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Abstract: The preterm infant gut microbiota is influenced by environmental, endogenous, maternal,
and genetic factors. Although siblings share similar gut microbial composition, it is not known
how genetic relatedness affects alpha diversity and specific taxa abundances in preterm infants. We
analyzed the 16S rRNA gene content of stool samples, ≤ and >3 weeks postnatal age, and clinical
data from preterm multiplets and singletons at two Neonatal Intensive Care Units (NICUs), Tampa
General Hospital (TGH; FL, USA) and Carle Hospital (IL, USA). Weeks on bovine milk-based forti-
fier (BMF) and weight gain velocity were significant predictors of alpha diversity. Alpha diversity
between siblings were significantly correlated, particularly at ≤3 weeks postnatal age and in the
TGH NICU, after controlling for clinical factors. Siblings shared higher gut microbial composi-
tion similarity compared to unrelated individuals. After residualizing against clinical covariates,
30 common operational taxonomic units were correlated between siblings across time points. These
belonged to the bacterial classes Actinobacteria, Bacilli, Bacteroidia, Clostridia, Erysipelotrichia, and
Negativicutes. Besides the influence of BMF and weight variables on the gut microbial diversity, our
study identified gut microbial similarities between siblings that suggest genetic or shared maternal
and environmental effects on the preterm infant gut microbiota.

Keywords: preterm infant; gut microbiota; human milk; twins; triplets

1. Introduction

A balanced infant gut microbiota is important for the maturation of intestinal func-
tions [1], development of innate and adaptive immune responses [2], weight gain [3],
growth [4], and even long-term health [5]. The preterm infant gut microbiota is influenced
by gestational age, birth weight, and other clinical factors associated with preterm birth [6].
Compared to the term infant gut microbiota, the preterm infant gut microbiota is character-
ized by reduced microbial diversity, lower abundances of obligate anaerobes, dominance
of potentially pathogenic Enterobacteriaceae (including Citrobacter, Escherichia, Enterobacter,
Klebsiella, and Serratia, among others), and delayed colonization by commensal gut bacteria
(such as Clostridium and Veillonella) typical of adult gut microbiota [4–11]. These deviations,
collectively referred to as dysbiosis, are associated with increased susceptibility of infec-
tions and diseases, including necrotizing colitis (NEC) [11,12], bacteremia [13,14], late onset
sepsis [15], impaired growth [4], and possibly other long-term health consequences [6].

The preterm infant gut microbiota is shaped by various therapeutic, environmental,
and endogenous factors [6,16]. Therapeutic interventions include the administration of
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histamine-2-receptor blockers in infants [17], and, more significantly, the administration of
prophylactic antibiotics in mothers [18,19] and infants [12,20]. Maternal intrapartum antibi-
otic use is associated with increased Enterobacteriaceae abundances in the gut of preterm
infants [19]. Similarly, postnatal antibiotic use in preterm infants increases Enterobacter
abundances and decreases gut microbial diversity and Escherichia abundances [12,20].
Thus, antibiotic-mediated shifts in gut bacterial diversity likely contribute to gut dysbiosis
in preterm infants and its associated adverse health effects, including NEC, sepsis, and
even death [20]. Environmental influences on preterm infant gut microbiota include ef-
fects of delivery mode [11,19], enteral feeding of formula, breast milk, and/or human
milk-based fortifier (HMF) [21–23], and relatively stronger effects of Neonatal Intensive
Care Unit (NICU) exposure [7,24]. On the other hand, endogenous influences on preterm
infant gut microbiota can include maternal physiology (such as stress, chronic disease,
effects from smoking, and infections) [6,16,25], infant gut physiology, and immune system
responses [26].

Host genetics, previously reported to influence adult [27–30] and healthy term infant
microbiota [31], can also play a role in shaping preterm infant gut microbiota [12]. Previous
studies reported similarities in gut microbiota composition between preterm twins and
multiplets [12,32], although sample sizes were small (<15 multiplet sets). Beyond gut
compositional similarities, high-throughput sequencing has not been applied to identify
specific effects of genetic relatedness on gut microbial diversity, including alpha diversity
and bacterial abundances. Currently, it is also not known whether genetic similarities
between preterm infant siblings are solely due to genetics or a combination of clinical
factors, including antibiotics exposure, diet, maternal exposure, or NICU exposure. Larger-
scale, multi-center analyses comparing gut microbial abundances between multiplets and
singletons within and between centers can advance our current understanding of genetic
and environmental influences on the preterm infant gut microbiota. These findings have
the potential to improve clinical care of preterm neonates.

