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Abstract: Utilization of low-cost, environmental-friendly microbial enhanced oil recovery (MEOR)
techniques in thermal recovery-processed oil reservoirs is potentially feasible. However, how ex-
ogenous microbes facilitate crude oil recovery in this deep biosphere, especially under mesophilic
conditions, is scarcely investigated. In this study, a thermal treatment and a thermal recurrence were
processed on crude oil collected from Daqing Oilfield, and then a 30-day incubation of the pretreated
crude oil at 37 ◦C was operated with the addition of two locally isolated hydrocarbon-degrading
bacteria, Amycolicicoccus subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b, respectively. The pH,
surface tension, hydrocarbon profiles, culture-dependent cell densities and taxonomies, and whole
and active microbial community compositions were determined. It was found that both A. subflavus
DQS3-9A1T and Dietzia sp. DQ12-45-1b successfully induced culture acidification, crude oil bioemul-
sification, and residual oil sub-fraction alteration, no matter whether the crude oil was thermally
pretreated or not. Endogenous bacteria which could proliferate on double heated crude oil were
very few. Compared with A. subflavus, Dietzia sp. was substantially more effective at inducing the
proliferation of varied species in one-time heated crude oil. Meanwhile, the effects of Dietzia sp.
on crude oil bioemulsification and hydrocarbon profile alteration were not significantly influenced
by the ploidy increasing of NaCl contents (from 5 g/L to 50 g/L), but the reconstructed bacterial
communities became very simple, in which the Dietzia genus was predominant. Our study provides
useful information to understand MEOR trials on thermally processed oil reservoirs, and proves that
this strategy could be operated by using the locally available hydrocarbon-degrading microbes in
mesophilic conditions with different salinity degrees.

Keywords: microbial enhanced oil recovery (MEOR); heat perturbation; bioemulsification; microbial
community reconstruction; hypersalinity

1. Introduction

Since heavy crude oil has significantly higher density and viscosity than light and
medium crude oil, it has to be left in hydrocarbon reservoirs until enhanced oil recovery
(EOR) techniques are utilized, such as thermal [1], chemical [2], or microbial [3] EOR
techniques. Among them, thermal methods are conventional and are most commonly used
to enhance oil production [4] because their oil recovery performances are reliable and have
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no lag phases [1]. In thermal recovery processes, hot water, steam, or gas containing oxygen,
which could combust part of the crude oil to release heat, is injected into the oil wells to
reduce the viscosity of terrestrial crude oil, to increase the oil volume through thermal
expansion, and/or to crack heavy hydrocarbon molecules into smaller ones, allowing
crude oil to flow more easily toward production wells [5,6]. However, thermal techniques
require a large amount of fresh water and heating energy from fossil fuels, and thus raise
environmental and economic concerns [5,7]. Meanwhile, the oil recovery efficiencies of
thermal recovery methods are low in mature shale, sandstone, and carbonate reservoirs
due to the earlier steam/water breakthrough [8,9]. In recent years, various hybrid methods
combining the thermal and chemical EOR processes have been developed to mitigate the
negative footprints of thermal oil recovery processes [10,11]. For example, Wu et al. [12]
and Liu et al. [13] used foam flooding after hot-water injection in their lab-scale simulated
model and sand pack, respectively, and found that this scenario had significantly higher
sweep efficiency and oil recovery than hot water flooding individually.

Microbial EOR (MEOR) processes are considered as a potentially low-cost and
environment-friendly alternative for other EOR techniques [14]. In in situ MEOR, special
microorganisms with or without nutrients are injected into oil reservoirs to facilitate crude
oil recovery [15]. During the processes, multiple mechanisms take place at the same
time: (1) the introduced microbes might grow exponentially on hydrocarbons and produce
byproducts, such as biosurfactants [16,17], biopolymers [18], acids [19], and biogases [20], to
alter the physicochemical properties of crude oil in place; (2) the exogenous microbes might
degrade the high-viscosity hydrocarbon molecules present in oil reservoirs, such as long-
chain alkanes [21], aromatic hydrocarbons [22], resins [17], and asphaltene [23], leading
to increased oil sweep efficiencies; and (3) the injected microbial cultures might directly
or indirectly stimulate indigenous microorganisms which could produce byproducts or
degrade the high-viscosity hydrocarbons [24–28]. Although MEOR processes have a long
confinement period before oil production, the MEOR could extract up to 50% of the residual
oil in recalcitrant oil reservoirs [29], and thus MEOR field trials have been successfully
implemented in different countries for decades [30].

Thermal and microbial EOR methods have complementary advantages for oil produc-
tion, but MEOR techniques being involved in thermal recovery-processed oil reservoirs has
seldom been reported. It is inherently considered that heat stress could significantly reduce
the total microbial biomass and decrease microbial abundances, especially for fungal com-
munities [31,32], making the reservoirs too sterile to support an effective MEOR process [33].
Nevertheless, because oil layers in oil reservoirs cannot be heated sufficiently during the
thermal EOR processes [34], especially in conventional thick heavy oil reservoirs [8], some
autochthonous microorganisms were expected to survive for further proliferation, such as
methanogenic archaea [35] and thermotolerant bacteria [36]. For example, Rathi et al. [37]
enriched an indigenous consortium TERIL146 from a high-temperature recalcitrant oil
reservoir in India and found that the consortium flooding had incremental oil recovery after
10 days of incubation in the sand-pack assay. Therefore, it is expected that the integration of
thermal and microbial processes is feasible for oil production enhancement. Arora et al. [38]
found that 10.1% of residual oil in a hot brine flooding-processed, depleted reservoir model
could be recovered through MEOR at 91–96 ◦C by using a hyperthermophilic bacterial
consortium NJS-4 collected from the Ahmadabad and Mehsana oil field in Western India.
Nevertheless, it is unknown how thermal treatment and its frequency can negatively affect
the microbial community succession in crude oil, especially under the mesophilic condi-
tions. Additionally, there are no reports to show what types of exogenous microbes are
suitable to be injected in a thermally process-pretreated oil field for MEOR.

