111]. For multi-site fungicides such as captan,
reaction with non-essential thiol derivatives (phase II enzymes) has been suggested as
a possible mechanism for detoxification [112]. More recently, Sang et al. reported that
overexpression of phase I cytochrome P450s and phase III ABCs was regulated by a gain-of-
function mutation of the transcription factor ShXDR1 in MDR isolates of S. homoeocarpa [71].
In this case, it could also be regarded as a drug efflux pump involved mechanism, although
the extent to which the ABCs contributing to MDR phenotype was not clear. A better
understanding of interaction between different detoxification phases in fungi will allow for
an improved classification of resistance mechanisms.

5. Regulation of Stress Response Pathways

The members of group III hybrid histidine kinases (HHK) function as osmosensors in
the high osmolarity glycerol (HOG) pathway that regulates response to environmental stress
in fungi [113]. Because HHKSs are not found in humans, they are considered an excellent
molecular target for fungicides [114]. Phenylpyrroles, including fludioxonil and fenpiclonil,
are derivates of the natural product pyrrolnitrin and have been widely used for disease
control on many crops [115]. Phenylpyrroles have been found to interfere with the HOG
pathway [116]. However, the target of phenylpyrroles is not very clear. Lawry et al. [117]
demonstrated that fludioxonil failed to induce intact DRK 1 (a group III HHK from Blasto-
myces dermatitidis), to dephosphorylate its downstream target YPD1 in vitro, which would
otherwise constitutively activate HOG signaling and cause cell death in vivo. This suggested
that fludioxonil treatment may act on an upstream target that triggers HHK to become a phos-
phatase, which dephosphorylates YPD1 [117]. The same group later reported that fludioxonil
interferes with triosephosphate isomerase (TPI), causing release of methylglyoxal (MG). The
elevated MG likely in turn alters DRK1 activity via converting the kinase to a phosphatase
that dephosphorylate Ypd1 to activate the HOG pathway and cell death [118]. Nevertheless,
it has been found that mutations in several osmotic sensitivity loci such as OS1, OS2, and OS5
can cause resistance to fludioxonil and increased sensitivity to high osmolarity in different
fungal pathogens [116,119-121], suggesting that certain fully functional loci in the HOG
pathway may be essential for both the fungicidal effect and osmoregulation [116,120]. Bohnert
et al. [122] identified and characterized a HOG1p-interacting phosphatase gene MoPTP2 in
M. oryzae causing a rice blast, which can confer resistance to fludioxonil via overexpression.
Similar to phenylpyrroles, dicarboxamide fungicides seem to also interfere with HOG path-
way, and mutations in the same osmotic sensitivity loci oftentimes lead to dual resistance to
both dicarboxamides and phenylpyrroles [116,119,120,123].

Fludioxonil is primarily used for Botrytis control in many small fruits and vegetables.
Interestingly, field isolates showing resistance were mainly caused by mutations in MRR1
that regulates ATRB expression [62,72,124], despite that OS1 mutation(s) confer much
higher level of resistance [119]. In fact, the os1 mutations were typically found respon-
sible for fludioxonil resistance in laboratory mutants that had fitness costs compared to
wildtype [119,125,126]. In contrast, the MDR phenotype of Botrytis isolates, conferred by
overexpression of ATRB, dominated the population in a blackberry field over three years
without fungicide selection pressure [127].

6. Other Alternative Resistance Mechanisms

Additional but less common non-target site mechanisms have also been reported, with most
described for specific chemical groups or rather involving multiple genetic loci. For example, Qol
resistance could also be associated with alternative oxidase (AOX). This is because the inhibition
of the core pathway by Qols may trigger the synthesis of alternative oxidase (AOX) to allow
electrons from ubiquinol to bypass complex III, thus providing a Qol-insensitive pathway for
oxidation of NADH [128]. Previous studies have suggested that AOX may contribute to Qol-
resistance in several plant fungal pathogens [129-134]. A comprehensive review is also available
regarding the role of AOX and its interaction with Qols [128]. While alternative respiration
can counteract the effect of Qols, it would provide only 40% of the normal efficiency for ATP
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synthesis, due to the fact that complexes Il and IV in the core pathway are bypassed and AOX
lacks proton pump activity [135], which may be insufficient to support the ATP consumption
during spore germination and host penetration. This implies that Qols would be most effective
against fungi during the pre-infection stage. Once infection has been established, the activation
of the alternative pathway may significantly impact the efficacy of Qols. Similar metabolic
circumvention has also been associated with resistance in basidiomycete fungus Ustilago maydis
and yeast to DMI fungicides, where altered sterol metabolism was observed to overcome the
block of 14c-de-methylase and support fungal growth [136-138].