In this study, we sought to examine preterm gut infant microbiota from multiplets
and singletons admitted to two different neonatal intensive care units (NICUs) located in
Tampa General Hospital (TGH; FL, USA) and Carle Hospital (Carle, IL, USA). We analyzed
the clinical data and microbial diversity of stool samples collected before and after three
weeks postnatal age to evaluate the effects of clinical factors and genetic relatedness on gut
microbial alpha and beta diversity. We used the three-week postnatal age cutoff because
the gut microbiota composition of predominantly preterm, low birthweight infants was
previously shown to resemble the composition of age-matched, normal birthweight infants
between 18 and 21 days of life [32].

2. Materials and Methods
2.1. Enrollment and Sample Collection

After approvals from the respective Institutional Review Boards, preterm infants were
enrolled from two level III NICUs, TGH and Carle NICUs, between 2012–2017 and 2016
and 2018, respectively. The TGH NICU provides one room for each infant that is equipped
with a refrigerator and a milk warmer. Twins and triplets in TGH were housed in two
or three separate rooms, which often shared a removable wall. On the other hand, the
48-bed-capacity Carle Hospital NICU has an open bay unit configuration with multiple
pinwheel layout. Each pinwheel contains three back-to-back bedspaces and a handwashing
station. Several infants share a milk warmer and a refrigerator for prepared daily feedings.
There are two private rooms reserved for rooming in prior to discharge. The Carle and
TGH NICUs had similar antibiotic, feeding volume, and advancement practices. However,
Carle provided an exclusive human milk diet for infants born <28 weeks with the use of
HMF (Prolacta Bioscience, Industry, CA, USA) and TGH NICU only provided bovine-based
fortifier (BMF; Similac® Human Milk Fortifier, Abbott Nutrition, Columbus, OH, USA)
during the study period.



Microorganisms 2021, 9, 278 3 of 15

The study inclusion criteria included birth weight <1500 g or birth gestation <33 weeks.
Infants with major chromosomal or congenital intestinal anomalies were excluded. Weekly
infant stool samples were collected from diapers from enrollment until discharge. Samples
were either placed on dry ice (Carle) or placed in a −20 ◦C freezer (TGH), prior to storage
at −80 ◦C until DNA extraction and analysis. Demographic and perinatal data collected
from the electronic medical records included delivery method, sex, postnatal age (days),
corrected gestational age (weeks), days of antibiotic exposure, weeks on BMF/HMF milk
fortifier, birth weight, current weight, weekly average weight gain velocity (g/day), and
proportions of consumed mother’s own milk, formula, and donor human milk (from the
week prior to each stool sample collection).

2.2. Sample DNA Extraction and Sequencing

Total DNA from stool specimens in the Carle cohort was extracted using the QIAamp
Fast DNA Stool Mini Kit (QIAGEN, Valencia, CA, USA) with the bead-beating method
previously described [33]. The V3-V4 region of the 16S rRNA gene was amplified with
dual-indexed primers (Supplementary Materials Table S1) and sequenced at the Roy J.
Carver Biotechnology Center at the University of Illinois on the Illumina MiSeq 2 × 250 bp
platform (San Diego, CA, USA). DNA extraction and library preparation protocols for the
TGH stool samples were as previously published [22]. Briefly, total DNA was extracted
using the QIAamp® PowerFecal DNA Kit (QIAGEN, Valencia, CA, USA; previously known
as MoBio PowerFecal DNA kit). The V4 region of the 16S rRNA gene was amplified using
modified 515F and 806R primers [22] (Supplementary Materials Table S1) and sequenced
on Illumina’s MiSeq 2 × 300 bp platform.

2.3. Bioinformatics and Statistics

Demultiplexed reads were quality filtered at a Q = 25 cutoff using the Trim Galore!
v0.4.4, (https://github.com/FelixKrueger/TrimGalore) wrapper package, then imported
into QIIME2-2019.17 [34] and denoised with DADA2 [35] into amplicon sequence variants
(ASVs; Supplementary Materials Table S2) without further trimming. Representative ASV
sequences from the V3-V4 region (Carle cohort) and the V4 region (TGH cohort) of the
16S rRNA gene were deduplicated using CD-HIT v4.8.1 [36] at a global sequence identity
threshold of 100%, retaining only the longest sequence for each ASV. Because different
primer sets were used for sequencing and the ASV sequences were mapped to the same
SILVA v132 [37] reference database, ASV sequences were further clustered de novo into
operational taxonomic units (OTUs) at 99% identity, as recommended by Knight et al. [38].
The OTU table was filtered to remove OTUs with <10 total frequency and OTUs present
in <2 samples. For phylogenetic diversity analysis, a tree containing all OTU sequences
was generated using the SATé-Enabled Phylogenetic Placement (SEPP) fragment insertion
method [39]. Taxonomies were assigned to OTU sequences using a naïve Bayes classifier
trained on full-length 16S rRNA gene sequences from the SILVA v132 [37] database. Any
OTUs with ambiguous taxonomic assignments were manually re-classified to the genus
level using web blastn searches against NCBI’s nt database [40], if the best hits unanimously
matched to a single genus with ≥97% identity [41]. To maintain sample size consistency in
all downstream analyses, samples with missing metadata were removed from the OTU
table, followed by non-singleton samples with no corresponding sibling data at each
time point.