Here, crude oil samples collected from the Daqing Oilfield, China were processed on a
thermal treatment and thermal recurrence, followed by the microbial treatment using two
bacterial strains, Amycolicicoccus subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b. The two
strains were isolated from the Daqing Oilfield with different capabilities in hydrocarbon uti-
lization and biosurfactant production. A. subflavus DQS3-9A1T was a novel species isolated
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from oily slurry deposited in the Daqing Oilfield [39], and could grow on alkanes since it
contained alkane degrading genes alkBGHJKT [40]. Dietzia sp. DQ12-45-1b was isolated
from the oil production water in Daqing Oilfield [41]. It could effectively utilize n-alkanes
(C6–C40), aromatic hydrocarbons, and crude oil to produce biosurfactants by itself [42] or
through synergistic interaction with other environmental species [43,44]. Considering that,
besides temperature, salinity in the subterranean biosphere is significantly important for
microbial growth [45,46] and is various among oil fields in different places [35], whether
salinity degree still plays an important role on the microbial community succession and
oil physio-chemical characteristic modification after heat perturbation and exogenous
microbe injection was investigated in the study. Our results proved that a MEOR trial
on thermally pretreated crude oil is feasible if locally available hydrocarbon-degrading
and biosurfactant-producing microbes are utilized at mesophilic conditions, regardless of
high or low salinity degrees. This study makes up for the deficiencies of MEOR trials in
thermally processed oil reservoirs, and provides useful information on characteristics and
functions of endogenous and exogenous microorganisms in thermally pretreated crude oil
during MEOR.

2. Materials and Methods
2.1. Oil Sampling, Culture Media and Bacterial Strains

In the study, fresh crude oil samples were taken from an oil well in No.3 oil product
of the Daqing Oilfield. The samples were delivered to the laboratory in Beijing through
cold-chain transportation in two days, and then were kept at 4 ◦C for the further processing.

Here, the bacterial strains utilized as the exogenous microbes were Amycolicicoccus
subflavus DQS3-9A1T, a novel species isolated from oily slurry deposited in the Daqing
Oilfield [39], and Dietzia sp. DQ12-45-1b, a strong hydrocarbon degrader isolated from the
oil production water in the Daqing Oilfield [41]. They were deposited in the China Gen-
eral Microbiological Culture Collection Center (CGMCC, Beijing, China) under accession
numbers of 4.3532 and 1.10709, respectively.

Three types of media were used in the study. One was an improved minimal salt
medium (I-MSM) with pH 7.0, being used for crude oil microbiome incubation. The com-
position of I-MSM was as follows: NaCl, 5 g/L or 50 g/L; NH4H2PO4, 1 g/L; (NH4)2SO4,
1 g/L; MgSO4·7H2O, 0.2 g/L; KNO3 3 g/L; K2HPO4, 1 g/L; trace element solution (SL-4),
10 mL/L [47]. Another medium was artificial sea water (ASW) with pH 7.0, being used
for the preparation of two exogenous bacterial strain seeds. The composition of ASW
was: peptone, 5 g/L; yeast extract, 1 g/L; NaCl, 24 g/L; Na2SO4, 4 g/L; KCl, 0.68 g/L;
KBr, 0.1 g/L; H3BO3, 0.025 g/L; MgCl2·H2O, 5.4 g/L; CaCl2·2H2O, 1.5 g/L; SrCl2·6H2O,
0.024 g/L; NaHCO3, 0.2 g/L; Na2HPO4, 0.04 g/L; NH4Cl, 0.5 g/L; NaF, 0.002 g/L [39]. A
third medium was Luria-Bertani (LB) solid medium, being used to cultivate and isolate
microorganisms in each culture system. The composition of the medium was as follows:
peptone, 10 g/L; yeast, 5 g/L; NaCl 10g/L; agar, 18 g/L [39].

2.2. Bacterial Seed Preparation

The bacterial strains A. subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b were grown
in ASW medium at 37 ◦C for three to five days (OD600 ≈ 2.0), respectively. Afterwards,
cells were centrifuged and washed with I-MSM medium at 4 ◦C three times, and then were
resuspended in I-MSM to make inoculating seed suspensions.

2.3. Oil Heating, Bacterial Inoculation and Incubation

The crude oil floating on production water was centrifuged at 5000 rpm and 4 ◦C for
20 min to discard the production water. Two grams of the dewatered crude oil samples
were added into a 250 mL flask containing 100 mL I-MSM, and then the culture was treated
as follows to simulate the thermal process in nature: (1) autoclaving the crude oil culture at
121 ◦C for 20 min and then cooling down to room temperature; (2) autoclaving at 121 ◦C for
20 min for two times with a three-day interval, during which the flasks were kept at 37 ◦C
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and 200 rpm. To see the effects of the thermal treatments on the microbial communities in
crude oil, the flasks containing sterilized I-MSM medium and raw crude oil were taken
as the no-thermal pretreatment control. Afterwards, the bacterial seeds of A. subflavus
DQS3-9A1T and Dietzia sp. DQ12-45-1b were separately inoculated into the pretreated
crude oil culture with the initial OD600 being 0.1. The culture without inoculum was taken
as the no-strain control. All cultures were incubated at 37 ◦C and shaken at a speed of
150 rpm for 30 days. Each treatment was performed in triplicates, and the responding
labels are shown in Table 1. During the 30-day cultivation period, 15 mL samples were
taken at the 5th, 10th, 20th, and 30th day, each in triplicate, for microbial and chemical
data collection.

