

Supplementary Materials: Gut Microbiota Profile and Changes in Body Weight in Elderly Subjects with Overweight/Obesity and Metabolic Syndrome

Alessandro Atzeni, Serena Galié, Jananee Muralidharan, Nancy Babio, Francisco José Tinahones, Jesús Vioque, Dolores Corella, Olga Castañer, Josep Vidal, Isabel Moreno-Indias, Laura Torres-Collado, Rebeca Fernández-Carrión, Montserrat Fitó, Romina Olbeyra, Miguel Angel Martínez-González, Monica Bulló* and Jordi Salas-Salvadó *

line body mass index.		
	Differences in Chao1	
	Tertile 1	Tertile 2
Tertile 2	0.95 #	-
Tertile 3	0.95	0.95
	Differences in Shannon	
	Tertile 1	Tertile 2
Tertile 2	0.82	-
Tertile 3	0.82	0.82
	Differences in Simpson	
	Tertile 1	Tertile 2
Tertile 2	0.92	-
Tertile 3	0.92	0.92

Table S1. Differences in richness metrics, Chao1, Shannon and Simpson, between tertiles of baseline body mass index.

[#] False discovery rate *P*-value tested by Wilcoxon rank sum test.

Table S2. Differences in beta diversity distances, Bray-Curtis, Jaccard, Weighted Unifrac, Unweighted Unifrac, between tertiles of baseline body mass index.

		Differences	in Bray-Cur	tis distance					
	Df	Sums of Sqs	Mean Sqs	F.Model	R2	Pr(>F)			
Tertile	2	0.762	0.381	1.062	0.006	0.318			
Residuals	361	129.461	0.359		0.994				
Total	363	130.223			1.000				
Differences in Jaccard distance									
	Df	Sums of Sqs	Mean Sqs	F.Model	R2	Pr(>F)			
Tertile	2	0.863	0.431	1.033	0.006	0.323			
Residuals	361	150.728	0.417		0.994				
Total	363	152.591			1.000				
		Differences in	Weighted Ur	nifrac distance					
	Df	Sums of Sqs	Mean Sqs	F.Model	R2	Pr(>F)			
Tertile	2	0.004	0.002	0.633	0.003	0.535			
Residuals	361	1.267	0.003		0.996				
Total	363	1.271			1.000				
		Differences in U	J <mark>nweighted</mark> U	J <mark>nifrac distan</mark> c	e				
	Df	Sums of Sqs	Mean Sqs	F.Model	R2	Pr(>F)			
Tertile	2	0.218	0.109	0.904	0.005	0.716			
Residuals	361	43.552	0.121		0.995				
Total	363	43.770			1.000				

Df, degrees of freedom; Sqs, squares; Pr(>F), significance on F-test. Differences in beta diversity distances were tested using PERMANOVA test. Permutations: free; number of permutations 999; terms added sequentially (first to last).

Bray-Curtis distance										
	Df	Sum Sq	Mean Sq	F	N.Perm	Pr(>F)				
Groups	2	0.0002	0.0001	0.050	999	0.955				
Residuals	361	0.911	0.002							
Jaccard distance										
	Df	Sum Sq	Mean Sq	F	N.Perm	Pr(>F)				
Groups	2	0.00008	0.00004	0.044	999	0.953				
Residuals	361	0.316	0.0009							
		Weigh	ted Unifrac di	stance						
	Df	Sum Sq	Mean Sq	F	N.Perm	Pr(>F)				
Groups	2	0.0009	0.0004	0.439	999	0.644				
Residuals	361	0.357	0.001							
		Unweig	hted Unifrac o	listance						
	Df	Sum Sq	Mean Sq	F	N.Perm	Pr(>F)				
Groups	2	0.0005	0.0002	0.066	999	0.939				
Residuals	361	1.323	0.004							

Table S3. Variability in beta diversity distances among tertiles of baseline body mass index.

Df, degrees of freedom; Sq, square; N.Perm, number of permutations; Pr(>F), significance on F-test. Permutation test for homogeneity of multivariate dispersions performed to statistically test variability among groups. Permutation: free; number of permutations: 999; response: distances.

Table S4. Pairwise comparisons of baseline body mass index tertiles mean dispersion.

Bray-Curtis distance									
	Tertile 1	Tertile 2	Tertile 3						
Tertile 1	-	0.885 #	0.871						
Tertile 2	0.879	-	0.743						
Tertile 3	0.871	0.747	-						
	Jaccard distance								
	Tertile 1	Tertile 2	Tertile 3						
Tertile 1	-	0.823	0.929						
Tertile 2	0.838	-	0.769						
Tertile 3	0.931	0.768	-						
	Weighted Ur	nifrac distance							
Tertile 1 Tertile 2 Tertile 3									
Tertile 1	-	0.374	0.910						
Tertile 2	0.392	-	0.435						
Tertile 3	0.927	0.438	-						
	Unweighted U	Inifrac distance							
	Tertile 1	Tertile 2	Tertile 3						
Tertile 1	-	0.762	0.738						
Tertile 2	0.779	-	0.977						
Tertile 3	0.735	0.972	-						

[#] Observed P-value below diagonal. permuted *P*-value above diagonal, calculated using t-test performed on the pairwise group dispersions.