Alpha diversity metrics were calculated from the rarefied OTU table (rarefied to
1232 OTUs per sample) using QIIME2 [34]. Among the alpha diversity metrics computed
from the rarefied OTU count data (n = 1232), Shannon’s diversity [42] was highly cor-
related with Pielou’s evenness (Spearman rho = 0.85, p < 0.001) [43], while the number
of observed OTUs was significantly correlated with Faith’s phylogenetic diversity [44]
(Spearman’s rho = 0.80, p < 0.001). For downstream analyses, we chose Shannon’s diver-
sity [42] and Faith’s phylogenetic diversity [44] as representative alpha diversity metrics.
This is because null values of Pielou’s evenness can arise from zero division [43] and

https://github.com/FelixKrueger/TrimGalore
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because Pielou’s evenness is derived from Shannon’s diversity [42]. Compared to ob-
served OTUs, Faith’s phylogenetic diversity carries more information because it uses
phylogenetic information to estimate richness [44]. Prior to downstream analyses, al-
pha diversity variables and clinical variables were transformed to a near-normal dis-
tribution using R’s box cox function in the car package [45] or log-transformation (for
the “days on antibiotic” variable with right-skewed distribution and zero values). Cor-
relograms between variables before and after transformation were calculated, based
on Spearman’s correlations, and visualized using R’s PerformanceAnalytics package
(https://github.com/braverock/PerformanceAnalytics; accessed on 10 August 2020).

To examine associations between alpha diversity and clinical variables, linear mixed
effect models were fitted with R’s lme4 [46] and nlme (https://CRAN.R-project.org/
package=nlme) packages using the maximized log-likelihood method. Clinical variables
were input as fixed effect predictors and alpha diversity as the response variable. Model
fit was evaluated using the likelihood ratio test, Aikake Information Criterion [47], and
Bayesian Information Criterion. Statistically significant predictors (p < 0.05) were identi-
fied using ANOVA tests. The random structure of the models was tested using various
combinations of family, individual, and zygosity, keeping the fixed effect predictors and
response variable constant. Based on goodness-of-fit comparisons, family was chosen as
the random effect in all models. Taxonomic abundance analyses and principal components
analysis (PCA) were performed using the R package ampvis2 v2.6.5 on the rarefied count
table, as recommended [48]. Prior to PCA, OTUs present in <0.1% relative abundance
in any sample were filtered, and the count data were transformed using the Hellinger
method [49]. Shared OTU analyses were performed on unrarefied OTU counts using
Venny v2.1 (https://bioinfogp.cnb.csic.es/tools/venny/). Differential abundance analysis
between TGH and Carle NICU samples was performed on unrarefied counts using the
default parameters of Linear Discriminant Analysis (LDA) Effect Size (LEfSe) [50]. Beta
diversity was calculated from unrarefied centered-log-ratio-transformed OTU counts using
the Aitchison distance, which accounts for the compositionality of OTU count data [51].
Pairwise distances between siblings and non-siblings were compared using Mann–Whitney-
U tests and false-discovery-rate-adjusted p-values [52]. Spearman correlations of OTU
abundances between siblings were calculated in R, using unrarefied OTU abundances that
were residualized against clinical variables (covariates) with the umx_residualize function
in the R package umx v1.9.1 (https://www.rdocumentation.org/packages/umx).