Table 1. Summary of the experimental scheme.

Treatment Label Culture Thermal Pretreatment NaCl in I-MSM (g/L) Exogenous Bacteria

N5a Autoclaving at 121 ◦C for 20 min 5 -

N5b Twice autoclaving at 121 ◦C for 20 min with a
three-day interval 5 -

N5c - 5 -
A5a Autoclaving at 121 ◦C for 20 min 5 A. subflavus DQS3-9A1T

A5b Twice autoclaving at 121 ◦C for 20 min with a
three-day interval 5 A. subflavus DQS3-9A1T

A5c - 5 A. subflavus DQS3-9A1T

B5a Autoclaving at 121 ◦C for 20 min 5 Dietzia sp. DQ12-45-1b

B5b Twice autoclaving at 121 ◦C for 20 min with a
three-day interval 5 Dietzia sp. DQ12-45-1b

B5c - 5 Dietzia sp. DQ12-45-1b
B50a Autoclaving at 121 ◦C for 20 min 50 Dietzia sp. DQ12-45-1b

B50b Twice autoclaving at 121 ◦C for 20 min with a
three-day interval 50 Dietzia sp. DQ12-45-1b

B50c - 50 Dietzia sp. DQ12-45-1b

2.4. Physicochemical Property Determination of Culture Solutions and Residual Oil

The culture samples were centrifuged at 8000 rpm and 4 ◦C for 5 min to separate
crude oil and the hydrophilic solutions. For the hydrophilic solutions, they were filtered
through 0.22 µm membrane filters (Sartorius Stedim Biotech GmbH, Göttingen, Germany),
and then the pH and surface tension of the filtered solutions were determined at room
temperature on a pH meter (FH28; Mettler Toledo, Mississauga, ON, Canada) and a Krüss
tensiometer (JJ2000B; Shanghai Zhongchen Digital Technic Apparatus Co., Ltd, Shanghai,
China), respectively.

A volume of 50 mL of culture samples was taken from each triplicated treatment
on Day 0 and Day 30 to determine the hydrocarbon composition profiles. Briefly, 50 mL
of solution was added with 0.5 mL HCl solution (6 mol/L), and then the mixture was
extracted twice with 20 mL CHCl3 in 250 mL separating funnel at 240 rpm for 5 min
per time. The lower phase containing CHCl3 and extracted oil was transferred into a
clean flask, and CHCl3 quickly volatized as nitrogen was blown in the fume hood, leav-
ing the residual oil in the flask for the determination of four crude oil subfractions, as
described in Gong et al. [47]. The four subfractions were saturated hydrocarbon (SH), aro-
matic hydrocarbon (AH), non-hydrocarbons (NH), and asphaltenes (ASP). The SH profiles
used to indicate the biological degradation of hydrocarbons were determined using a gas
chromatography-mass spectrometer (Agilent 5975C-7890A; Agilent Technologies, Santa
Clara, CA, USA) according to Tang et al. [48]. In the qualification and quantification process,
helium was used as the carrier gas with a flow rate of 1 mL/min, and an HP-5MS column
(25 cm × 0.25 mm × 25 µm) was utilized as the separating column. The temperatures of
the injector and the detector were both 300 ◦C. The temperature program was as follows:
40 ◦C for 10 min, increased by 4 ◦C/min to 300 ◦C, and then held at 300 ◦C for 30 min.
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2.5. Microbial Isolate Qualification and Quantification in Terms of Colony Forming Unit (CFU)

Culture samples collected on Day 5, Day 10, Day 20, and Day 30 were serially diluted.
Then, 0.1 mL of each dilution was transferred on a petri dish containing LB solid medium
for cell growth at 37 ◦C for three to seven days. Microbial colonies in different morphology
were counted, isolated, and then incubated in glass tubes containing 3 mL LB liquid
medium for pure cultivation at 37 ◦C and 150 rpm for one to two days. Cells were harvested
by centrifugation at 8000 rpm for 5 min, and then the precipitate was processed to obtain
genomic DNA by using the GUTC method [42]. The 16S ribosomal RNA (rRNA) genes were
amplified with universal bacterial primer pair Eu27F/1492R [48]. Accordingly, the isolates
whose 16S rRNA genes had different patterns of terminal-restriction fragment length
polymorphism (T-RFLP) digestion could be clustered into different operational taxonomic
units (OTUs) [49]. Here, the restriction enzyme RasI (New England BioLabs Inc., Ipswich,
MA, USA) was used to digest the amplified 16S rRNA fragments according to Wu et al. [50],
and then the digested DNA fragments were separated through electrophoresis on 1% (w/v)
agarose gels (Takara Bio Inc., Dalian, China) to see the T-RFLP digestion patterns for the
16S rRNA gene in each bacterial isolate. The representative isolates were randomly picked
and sequenced using high throughput pyrosequencing [51]. The obtained sequences were
compared to the SILVA database [52] by local BLASTN algorithm (National Center for
Biotechnology Information, Bethesda, MD, USA). The phylogenetic tree was constructed
by using the neighbor-joining method on the MEGA7 software [53]. The unit CFU/mL was
utilized to calculate cell densities for each isolated OTU. The fourth roots of the relative cell
densities in which the absolute cell densities were divided by the least CFU in each OTU
were defined, and then the values were set as the diameters of circles indicating the growth
trends of each bacterial OTU during the incubation. The total CFU was also calculated to
show the total growth-dependent biomass for each time point.