Unlike qualitative factors contributing to fungicide resistance where mutations are
typically identified in single loci, multiple loci mutations have also been correlated with
resistance. Examples include resistance to anilinopyrimidine (AP) fungicides in Botrytis
isolates, in which nine individual genes involved in mitochondrial processes seemed to
contribute to resistance, with Bc(MDL1 carrying the E407K mutation and BcPOS5 carry-
ing the L412F mutation as the major factor [139]. Another example is DMI resistance in
Phaeosphaeria nodorum isolates, where 34 candidate loci, including the target CYP51, were
found in the genome, underlying quantitative variation in DMI sensitivity across popula-
tions [140]. Similar results were also found in the barley scald pathogen R. commune, which
demonstrated that highly conserved genes yocl, ta, and SDH made significant contributions
to fungicide resistance in addition to CYP51A [75]. Furthermore, two loci that possibly
contain a large number of transposon-related sequences were found to be associated with
mefenoxam sensitivity in Phytophthora infestans [141]. Two non-target recessive genes in
Phytophthora capsici were also believed to confer resistance to zoxamide [142].

The complexity of genomic pathways in diverse fungal populations has allowed
them to respond and adapt to fungicides in multiple ways. Overall, to the best of our
knowledge, there are at least nine non-target site mechanisms that can cause resistance
to various chemical classes of fungicides (Figure 2). Remarkably, resistance caused by
increased activity of drug efflux pumps has been characterized in a wide range of fungal
pathogens for all major chemical classes, indicating its common role in resistance evolution.
Other above-mentioned mechanisms such as detoxification, stress response pathway, and
transcription factors have also been found for at least one chemical class. Evolution of DMI
resistance seems to be the most diverse, presumably due to its long and frequent use at
both agricultural fields and clinics [3].
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Figure 2. Non-target site mechanisms of resistance to major classes of fungicides used for crop disease
management. Each circle with different colors represents a chemical class, whereas symbols within circles
each represent a resistance mechanism as shown in the figure. DMIs: Demethylation inhibitors; MBCs:
Methyl benzimidazole carbamates; APs: Anilino-pyrimidines; PPs: Phenylpyrroles; Qols: Quinone
outside inhibitors; KRIs: Ketoreductase inhibitors; SDHIs: Succinate dehydrogenase inhibitors.

7. Notable and Novel Mechanisms of Antifungal Resistance in Human Pathogens

Use of fungicides in both clinics and agricultural fields has resulted in similar adap-
tations across phytopathogenic and clinical fungi over time, with the same or similar
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key resistance mechanisms such as target-site mutations, enhanced efflux pump activity,
and activation of stress response pathways [3,143]. Given such similarity in evolution
of fungicide resistance, our intent under this section was to highlight unique and novel
molecular bases characterized in clinical fungi, to shed light on the exploration of unknown
mechanisms of resistance in plant fungal pathogens.

7.1. Acquisition of Resistance via Epigenetic Mechanisms

Stability of fungicide resistance has been a key component in understanding fungicide
resistance, especially when a new resistance is detected in a given fungus. While multiple mech-
anisms, as mentioned above, have been identified underlying stable resistance in most cases,
mechanisms of transient or unstable resistance have yet to be described in phytopathogenic
fungi despite such phenotypes or phenomena being commonly encountered under both lab
and field conditions [144,145]. One possible mechanism of transient resistance is RNAi-based
epimutation which was first discovered in the basal human fungal pathogen Mucor circinelloides
with resistance to the antifungal agent FK506 [146]. The drug target peptidylprolyl isomerase
FKBP12 was shown forming a complex to inhibit calcineurin. Intriguingly, RNAi was found
to be spontaneously triggered to silence the FKBA gene encoding FKBP12, leading to the loss
of the drug target, and thus the acquisition of resistance. These FK506-resistant epimutants
were found to readily revert to a sensitive phenotype following several passages on FK506-free
medium. Further, a reverted strain yet again was able to yield resistant epimutants at the same
frequency [146]. Remarkably, a similar epigenetic mechanism was found to confer transient
resistance to another chemical class of antifungal drug 5-fluoroorotic acid (5-FOA) by silencing
the PYRF or PYRG encoding enzymes in the pathway of pyrimidine biosynthesis that converts
5-FOA into the active toxic form [147]. These novel findings indicate that RNAi-based epimuta-
tion may serve as an important mechanism for fungal pathogens to adapt to antifungal agents.
A detailed review regarding epimutation-mediated drug resistance can be found in Chang
et al. [10], which also covered chromatin-based forms of epigenetic resistance that described in
C. albicans and other human pathogens.