3. Results
3.1. Clinical Characteristics of Samples

Eleven twin sets, 2 triplet sets, and 32 singletons were recruited from the Carle NICU,
while 22 twin sets, 4 triplet sets, and 24 singletons were recruited from the TGH NICU
(Supplementary Materials Table S2). From these individuals, a total of 264 stool samples
were collected before and after three weeks postnatal age for this study (Table 1). Birth
variables, including gestational age at delivery and weight were not significantly different
between the TGH and Carle cohorts. Overall, the TGH cohort had a significantly higher
proportion of male infants, and a significantly higher rate of cesarean delivery (Table 1). In
the TGH cohort, the multiplets had greater birth gestational age and weight than those from
Carle (Table 1). Two stool specimens, ≤ and >3 weeks postnatal age, were collected from
each infant. Seven singletons from the TGH NICU were missing samples from >3 weeks
postnatal age, while three twin sets from the TGH were missing samples from ≤3 weeks
postnatal age. Corrected gestational ages (sum of chronological and birth gestational
ages) from both NICUs were not significantly different at the time of stool collection
(Table 2). One infant from the TGH cohort was diagnosed with NEC after the collection
of the included stool samples. An amount of 20% of the infants in the TGH cohort were
diagnosed with culture-positive sepsis. None of infants from Carle cohort developed NEC
or sepsis. Exposures to antibiotics and formula were greater in the TGH cohort compared
to the Carle cohort (Table 2).

https://github.com/braverock/PerformanceAnalytics
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://bioinfogp.cnb.csic.es/tools/venny/
https://www.rdocumentation.org/packages/umx
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Table 1. Demographics and clinical characteristics of the population at birth.

Carle Hospital n = 118 (44.7) Tampa General Hospital n = 146 (55.3)

Cohort Type, n, (%) Multiplet
n = 54 (45.8)

Singleton
n = 64 (54.2) p 1 Multiplet

n = 105 (71.9)
Singleton

n = 41 (28.1) p 2 p 3

Gestational age at delivery,
weeks 28.8 (2.3) 28.9 (2.2) 0.89 29.4 (2.2) 28.5 (2.7) 0.001 0.12

Birth weight, grams 1246.9 (443.1) 1238.7 (399.2) 0.93 1349.4 (390.5) 1118.7 (199.3) 0.0004 0.24
Sex
Female, n, (%)
Male, n, (%)

30 (55.6)
24 (44.4)

42 (65.6)
22 (34.4) 0.35 42 (40.0)

63 (60.0)
15 (36.6)
26 (63.4) 0.84 0.0006

Type of delivery
Vaginal delivery, n, (%)
Cesarean delivery, n, (%)

4 (7.4)
50 (92.6)

10 (15.6)
54 (84.4) 0.27 4 (3.8)

101 (96.2)
-

41 (100.0) 0.48 0.007

Number of placentas
Monochorionic twins, n, (%)
Dichorionic twins, n, (%)

12 (22.2)
42 (77.8)

-
- - 24 (22.9)

81 (77.1)
-
- - 0.9

Data expressed as means (SD) unless otherwise noted. p 1: Comparisons between multiplet and singleton groups of Carle Hospital. p 2:
Comparisons between multiplet and singleton groups of Tampa General Hospital. p 3: Comparisons between Carle Hospital and Tampa
General Hospital. All statistical comparisons were based on the Kruskal–Wallis test for numerical data and the chi-square test for categorical
data. Bold values indicate p < 0.05.

Table 2. Demographics and clinical characteristics of the population at the time of stool collection.

Carle Hospital n = 118 (44.7%) Tampa General Hospital n = 146 (55.3%)

Cohort Type, n, (%) Multiplet n = 54 (45.8%) Singleton n = 64 (54.2%) Multiplet n = 105 (71.9%) Singleton n = 41 (28.1%) p *

Early Late Early Late Early Late Early Late
Corrected gestational age, weeks 30.8 (2.0) 33.2 (2.2) 30.6 (2.1) 33.1 (2.1) 31.1 (2.1) 33.9 (1.9) 30.4 (2.4) 33.0 (2.5) 0.31

Postnatal age, days 13.7 (8.2) 29.9 (9.0) 11.8 (6.6) 29.0 (8.0) 10.1 (4.9) 29.2 (7.3) 13.0 (6.4) 31.4 (5.0) 0.62

Current weight, grams 1388.8
(441.4)

1853.1
(597.9)

1369.3
(438.2)

1866.1
(574.2)

1358.2
(376.7)

1877.1
(463.5)

1194.0
(283.5)

1655.7
(260.7) 0.5

Weight gain velocity, g/d 9.3 (9.7) 20.9 (9.1) 6.9 (14.0) 21.2 (10.0) −1.4 (12.3) 17.8 (6.7) 1.1 (15.5) 17.1 (4.0) 0.001
Days on antibiotics, days 0.5 (1.5) 0.2 (1.0) 0.7 (1.5) 0.0 (0.2) 2.7 (2.7) 3.3 (3.7) 4.2 (3.6) 4.5 (3.7) <0.0001