2.6. DNA and RNA Extraction

Twenty milliliter culture samples from each treatment were collected at the end the
cultivation period, equally divided into two parts, and centrifuged at 8000 rpm and 4 ◦C for
10 min to collect the precipitates. One part of precipitates was processed with a FastDNA®

Spin Kit for Soil (MP Biomedicals, Cleveland, OH, USA) to extract DNA. The DNA of
triplicates was mixed for the subsequent microbial community pyrosequencing, the major
accurate sequencing platform for long reads [54]. The other part of the precipitates was
used for RNA extraction followed by reverse transcription to obtain cDNA fragments
according to Nazina et al. [55]. The cDNA suspensions of each triplicate was also mixed
and prepared for microbial community pyrosequencing.

2.7. Sequencing Library of Bacterial V3–V6 Variable Region of the 16S Ribosomal RNA Gene

For bacterial community analysis, the ~733 bp bacterial V3–V6 variable region of the
16S rRNA gene was amplified from the DNA and cDNA samples with the forward primer
341F+RL** containing the ‘A’ sequences of 454 Life Sciences adaptor and a unique 10 bp
optional multiplex identifier (MID) tag (5′-CCATCTCATCCCTGCGTGTCTCCGACTCAG
NNNNNNNNNNTCCTACGGGAGGCAGCAG-3′) and the reverse primer 1073R contain-
ing the ‘B’ sequences of 454 Life Sciences adaptor (5′-CCTATCCCCTGTGTGCCTTGGCAG
TCTCAGACGAGCTGACGACARCCA TG-3′). A duplicate of 50 µL polymerase chain
reaction (PCR) mixture contained 10 µL of 5× Pfu Buffer (Beijing Dingguochangsheng
Biotech Co., Ltd, Beijing, China), 5 µL of dNTP (2.5 mmol/L; Takara Bio Inc., Dalian, China),
1.25 µL of each primer (5 mmol/L; Invitrogen, Shanghai, China), 1 µL of TransStartTM
FastPfu DNA polymerase (2.5 units/µL; TransGen Biotech, Beijing, China) and 30–50 ng of
DNA or cDNA templates. PCR process was performed in a PTC-200 thermocycler (Bio-Rad,
Munich, Germany) with the following program: 95 ◦C for 2 min, followed by 20 cycles
of denaturation at 95 ◦C for 30 s, annealing at 56 ◦C for 30 s, and extension at 72 ◦C for
30 s; finally, extension at 72 ◦C for 5 min and preserving at 4 ◦C. Negative controls without
template were always performed to check the performance without contamination. The
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amplicons of each sample were mixed and re-collected through 1% (w/v) agarose gels
(Takara Bio Inc., Dalian, China), and then purified with a DNA gel extraction kit (BioTeke
Corporation Co., Ltd, Wuxi, China) and kept at −80 ◦C for further operation.

2.8. Pyrosequencing Data Availability for the Microbial Community Profiles

The purified PCR products from different samples were mixed in equimolar ratios
based on their concentration, and then subjected to emulsion PCR for generating amplicon
libraries through sequencing on a 454 Life Sciences Genome Sequencer FLX Titanium
platform in the TEDA Institute of Biological Sciences and Biotechnology, Nankai University,
Tianjin, China. The 454 standard flowgram format (SFF) files of the raw sequences obtained
from the 454 sequencer were converted to FASTA and QUAL files using Mothur 1.10.2 [56].
Then, the raw sequence data were processed to obtain the optimized data with QIIME2-
2018.11 [57], in which sequences with the following characteristics were discarded: the
length exceeded bounds of 200 and 1000, number ambiguous bases exceeded 6, mean
quality scores were lower than 25, maximum homopolymer run exceeded the limit of
6, number mismatches in primer exceeded 0, and/or uncorrected barcodes. All of the
optimized sequences were normalized using cumulative sum scaling (CSS) [58], and then
aligned to sequences on the SILVA database by BLASTN. The aligned sequences were
clustered into OTUs with the furthest neighbor Jukes-Cantor distance of 0.03 (OTU0.03) and
assigned to a taxonomy using the Ribosomal Database Project (RDP) Classifier according
to Wang et al. [59].

2.9. Statistical Analysis

Statistical analyses were performed with the assistance of R (version 3.6.2; The R
Foundation for Statistical Computing, Vienna, Austria). The amounts of residual oil,
biomass cell densities, the pH values, and surface tension coefficients among different
samples were analyzed by using the normality test with the function of KS test and the
Student’s t-test with the function of t-test in stats package of R. A probability of p < 0.05
was considered to be significant for all tests.