	Ν	Mean	Std dev	Min	Max
Log2_FB_ratio					
Tertile 1	121	0.861	1.388	-5.500	3.536
Tertile 2	122	0.864	1.298	-4.917	2.964
Tertile 3	121	0.915	1.310	-3.917	2.839
Log2_PB_ratio					
Tertile 1	121	-0.224	2.786	-11.459	10.071
Tertile 2	122	-0.146	2.543	-9.515	6.104
Tertile 3	121	-0.758	3.154	-12.788	5.687

Table S5. Results of log normalized *Firmicutes*-to-*Bacteroidetes* ratio and *Prevotella*-to-*Bacteroides* ratio between tertiles of baseline body mass index.

Log2_FB_ratio one-way ANOVA (F (2, 361) = 0.064, *P* = 0.938). Log2_PB_ratio one-way ANOVA (F (2, 361) = 1.388, *P* = 0.332).

Table S6. Results of log normalized *Firmicutes*-to-*Bacteroidetes* ratio and *Prevotella*-to-*Bacteroides* ratio between tertiles of changes in body weight after 12-month intervention.

	Ν	Mean	Std dev	Min	Max
Log2_FB_ratio					
Tertile 1	115	0.783	1.367	-2.96	5.22
Tertile 2	115	1.046	1.223	-2.74	4.21
Tertile 3	115	0.759	0.759 1.358		4.11
Log2_PB_ratio					
T. (1. 1	117	-0.280	2.756	-12.47	< 00
Tertile I	115	-0.289	2.756	-12.47	6.00
Tertile 2	115	-0.270	2.576	-12.70	6.06
Tertile 3	115	-0.295	2.778	-11.46	5.69
Delta_FB_ratio					
Tertile 1	115	0.041	1.404	-4.05	4.59
Tertile 2	115	-0.229	1.325	-7.16	2.44
Tertile 3	115	0.116	1.478	-6.86	3.83
Delta_PB_ratio					
Tertile 1	115	-0.164	3.297	-12.62	12.47
Tertile 2	115	0.034	2.838	-13.26	9.72
Tertile 3	115	0.293	3.399	-11.79	11.46
	111011		20 B 0400		

Log2_FB_ratio one-way ANOVA (F (2, 342) = 1.680, P = 0.188) Log2_PB_ratio one-way ANOVA (F (2, 342) = 0.003, P = 0.997). Delta_FB_ratio one-way ANOVA (F (2, 342) = 1.931, P = 0.147). Delta_PB_ratio one-way ANOVA (F (2, 342) = 0.598, P = 0.550).

ASV ID	baseMean	log2FoldC hange	lfcSE	stat	pvalue	padj	Genus			
T1 vs T2										
5b1b613f2b	1									
8a8224ffb8	10.099	29.200	3.568	8.185	2.7×10^{-16}	1.2×10^{-12}	Prevotella 2			
t4dt91585t										
76										
			T1 v	vs T3						
6c03f9ce7c										
4e3251103	0.442	21 623	3 585	6.032	1.6×10^{-9}	6.9×10^{-6}	Bacteroides			
817d98a64	0.112	21.023	5.505	0.052	1.0 / 10	0.9 / 10	Ductorolacis			
4563										
			T2 v	vs T3						
6c03f9ce7c										
4e3251103	0.442	20 027	3 540	8 153	2.8×10^{-17}	1.2×10^{-13}	Bacteroides			
817d98a64	0.442	29.921	5.540	0.455	2.8 × 10	1.2×10	Dacterolides			
4563										
5b1b613f2b										
8a8224ffb8	10.000	-18 876	3 5/1	-5.33	0.8×10^{-18}	2.1×10^{-14}	Provotalla 2			
f4df91585f	10.099	10.070	5.541	5.55	9.0 × 10	2.1 ~ 10				
76										

Table S7. Differential abundant ASVs, and correspondent assigned genera, identified by DESeq2 in gut microbiota, between tertiles of baseline body mass index.

lfcSE, log fold change Standard Error; stat, Wald test statistic; padj, Benjamini-Hochberg adjusted *P*-value.

Table 8. Differential abundant ASVs, and correspondent assigned genera, identified by DESeq2 in gut microbiota, between tertiles of changes in body weight after 12-month intervention.