Bovine milk fortifier, weeks 1.4 (1.0) 3.3 (1.8) 1.1 (1.0) 2.8 (2.1) 0.9 (0.8) 3.7 (1.1) 1.5 (1.0) 3.9 (0.8) 0.16
Proportion of mother’s own milk 0.83 (0.28) 0.77 (0.32) 0.63 (0.37) 0.56 (0.46) 0.47 (0.42) 0.53 (0.43) 0.86 (0.29) 0.81 (0.36) 0.15

Proportion of donor’s human milk 0.16 (0.24) 0.13 (0.26) 0.36 (0.38) 0.20 (0.34) 0.34 (0.42) 0.15 (0.30) 0.11 (0.28) 0.00 (0.00) 0.31
Proportion of formula 0.01 (0.07) 0.10 (0.16) 0.01 (0.07) 0.24 (0.36) 0.19 (0.37) 0.32 (0.40) 0.04 (0.09) 0.19 (0.36) 0.005

Data expressed as means (SD). Weight gain velocity is calculated as (current weight at stool collection—birth weight)/postnatal day of life
at stool collection. The proportion of milk received is based on volume of intake. “Early” stool samples were collected ≤3 weeks postnatal
age, while “Late” samples were collected >3 weeks postnatal age. p *: Kruskal–Wallis comparisons between Carle Hospital (all samples)
and Tampa General Hospital (all samples). Bold values indicate p < 0.01.

3.2. Gut Microbial Alpha Diversity

The 16S rRNA gene sequencing of stool specimens resulted in 99.5–100% Good’s
coverage values [53], indicative of comprehensive microbial community sampling. The final
unrarefied OTU table contained 285 OTUs from 140 individuals, including 56 singletons,
33 twin sets, and 6 triplet sets. Alpha diversity, calculated from the OTU table rarefied
to 1232 OTUs per sample, did not significantly differ between NICUs, sex, or delivery
method. Across all samples, both alpha diversity metrics positively correlated with weeks
on BMF, corrected gestational age, current weight, and weight gain velocity, but negatively
correlated with percentage of donor human milk (Supplementary Materials Figure S1).
Linear mixed effects modelling revealed weeks on BMF to be a significant predictor of
alpha (Shannon’s and/or Faith’s phylogenetic diversity) in the Carle multiplets, Carle
singletons, TGH multiplets, and TGH singletons subgroups (Figure 1). Weight gain velocity
was a significant predictor of Faith’s phylogenetic diversity in these subgroups, except for
TGH singletons, while current weight was a significant predictor of Shannon’s diversity
in the Carle multiplets and singletons subgroups (Figure 1). Days on antibiotics also
predicted Shannon’s diversity in TGH singletons, although the p-value was slightly above
the significance threshold (p = 0.052; Figure 1). After residualizing against clinical variables,
multiplets shared significant pairwise correlations of Faith’s phylogenetic diversity at early,
but not late timepoints (Figure 2A). On the other hand, significant pairwise correlations of
Shannon’s diversity were detected at both time points from the TGH, but not Carle NICU
(Figure 2B).
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3.3. Gut Microbial Composition and Beta Diversity

Stool samples from both Carle and TGH NICUs were dominated by the phyla Firmi-
cutes (average 52% relative abundance) and Proteobacteria (average 41% relative abun-
dance) at both time points (Supplementary Materials Table S2). The 20 most abundant
genera across all samples included Klebsiella, Escherichia/Shigella, Dickeya, Haemophilus, Pan-
toea, Proteus and unclassified taxa belonging to the class Gammaproteobacteria (Figure 3A).
Abundant Firmicutes genera included Staphylococcus, Enterococcus, and Lactobacillus (class
Bacilli), Clostridium sensu stricto, Lachnoclostridium, Clostridioides, and Finegoldia (class
Clostridia), and Veillonella (class Negativicutes; Figure 3A). Bacteroides (phylum Bacteroidetes
and class Bacteroidia) and Actinomyces (phylum Actinobacteria and class Actinobacteria)
were the ninth and 20th most abundant genera across samples, respectively (Figure 3A).
Twenty-three OTUs were shared across all cohorts and time points, constituting the core mi-
crobiota of preterm infants in this study (Figure 3B). These were classified to the class Acti-
nobacteria (Varibaculum, Corynebacterium, and Cutibacterium), Coriobacteriia (Eggerthella),
Bacilli (Gemella, Staphylococcus, and Enterococcus), Clostridia (Anaerococcus and Clostridium
sensu stricto), Negativicutes (Negativicoccus and Veillonella), and Gammaproteobacteria
(Escherichia-Shigella and other unclassified taxa).
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Figure 1. Significance of clinical variables in predicting (A) Faith’s phylogenetic diversity and (B)
Shannon’s diversity, based on ANOVA testing on fitted linear mixed effects models. A horizontal
line was plotted at p = 0.05 for each subplot. Abbreviations: TGH, Tampa General Hospital; BMF,
bovine milk fortifier; GA, gestational age.
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Figure 2. Pairwise correlations of residuals of (A) transformed Faith’s phylogenetic diversity and
(B) Shannon’s diversity between siblings from both Neonatal Intensive Care Units (NICUs), after
regressing out clinical variables. Statistically significant comparisons are indicated with * (p < 0.05),
** (p < 0.01), or *** (p < 0.001).