3. Results
3.1. Physicochemical Characteristics Change and Microbial Community Succession after Heating
Perturbation on Crude Oil at Different Frequencies

In the study, crude oil samples collected from the Daqing Oilfield were heated once or
twice at 121 ◦C for 20 min. Afterwards, the thermally pretreated oil samples, as well as the
raw crude oil, were kept in sterilized I-SMS media at 37 ◦C and 150 rpm for 30 days. As
shown in Figure 1a, the pH values of cultures containing once- and twice-heated crude oil,
termed as N5a and N5b, respectively, were stable at 6.63–6.93 during the 30-day incubation.
However, pH values in N5c (containing raw oil) were significantly lower than those in
N5a and N5b (p < 0.05, respectively), with a fluctuation at 5.30–6.25. Similarly, the surface
tension degrees in cultures of Treatments N5a and N5b were steadily high over the 30-
day culture period (~74.0 mN/m), while the surface tension degrees in N5c decreased to
69.8 ± 1.8 mN/m in the first 10 days and kept at the relatively low level in the next 20 days
(Figure 1b). These results indicated that the raw crude oil contained microorganisms with
the function to produce acids and biosurfactants. As shown in Figure 1c, the fractions
of middle-to-long chain length alkanes in raw crude oil decreased significantly in the
past 30 days in Treatment N5c, suggesting that the microbes in raw crude oil preferred to
utilize middle-to-long chain alkanes. By using the conventional microbe isolating methods,
several microbes in the genera of Pseudomonas, Microbacterium, Hyphomonas, Ochrobactrum,
Achromobacter, and Rhizobium were screened out from the solution samples in Treatment
N5c. It was found that the amounts of these culture-dependent bacteria dramatically
increased in the first 20 days and then slightly decreased in the next 10 days (Table S1).
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Considering that the pH values (Figure 1a), surface tension degrees (Figure 1b), and
saturated hydrocarbon compositions (Figure 1c) over the 30-day incubation were not
significantly changed in solutions containing either once or twice thermally pretreated
crude oil (p > 0.05), it was inferred that the microbial communities in crude oil from the
Daqing Oilfield were severely perturbated during the thermal pretreatment. As shown in
Table S1, neither solution samples in Treatment N5a nor those in N5b contained any strain
that could grow on LB solid media, indicating that the one-time thermal pretreatment was
strong enough to kill all culture-dependent microbes in raw crude oil. Nevertheless, it
was believed that there should be surviving microbes with the ability to utilize different
types of hydrocarbons in the thermally pretreated crude oil, especially for that in Treatment
N5a, because the four sub-fraction contents of crude oil in Treatment N5a were obviously
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different between Day 0 and Day 30, with the relative contents of saturated hydrocarbon
(SH), aromatic hydrocarbon (AH), and non-hydrocarbons (NH) decreasing while the
relative content of asphaltenes (ASP) rose significantly (p < 0.05) (Figure 1d).

3.2. The Effects of Different Exogenous Bacteria on Physiochemical Characteristics Changes in the
Thermally Pretreated Crude Oil

Here, two exogenous bacterial strains isolated from the Daqing Oilfield, Amycolici-
coccus subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b, were inoculated into sterilized
I-SMS media containing either one-time heated crude oil, two-time heated crude oil with a
three-day interval at 37 ◦C and 150 rpm, or raw crude oil. Afterwards, the cultures were
shaken at 37 ◦C and 150 rpm for 30 days to see the effects of different exogenous bacteria
on physicochemical characteristics and endogenous microbial communities in crude oil.
The treatments with the inoculum A. subflavus DQS3-9A1T were termed as A5a, A5b, and
A5c, respectively, while the treatments with the inoculum Dietzia sp. DQ12-45-1b were
termed as B5a, B5b and B5c, respectively.

The physiochemical properties of each culture were monitored over the 30-day
incubation. As shown in Figure 2a, the pH values in each solution decreased to 5.2–6.0
in the first 10–20 days and then rose slightly, no matter whether A. subflavus DQS3-9A1T

or Dietzia sp. DQ12-45-1b was injected. This trend was similar with that in Treatment
N5c (Figure 1a), indicating that crude oil was partially converted to acidic compounds by
microbes in these treatments. Compared with cultures inoculated with A. subflavus DQS3-
9A1T, the pH decrease in cultures inoculated with Dietzia sp. DQ12-45-1b was more obvious.
Among the six treatments, B5c reached the lowest pH level, 5.28 ± 0.22 on Day 10. These
results suggested that the pH decreasing was induced by not only the exogenous bacteria
but also the endogenous microbes, and Dietzia sp. DQ12-45-1b should be more effective
than A. subflavus DQS3-9A1T for producing acidic compounds or recovering endogenous
microbes with the functions of acidic compound production. The time courses of surface
tension in each treatment could explain their crude oil emulsification phenomenon over the
experimental period (Figure S1). As shown in Figure 2b, the surface tension degrees for all
treatments dropped dramatically in the first 20 days, except for the ones containing the two-
time heated crude oil. This indicated that endogenous microbes might play important roles
in biosurfactant synthesis here, but they were severely killed during the two-time thermal
disturbance. Among the six treatments, A5a reached the lowest surface tension degree,
60.02±1.84 mN/m on Day 20, which was significantly lower than those in N5a (Figure 1b)
and B5a (p < 0.05), suggesting that A. subflavus DQS3-9A1T could produce biosurfactants
and its productivity was higher than Dietzia sp. DQ12-45-1b. Considering that the surface
tension degrees of A5a were significantly lower than those in A5c (p < 0.05), it was inferred
that A. subflavus DQS3-9A1T should have amensalistic interactions with some endogenous
microbes and commensalistic interactions with some other ones in raw crude oil, and after
the one-time thermal pretreatment, the amounts of survival endogenous microbes which
had negative effects on A. subflavus DQS3-9A1T were less than those with positive effects.
Among the four culture systems with thermal pretreatments, only B5a had a continuous
decrease of the surface tension degrees toward stability, and its final surface tension degree
was significantly lower than those in A5a, A5b, and B5b, respectively (p < 0.05), suggesting
that Dietzia sp. DQ12-45-1b was sustainably effective at activating biosurfactant-producing
endogenous microbial survivors from one-time heated crude oil.