7.2. Mutator Genotype Accelerates Resistance Adaptation

Genetic mutation plays a key role in the development of resistance to antifungal agents
or antibiotics, and phenotypes exhibiting elevated mutation frequencies could therefore
lead to higher rate of emergence of resistance [148]. However, because mutations can
have lethal consequences, organisms have a range of repair systems to maintain their
genome fidelity and stability. Thus far, two major DNA repair pathways in fungi including
methyl-directed mismatch repair (MMR) and double-strand break repair (DSBR) have been
associated with the mutator phenotype in which the rate of spontaneous mutation is greatly
elevated [149]. Healey et al. [150] reported that a mutation or disruption of MSH2, an MMR
gene, led to an increased rate of emergence of multiple antifungal resistance in Candida
glabrate. It is noteworthy that these mutator phenotypes facilitated resistance development
in an indirect way that led to increases in resistance-conferring mutations. For example, the
MSH?2A strain yielded a higher frequency of resistant offspring to echinocandin and all of
those resistant MSH2A colonies had a mutation in either FKS1 or FKS2, which represents
the primary mechanisms of resistance to this chemical class of antifungal drugs [150].
Similar mutator phenotype was also observed in Cryptococcus neoformans, in which the
elevated rates of mutations were attributed to MMR genes MSH2, MSH5, and RADS5 [151].

Development of multifungicide resistance in fungi is believed to be via indepen-
dent rounds of selection, which is supported by accumulation of mutations in the target
genes causing resistance to respective fungicides [152-154]. Interestingly, there are solid
field-evidences that showed a predisposition to selection for resistance in isolates that
were already resistant to an unrelated fungicide [155,156]. This phenomenon implies that
fungi might not only be selected for resistance, but also for an increased genetic plasticity
that enables accelerated resistance development. Nevertheless, future studies aimed to
understand correlations between mutator genotypes and multifungicide-resistant pheno-
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types are of great interest, likely revealing biological mechanism(s) underlying stepwise
accumulation of resistance-conferring mutations in individual isolates.

8. Conclusions

The structural change of fungicide targets caused by amino acid mutations typically confers
much higher levels of resistance compared to other mechanisms, including those described
above. However, there are many cases where fungicides fail to effectively manage crop diseases
due to the emergence of resistance that is not linked to target sites, indicating the need for further
understanding the diversity of resistance mechanisms. Thus, these non-target site mechanisms
are not newly emerging threats but rather understudied. While a few mechanisms described
above such as altered sterol metabolism have only been described and characterized in lab
mutants, many others such as enhanced expression of drug efflux pumps and mutations in
transcription factors have been widely reported in field resistant isolates. Nevertheless, future
studies aiming to explore molecular bases of fungicide resistance, and assessing fitness costs
and inheritance of non-target site-based resistance in a wide range of fungal pathogens may
offer more insights into their impact on crop disease management.

Author Contributions: Conceptualization, M.H.; investigation, M.H. and S.C.; writing—original
draft preparation, M.H. and S.C.; writing—review and editing, M.H.; visualization, S.C. Both authors
have read and agreed to the published version of the manuscript.

Funding: Shuning Chen has a project through the National Natural Science Foundation of China,
grant number 32001945.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Note: specific genes are not included.

Abbreviation Definition

ABC ATP-Binding Cassette

AP Anilinopyrimidine

DMIs Demethylation Inhibitors

DSBR Double-Strand Break Repair

FOA Fluoroorotic Acid

HHK Histidine Kinases

HOG High Osmolarity Glycerol

LTR Long Terminal Repeat

MBC Methyl Benzimidazole Carbamates
MDR Multiple Drug Resistance

MFS Major Facilitator Superfamily

MG Methylglyoxal

MMR Methyl-directed Mismatch Repair
NDAH Nicotinamide Adenine Dinucleotide
NBD Nucleotide-Binding Domains

PDR Pleiotropic Drug Resistance

PPs PhenylPyrroles

Qols Quinone outside Inhibitor

SDHIs Succinate Dehydrogenase Inhibitor
SNP Single Nucleotide Polymorphisms
TPI Triosephosphate Isomerase

TMD Transmembrane Domain

UAS Upstream Activation Sequences

UTR Untranslated Region
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