Sixty-two OTUs were unique to the Carle NICU, while 131 were unique to the TGH
NICU (Figure 3B). LDA Effect Size (LEfSe) using NICU (Carle vs. TGH) as class and
sample type (multiplet vs. singleton) as subclass showed that Staphylococcus and its associ-
ated family, order, class, and phyla (Staphylococcaceae/Bacillales/Bacilli/Firmicutes) were
enriched in TGH samples on/before three weeks postnatal age (Figure 3C). After three
weeks postnatal age, Enterococcus, Lactobacillaceae and their associated order, class, and
phyla (Bacillales/Bacilli/Firmicutes) were enriched in TGH relative to Carle samples. Gut
microbial abundances were significantly influenced by weeks on BMF, current weight, and
weight gain velocity in Carle singletons, TGH multiplets, and TGH singletons (Figure 4).
Corrected gestational age was a significant explanatory variable of observed OTU abun-
dances in Carle singletons and TGH multiplets (Figure 4). In Carle multiplet samples, birth
weight was the only significant explanatory variable of microbial abundances (Figure 4A).
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Figure 4. Principal components analysis (PCA) biplot showing the effects of clinical variables on sample clustering in (A)
Carle multiplets; (B) Carle singletons; (C) Tampa General Hospital (TGH) multiplets; and (D) TGH singletons. Abbreviations:
BMF, bovine milk fortifier; GA, gestational age. Statistically significant variables are indicated with * (p < 0.05), ** (p < 0.01),
or *** (p < 0.001).
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3.4. Gut Microbiota Similarities between Siblings

Compared to singletons and genetically unrelated multiplets, beta diversity Aitchison
distances [51] were significantly lower between related multiplets, except for Carle samples
≤3 weeks postnatal age (Figure 5A). After residualizing against clinical covariates, 30 OTUs
were commonly correlated between siblings from both Carle and TGH NICUs before and af-
ter 3 weeks postnatal age (Figure 5B). These were predominantly (40%; n = 15) Gammapro-
teobacteria, including OTUs classified to the families Pasteurellaceae and Enterobacteriaceae,
and genera Citrobacter, Escherichia/Shigella and Klebsiella (Table 3). Other significantly cor-
related OTUs were classified to the genera Bifidobacterium (n = 5), Staphylococcus (n = 2),
Streptococcus (n = 1), Bacteroides (n = 1), Anaerococcus (n = 1), Clostridium sensu stricto (n = 3),
(Clostridium) innocuum group (n = 1), and Veillonella (n = 1; Table 3). In the Carle cohort, one
Corynebacterium-like OTU was significantly correlated between siblings ≤3 weeks postnatal
age, while another Anaerococcus-like OTU was significantly correlated between siblings >3
weeks postnatal age (Figure 5B). Meanwhile, in the TGH cohort, 14 OTUs classified to the
bacterial taxa Finegoldia, Clostridioides, Intestinibacter, Clostridium sensu stricto, Atopobium,
Corynebacterium, Enterobacteriaceae, Klebsiella (n = 3), Dermabacter, and Cutibacterium (n = 2)
were significantly correlated between siblings ≤3 weeks postnatal age (Figure 5B). Only
three OTUs classified to the genera Bifidobacterium, Streptococcus, and Staphylococcus were
significantly correlated between siblings >3 weeks postnatal age from the TGH cohort
(Figure 5B).Microorganisms 2021, 9, x FOR PEER REVIEW 10 of 16 
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Figure 5. (A) Pairwise Aitchison distances between siblings and unrelated individuals and (B) Venn
diagram showing the numbers of significantly correlated OTUs between siblings after residualizing
against clinical variables. Statistically significant comparisons in (A) are indicated with *** (p < 0.001).
Identifiers and taxonomic names of the 30 commonly correlated OTUs between siblings in (B) are
listed in Table 2. Abbreviation: TGH, Tampa General Hospital.