For the SH components, it was found that only residual oil in A5c and B5c had
obviously different SH compositions to the initial crude oil. As shown in Figure 2c, medium-
, long-, and extra-long-chain alkanes, phytane and pristane, were removed completely in
both A5c and B5c, and alkylcyclohexanes were also consumed completely in B5c. These
results indicated that the significant changes of the SH compositions were caused by SH-
degrading endogenous microbes in raw crude oil rather than the exogenous microbes, and
the thermal pretreatment on crude oil prevented SH biodegradation. Nevertheless, the
relative contents of SH in crude oil decreased over the 30 days, regardless of crude oil
thermal pretreatment severity and exogenous bacterial species (Figure 2d). Interestingly,
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the relative decline of SH fractions was obviously less in Treatment A5b in comparison
with those in other treatments, suggesting that A. subflavus DQS3-9A1T and the very few
endogenous microbes in the two-time thermally pretreated crude oil, if present, were
passive for SH utilization.
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Figure 2. The effects of the exogenous bacterial strains Amycolicicoccus subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b
on physiochemical characteristics changes in cultures containing the thermally pretreated crude oil. The time courses of
pH values (a) and surface tension degrees (b) in A. subflavus DQS3-9A1T inoculated solutions containing one-time heated
(A5a), twice heated (A5b), and raw (A5c) crude oil, and in Dietzia sp. DQ12-45-1b inoculated solutions containing one-time
heated (B5a), double heated (B5b), and raw (B5c) crude oil; Histograms showing the saturated hydrocarbon components
(c) and the four-subfraction contents (d) in the crude oil samples collected from Treatments A5a, A5b, A5c, B5a, B5b, and
B5c at the beginning and end of the 30-day incubation. SH, saturated hydrocarbon; AH, aromatic hydrocarbon; NH,
non-hydrocarbons; ASP, asphaltenes.

3.3. The Effects of Different Exogenous Bacteria on the Microbial Community Reconstruction in
the Thermally Pretreated Crude Oil

The microbial community compositions in treatments A5a, A5b, A5c, B5a, B5b,
and B5c over time were determined in the following three ways: (1) accounting for the
culture-dependent bacteria using CFU testing, (2) identifying the bacterial community
structures using 16S rRNA gene amplicon sequencing, and (3) determining the active
community structures using sequencing of 16S rRNA gene amplicon generated by
reverse transcription-PCR.
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Inevitably, the cell densities of culture-dependent bacteria in culture systems contain-
ing thermally pretreated crude oil were orders of magnitude lower than those in A5c and
B5c (Figure 3a). It was noticed that the culture-dependent bacterial biomass was more
successfully stimulated by Dietzia sp. DQ12-45-1b than that by A. subflavus DQS3-9A1T,
regardless of thermal pretreatment with different frequencies on crude oil or not. To see
what types of culture-dependent microbes were present, the taxonomies of representative
colonies were addressed in each treatment and a phylogenetic tree with the responding
cell density data was developed. As shown in Figure 3b, the raw crude oil contained
culture-dependent bacterial isolates in genera Microbacterium, Rhizobium, Ochrobactrum,
Hyphomonas, Achromobacter and Pseudomonas, and their amounts had a trend of increasing
first and then decreasing during the 30-day incubation at 37 ◦C. Nevertheless, Rhizobium
strains and Hypomonas polymorpha might have amensalistic interactions with the exogenous
bacteria, because they were no longer detected in treatments A5c and B5c. The heat shock
killed most of the isolates in situ, excepting Microbacterium species. However, it was sur-
prisingly found that some genera strains which were not detected from raw crude oil were
stimulated by the exogenous bacteria on the one-time heated crude oil, such as Bacillus
strains and Paenibacillus naphthalenovorans strains, suggesting that these strains had a high
temperature tolerance but were minor or dormant in raw crude oil. Meanwhile, it was
found that endogenous bacterial strains being able to proliferate on double heated crude
oil were very few, no matter whether A. subflavus DQS3-9A1T or Dietzia sp. DQ12-45-1b
was injected.

Considering that most microbes in natural microbial communities were culture-
independent, 16S rRNA gene amplicon sequencing were operated to learn about the
whole microbial community compositions in each harvested culture solution. Partially in
accordance with the CFU testing-based taxonomy data, the microbial community structures
were similar in A5c and B5c after the 30-day incubation, in which Pseudomonas followed
by Stenotrophomonas and Achromobacter were the predominant genera, regardless of se-
quencing data from DNA or cDNA samples (Figure 4). Pseudomonas, Stenotrophomonas and
Achromobacter became minor genera in microbial communities constructed on thermally
pretreated crude oil. For treatments containing the double heated crude oil, the active
microbial communities on Day 30 were mainly composed of the exogenous genera, includ-
ing Amycolicicoccus for A5b and Dietzia for B5b. Compared with Dietzia sp. DQ12-45-1b,
A. subflavus DQS3-9A1T could stimulate more types of endogenous microbes in crude oil
after the double heating process, but they were mainly at the dormant status, such as
Myroides, Acrobacter, other Campylobacterales, Acinetobacter, and Pseudomonas. These results
confirmed that the double heating process was strong enough to kill most microbes that
existed in crude oil. For treatments containing the one-time heated crude oil, the microbial
communities were mainly composed of Paenibacillus, Bacillus, other Bacillales, and the
exogenous genera, which was essentially consistent with the CFU testing-based taxonomy
data (Figure 3b). However, Paenibacillus, Bacillus, and other Bacillales became minor ones
in A5a and B5a cDNA samples, indicating that these genera in the constructed bacterial
community were at the dormant status. Compared with other treatments, B5a had the most
complicated active microbial community, in which unidentified genera occupied around
50% of the whole active community and more than 10 identified endogenous genera beside
with the exogenous genus Dietzia were enriched. Therefore, it was indicated that Dietzia sp.
DQ12-45-1b was very effective at inducing the proliferation of varied species in one-time
heated crude oil, and could be potentially utilized for MEOR in thermal recovery-processed
oil reservoirs.
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pretreated crude oil based on the CFU-testing data. (a) The histograms showing cell densities of total culture-dependent
bacterial cells over the 30-day incubation in A. subflavus DQS3-9A1T inoculated culture systems containing one-time heated
(A5a), double heated (A5b), and raw (A5c) crude oil, and in Dietzia sp. DQ12-45-1b inoculated solutions containing
one-time heated (B5a), twice heated (B5b), and raw (B5c) crude oil. (b) The phylogenetic tree of representative bacterial
colonies isolated from samples of each culture system on Day 5, Day 10, Day 20, and Day 30, with their cell densities being
represented in small to big circles. Orange circles, treatments without inoculum; green circles, culture systems inoculated by
A. subflavus DQS3-9A1T; red circles, culture systems inoculated by Dietzia sp. DQ12-45-1b; thermal pretreatment manner ‘a’,
one-time heating; manner ‘b’, two-time heating with a three-day interval at 37 ◦C; manner ‘c’, no heating.
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3.4. Effects of Salinity on Detzia sp. DQ12-45-1b Induced Bioemusification and Microbial
Community Reconstruction in Heated Crude Oil