ASV ID	baseMean	log2FoldCha nge	lfcSE	stat	<i>p</i> -value	padj	Genus		
T1 vs T2									
de204b44fc231cd40265 2f4d87380471	0.234	23.705	3.671	6.457	1.1×10^{-10}	7.3×10^{-7}	Prevotella 9		
d7cc2fea278ab0156b4e 6e72dcdbe327	0.103	22.482	3.671	6.123	9.2×10^{-10}	2.0×10^{-6}	uncultured		
c2a9c6e2349c0166d4d1 f321354baae3	0.095	22.355	3.671	6.088	1.1×10^{-9}	2.0×10^{-6}	Lachnospiracea e UCG-001		
733ac0a6c00a457793ea 9c9d1a428aa9	0.102	22.323	3.671	6.080	1.2×10^{-9}	2.0×10^{-6}	NA		
cc5d6923fc7f11241605 33a11bcfbb76	0.078	22.072	3.671	6.011	1.8×10^{-9}	2.5 ×10 ⁻⁶	Bacteroides		
5b1b613f2b8a8224ffb8f 4df91585f76	8.046	-18.829	3.670	-5.13	2.9×10^{-7}	3.3 ×10 ⁻⁴	Prevotella 2		
			T1 vs T	3					
de204b44fc231cd40265 2f4d87380471	0.234	24.512	4.303	5.697	1.2×10^{-8}	8.3×10^{-5}	Prevotella 9		
d7cc2fea278ab0156b4e 6e72dcdbe327	0.103	23.473	4.303	5.454	4.9×10^{-8}	1.2×10^{-4}	uncultured		
c2a9c6e2349c0166d4d1 f321354baae3	0.095	23.330	4.303	5.421	5.9×10^{-8}	1.2×10^{-4}	Lachnospiracea e UCG-001		
cc5d6923fc7f11241605 33a11bcfbb76	0.078	23.103	4.303	5.368	$7.9 imes 10^{-8}$	1.2×10^{-4}	Bacteroides		
733ac0a6c00a457793ea 9c9d1a428aa9	0.102	23.018	4.303	5.349	$8.8 imes 10^{-8}$	1.2×10^{-4}	NA		
d00c1161004d40e7b94b bbda74a867cf	0.355	22.966	4.303	5.105	3.3×10^{-7}	3.7×10^{-4}	Bacteroides		
			T2 vs T	3					

d00c1161004d40e7b94b bbda74a867cf	0.356	28.676	3.830	7.488	7.0×10^{-14}	1.2×10^{-10}	Bacteroides
5b1b613f2b8a8224ffb8f 4df91585f76	8.046	26.343	3.831	6.876	6.1 ×10 ⁻¹²	4.7×10^{-9}	Prevotella 2
c24bf620a7e511901684 4066114196fc	0.070	-23.898	3.832	-6.237	4.5×10^{-10}	1.7×10^{-7}	Sutterella
68ec1aefa0103ae766daf c814b38894b	0.142	-24.646	3.832	-6.432	1.3×10^{-10}	5.0×10^{-8}	Bacteroides
26cb357d46b7cb7c7fc6 0dec29530cba	0.077	-24.767	3.832	-6.464	1.0×10^{-10}	4.4×10^{-8}	Prevotella 2
89595c082e6cf4a47edb b41a7d13bd3a	0.095	-24.929	3.832	-6.506	7.7×10^{-11}	3.5×10^{-8}	Dialister
a10c31f88f53ba0b7319 de39d21e0ee6	0.099	-24.931	3.832	-6.506	7.7×10^{-11}	3.5×10^{-8}	Prevotella 9
21ab743a71ced7896203 e4bfeca1289f	0.113	-24.988	3.832	-6.521	6.7×10^{-11}	3.5×10^{-8}	Prevotella 9
579a75cbf324508b5a74 d6533dd9169c	0.181	-25.015	3.832	-6.528	6.6×10^{-11}	3.5×10^{-8}	Bacteroides
fb5d414fd6bd7d6dc753 f0b889a3c473	0.167	-26.198	3.832	-6.837	8.1×10^{-12}	5.0 × 10 ⁻⁹	Bacteroides
88bff18bedc7d38cd6ff3 b46201c90d0	0.167	-26.198	3.832	-6.837	8.1×10^{-12}	5.0 × 10 ⁻⁹	Bacteroides
a188c60c7eab567a12ae 4318c1a54694	0.107	-26.339	3.832	-6.874	6.2×10^{-12}	4.7 ×10 ⁻⁹	Bacteroides
9e7912a029eca5c8e694 a06acaa15ef3	0.111	-28.364	3.832	-7.4	1.3×10^{-13}	1.3×10^{-10}	Bacteroides
a58697475d24d4d265ea a922b346d6f5	0.088	-28.490	3.832	-7.435	1.0×10^{-13}	1.2×10^{-10}	Prevotella 2
4c6f7e347c7157738bafc b4ac98c385f	0.103	-28.547	3.832	-7.450	9.3×10^{-14}	1.2×10^{-10}	NA
eb1e06232c80ba2efd64 dfa172203d5c	0.171	-28.813	3.832	-7.520	5.5×10^{-14}	$1.2 imes 10^{-10}$	Prevotella 9
d49ea76b83aacea8576b fc30b28f0caa	0.165	-29.180	3.832	-7.615	2.6×10^{-14}	9.0×10^{-11}	Bacteroides
02500c8e7dff746267b9 b6542b9f5140	0.225	-33.036	3.832	-8.622	$6.6 imes 10^{-18}$	4.5×10^{-14}	Bacteroides

lfcSE, log fold change Standard Error; stat, Wald test statistic; padj, Benjamini-Hochberg adjusted P-value.

Figure S1. Flowchart of study participants.