Microorganisms 2021, 9, 278 10 of 15

Table 3. Taxonomic classification of OTUs observed to be commonly correlated between siblings.

OTU Class Family/Genus

OTU190 Actinobacteria Bifidobacterium
OTU221 Actinobacteria Bifidobacterium
OTU210 Actinobacteria Bifidobacterium
OTU147 Actinobacteria Bifidobacterium
OTU52 Actinobacteria Bifidobacterium

OTU233 Bacilli Staphylococcus
OTU117 Bacilli Staphylococcus
OTU176 Bacilli Streptococcus

OTU6 Bacteroidia Bacteroides
OTU200 Clostridia Anaerococcus
OTU178 Clostridia Clostridium sensu stricto
OTU28 Clostridia Clostridium sensu stricto

OTU187 Clostridia Clostridium sensu stricto
OTU45 Erysipelotrichia (Clostridium) innocuum group

OTU283 Gammaproteobacteria Pasteurellaceae
OTU284 Gammaproteobacteria Enterobacteriaceae
OTU195 Gammaproteobacteria Enterobacteriaceae
OTU141 Gammaproteobacteria Enterobacteriaceae
OTU162 Gammaproteobacteria Enterobacteriaceae
OTU222 Gammaproteobacteria Enterobacteriaceae
OTU173 Gammaproteobacteria Enterobacteriaceae
OTU58 Gammaproteobacteria Citrobacter

OTU246 Gammaproteobacteria Citrobacter
OTU272 Gammaproteobacteria Escherichia
OTU234 Gammaproteobacteria Escherichia
OTU105 Gammaproteobacteria Escherichia-Shigella
OTU148 Gammaproteobacteria Escherichia-Shigella
OTU24 Gammaproteobacteria Escherichia-Shigella
OTU10 Gammaproteobacteria Klebsiella

OTU133 Negativicutes Veillonella

4. Discussion

The preterm infant gut microbiota is dysbiotic [4–11] and perturbed by therapeutic,
environmental, and endogenous factors [6,16]. Although clinical and environmental in-
fluences on preterm infant gut microbiota are relatively well-studied [6,16], the effects of
genetic similarities on gut microbial diversity remain poorly understood. It is currently
known that preterm siblings share higher microbiota similarities (lower beta diversity
differences) compared to genetically unrelated individuals [12]. However, it is not known
whether siblings also share similar alpha diversity (microbial richness and evenness), or
whether observed similarities are confounded with clinical variables, such as similar diet,
antibiotics exposure, or NICU exposure. In this study, we focused on examining the effects
of both clinical variables and genetic relatedness on gut microbial diversity and composi-
tion in genetically related and unrelated preterm infants. To address our research objective,
we analyzed the clinical data and microbial diversity of stool samples collected before and
after 3 weeks postnatal age from the TGH and Carle NICUs.

Weeks on BMF and weight gain velocity were significant predictors of alpha di-
versity in most samples, after controlling for random effects using linear mixed effects
modelling. Consistent with previous studies [4–11], preterm infant gut microbiota in our
study were rich in Gammaproteobacteria OTUs, including those classified as Klebsiella,
Escherichia/Shigella, Dickeya, Haemophilus, Pantoa, and Proteus. The OTU abundances (beta
diversity) in most samples were similarly influenced by weeks on BMF, current weight,
and weight gain velocity. Our study is one of few to report the effects of BMF on preterm
infant gut microbiota, which remain poorly understood [54]. Nevertheless, several studies
have cautioned that BMF may increase the risks of feeding tolerance and NEC in preterm
infants [55,56]. Thus, connections between BMF feeding, gut microbial diversity, and clini-
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cal outcomes in preterm infants require further study. In comparison, the observed effects
of weight gain on preterm infant gut microbial diversity were consistent with our previous
longitudinal study focusing on a larger TGH cohort [22]. Birth weight also influenced
OTU abundances in the Carle multiplet samples. However, because this effect was not
consistently observed across all subgroups, the influence of birth weight may be due to
random or sampling effects.