The salinity in oil reservoirs was a second important environmental factor for microbial
growth in situ. Here, to see if crude oil bioemulsification through MEOR could still
effectively occur under the stress of reparable heat perturbation and high salinity, Dietzia sp.
DQ12-45-1b was inoculated into the hypersaline I-SMS medium (50 g/L NaCl) containing
either thermally pretreated crude oil or raw crude oil for a 30-day incubation, and these
treatments were termed as B50a and B50c, respectively.

As shown in Figure 5a, pH values in B50a and B50c were relatively stable and sig-
nificantly lower than those in the normal salinity (5 g/L NaCl) over the time, ranging at
5.14–5.66 for B50a and 5.37–5.70 for B50c. Each culture system had photographs taken on
Day 5, Day 10, Day 20, and Day 30, and it was observed that crude oil in B50a and B50c
became well dispersive on Day 5 (Figure S1). As shown in Figure 5b, the surface tension
degrees in B50a and B50c had the same trend of first decreasing and then increasing, and
their values were not significantly different from each other (p > 0.05) or from those in
B5a and B5c, respectively (p > 0.05), indicating that Dietzia sp. DQ12-45-1b might be still
effective for crude oil bioemulsification when the cells are in reparable heat perturbated
microbial communities in situ and/or high salinity. After the 30-day incubation, although
the SH composition of residual crude oil had no significant change in B50a and B50c
(Figure 5c), the relative contents of SH and ASP altered dramatically in B50a and B50c, with
the SH fraction decreasing and the ASP fraction increasing, especially for the residual oil in
B50a (Figure 5d). Since residual oil samples in B50a and B5a had similar SH composition
profiles as did the four sub-fraction contents at the end of the incubation, it was inferred
that the hypersalinity stress had few effects on Dietzia sp. DQ12-45-1b induced microbial
community reconstruction in one-time heated crude oil. Nevertheless, as shown in
Figure 5e, the culture-dependent bacterial biomass in B50a were much more accumulated
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than those in B5a in the first 10 days. According to the following representative colony
taxonomy identification, the types of bacteria in B50a were very few, including few species
in genera Bacillus, Microbacterium, and Dietzia. The colony amounts of Dietzia strains were
predominant in B50a and were obviously more than those in B5a in the first 10 days. In
accordance with the CFU-testing results, 16S rRNA gene amplicon sequencing analysis
showed that the microbial community in B50a on Day 30 was very different from those
in B5a and B50c, and was mainly composed of Dietzia, no matter whether the sequencing
was based on DNA samples or cDNA samples (Figure 5f). Even though crude oil bioemul-
sification and acidification effects in B50a were similar with those in B5a and B50c, their
internal metabolic mechanisms were varied. All above results indicated that crude oil
bioemulsification and acidification in B50a were mainly due to the metabolic functions of
Dietzia sp. DQ12-45-1b.
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Figure 5. Effects of high salinity on Dietzia sp. DQ12-45-1b-induced physiochemical characteristics changes and microbial
community reconstruction in crude oil. Time courses of pH values (a) and surface tension degrees (b) in Dietzia sp.
DQ12-45-1b inoculated normal and hypersaline solutions containing either one-time heated (B5a and B50a, respectively)
or raw (B5c and B50c, respectively) crude oil. Histograms showing the saturated hydrocarbon components (c) and the
four-subfraction contents (d) in the crude oil samples collected from treatments B5a, B50a, B5c, and B50c at the beginning
and end of the 30-day incubation; SH, saturated hydrocarbon; AH, aromatic hydrocarbon; NH, non-hydrocarbons; ASP,
asphaltenes. Histograms showing cell densities of total culture-dependent bacterial cells over the 30-day incubation (e) and
total microbial community structures based on DNA or cDNA sequencing at the end of the incubation (f) in treatments B5a,
B50a, B5c, and B50c.
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4. Discussion