Contrary to other studies [22,23], our study observed minimal effects of mother’s own
milk on the preterm infant gut microbiome. Previous studies, including ours, reported
positive correlations of mother’s own milk with microbial alpha diversity [22,23]. Similarly,
we observed significant negative correlations between alpha diversity and percentage of
donor human milk, which in turn was negatively correlated with percentage of mother’s
own milk. However, the effects of donor human milk were non-significant after modelling
for random effects. Nevertheless, we identified inter-NICU differences that could be due
to different milk and milk fortifier feeding practices. Compared to Carle NICU samples,
TGH NICU samples ≤3 weeks postnatal age were enriched in potentially pathogenic
Staphylococcus, known to contribute to neonatal sepsis [57]. Interestingly, TGH cohort had
20% rate of culture-positive sepsis versus none in the Carle cohort. After 3 weeks postnatal
age, potentially pathogenic Enterococcus [58] and Lactobacillaceae were enriched in the TGH
compared to Carle NICU. Overall, the TGH NICU showed greater abundance of OTUs from
the order Bacillales, class Bacilli, and phylum Firmicutes across both time points. These
inter-NICU differences may be related to different feeding practices, where infants born
<28 weeks from the Carle NICU, received exclusive human milk diet, while those from the
TGH NICU were exposed to bovine products from BMF. Lower abundances of Veillonella
belonging to the phylum Firmicutes were similarly observed in the gut microbiota of
preterm infants after 2 to 4 weeks of enteral feeding with human milk and HMF, while
higher abundances of another Firmicutes genus, Terrisporobacter, were observed in those
fed exclusively with formula [21]. NICU-related differences can also be confounded by
different infection control practices [59] or different library preparation and sequencing
strategies [60]. Future hypothesis-driven studies will be useful in examining the specific
effects of HMF on preterm infant gut microbiota composition and diversity. Unlike our
previous findings [22] and other studies [12,20], we did not observe significant effects of
antibiotic use on preterm infant gut microbial diversity. Delivery mode [11,19] also did not
significantly influence gut microbial diversity, presumably because >80% infants in our
study were delivered through cesarean section.

Besides clinical and environmental effects, we also evaluated the effects of genetic
relatedness on preterm infant gut microbial diversity. Because genetic testing was not
performed on infants enrolled in this study, the effects of zygosity on gut microbial diversity,
which have been reported in healthy adult [30,61,62] and infant [27,31] populations, were
not assessed in this study. As hypothesized, we observed significantly correlated alpha
diversity between siblings, especially Faith’s phylogenetic diversity and in the TGH cohort,
after residualizing against clinical covariates.

Although we report likely genetic influences on the preterm gut microbiota, we
note that genetic effects can be confounded by shared environmental influences, such as
maternal [19] or NICU inoculation [7,24]. Higher shared maternal and/or environmental
influences possibly explain the higher consistency in alpha diversity correlations between
siblings ≤3 weeks compared to >3 weeks postnatal age. Shannon’s diversity values were
significantly correlated between siblings in TGH, but not the Carle NICU at both timepoints,
which may reflect inter-NICU differences in spatial layout, or in other feeding, clinical, or
environmental practices. Specifically, the open bay unit configuration in the Carle NICU
likely results in increased human traffic and thus increased diversity of transmissible
bacteria [63], compared to the private rooms in the TGH NICU. Consistent with previous
analyses of preterm twin infant microbiota [12,32], gut microbial beta diversity profiles
in siblings were more similar in siblings compared to unrelated individuals. We also
identified 30 candidate “heritable” OTUs belonging to bacterial classes Actinobacteria,
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Bacilli, Bacteroidia, Clostridia, Erysipelotrichia, and Negativicutes that were commonly
correlated between siblings across time points and NICUs. In the future, longitudinal
studies on preterm infant multiplets will be instrumental in tracking bacterial diversity
metrics and taxa that remain similar between siblings over time [64], and in linking gut
microbial diversity variations to differing health outcomes. Metagenomics approaches,
which offer improved taxonomic resolution [65], will also be useful in identifying specific
bacterial species and strains shared between prematurely born siblings. Additionally, multi-
omics studies can further identify bacterial pathways and host immune-related functions
that shape similarities and differences in preterm gut infant microbiota.

Despite limitations pertaining to heterogeneity, multicenter collaborations have the
potential to address important clinical research questions with improved replication and
results validation [66]. Our two-center study represents an effort to deepen the investigation
into potential clinical and genetic determinants of preterm infant gut microbiota, with the
goal of improving clinical care and the health of preterm neonates. Our findings highlight
the need for future integrated and hypothesis-driven studies to disentangle the complex
interactions between the preterm infant gut microbiota, maternal and NICU environment,
diet, and genetics.
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alpha diversity variables. The principal diagonal shows the univariate histogram for each variable.
The top half of the matrix shows the Spearman correlation values between each pair of variables,
and statistically significant correlations are indicated with * (p < 0.05), ** (p < 0.01), or *** (p < 0.001),
Figure S2: (A) Histogram of OTU total frequency in the count table prior to frequency-based filtering
and (B) rarefaction curves of stool samples analyzed in this study, Table S1: List of primers used in
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analyzed in this study.
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