Petroleum reservoirs are harsh habitats for microorganisms because of the high toxic-
ity and hydrophobicity. However, multiple taxonomic microorganisms adapted well in oil
reservoirs and have been identified in situ [60–63]. Meckenstock et al. [64] proved that mi-
croorganisms can live in minuscule water droplets entrapped in crude oil. However, since
large amounts of new electron donors, acceptors, and/or exogenous microbes are injected
into the subsurface biosphere through different oil exploration processes, the relatively
stable microbiomes in the deep reservoir environment are often reshaped. For example,
Vigneron et al. [65] investigated the microbial community succession in 32 producing
wells of Halfdan oil field, and found that after the 15-year oil exploration using seawater
and nitrate injection, the predominant microbes altered from slow-growing anaerobes,
such as Thermotogales and Clostridiales, to fast-growing opportunists which preferred the
energetically more favorable metabolisms of nitrate reduction or sulfide oxidation, such as
Deferribacteres, Delta-, Epsilon- and Gammaproteobacteria. In our study, it was found that the
thermal process on crude oil could severely perturbate endogenous microbiome, destroy-
ing most culture-dependent species in situ (Figure 3b), but the negative effects of heating
perturbation was made up by the locally isolated bacterial strain Dietzia sp. DQ12-45-1b.

As shown in Figures 3b and 4, thanks to the addition of Dietzia sp. DQ12-45-1b, some
endogenous microbial survivors from heating, such as the spore-forming genera of Bacillus
and Paenibacillus and non-spore-forming Pseudomonas, became activated and reorganized
to form a complicated bacteria community. Meanwhile, the surface tension degrees in
the Dietzia sp. DQ12-45-1b-inoculated culture system had a relatively stable decrease
during the incubation, and reached the lowest point among the treatments containing
thermally pretreated crude oil (Figure 2b). All above results suggested that Dietzia sp.
DQ12-45-1b could be potentially utilized for MEOR in thermal recovery-processed oil
reservoirs. Further, it has already been realized that, compared with other microorganisms,
locally isolated microbes can adapt to extreme environmental reservoirs better, and thus
are considered to be good candidates for MEOR [66–68]. For example, Rathi et al. [37]
enriched a methanogenic consortium TERIL146 consisting of Methanothermobacter sp.,
Thermoanaerobacter sp., Gelria sp. and Thermotoga sp. from a 70 ◦C oil reservoir in India,
and found that it had 8.3% incremental oil recovery in thermophilic sandpack assay,
indicating that TERIL146 could be utilized for oil recovery in thermophilic depleted wells.
Nevertheless, we are the first ones to investigate if the MEOR candidates isolated from
a mesophilic oil field could be utilized for the bioemulsification and biodegradation of
thermally processed crude oil collected from the same oil field. Our study provides useful
information to understand MEOR trials on thermally processed oil reservoirs, and proves
that this strategy could be operated by using the locally available hydrocarbon-degrading
and biosurfactant-producing microbes at mesophilic conditions.

Temperature seems to be the most important factor for MEOR efficiency [33], followed
by salinity [69]. Larter et al. [70] state that salinity had a second-order effect slowing
hydrocarbon biodegradation. However, as shown in Figure 5a–d, the hypersalinity (50 g/L
NaCl) had few negative effects on crude oil bioemulsification, acidification, and residual
oil composition alteration in the study. Considering that the microbial community compo-
sitions in B50a and B5a were obviously different (Figure 5e,f), it was inferred that Dietzia
sp. DQ12-45-1b was tolerant to hypersalinity under the existence of thermally pretreated
crude oil, but the endogenous microbial survivors with amensalistic interactions with
Dietzia sp. DQ12-45-1b were severely inhibited under the hypersaline conditions. Fang
et al. [71] found that Dietzia sp. DQ12-45-1b had hypersaline and alkaline resistance due to
the existence of the six-subunit Na+/H+ antiporter DqMrp in its genome.

For ecosystems consisting of plants and/or animals, species are classified into two
types based on species life-histories: r- and K-strategists [72]. For r-strategists, they allo-
cate more energy to reproduction instead of biomass accumulation and competition, so
species with r-selection strategy can rapidly establish on free sites with great colonizing
ability when resources are abundant. In contrast, K-strategists produce high biomass with
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strong competitive ability when the carrying capacity of populations and resources are
limited [73,74]. In microecosystems, ‘copiotroph’ and ‘oligotroph’ were defined to describe
microorganisms with ecological attributes typical of r- and K-strategists, respectively [75].
In our study, r-strategists preferentially survive with adequate crude oil and fewer toxic
metabolites, have high nutritional requirements, and can exhibit high growth rates. When
endogenous microorganisms are r-strategists, they will easily flourish, regardless of exoge-
nous microorganisms, and inhibit other endogenous microorganisms such as Pseudomonas
in N5c, A5c, and B5c. In contrast, K-strategists exhibit slower growth rates and are likely to
outcompete copiotrophs in conditions of limited crude oil and more survival stresses, such
as Achromobacter and Microbacterium in B50c.

In general, some endogenous microbes in crude oil could survive one-time heat
perturbation, and proliferate or become stronger due to the introduction of locally isolated
bacterial strain Dietzia sp. DQ12-45-1b with the capabilities of biosurfactant production and
hydrocarbon degradation under mesophilic conditions, and then interact with Dietzia sp.
DQ12-45-1b to achieve enhanced crude oil emulsification. Even though the characteristics
and functions of microorganisms in thermally pretreated crude oil have been gradually
understood, the relationships among microorganisms for the guidance on MEOR and
bioremediation are still unclear and are required to be explored in the future.

5. Conclusions

In this study, microhabitats in crude oil collected from the No. 3 oil product of the
Daqing Oilfield contained diverse microorganisms in situ, such as Pseudomonas, Microbac-
terium, Hyphomonas, Ochrobactrum, Achromobacter, and Rhizobium. The microbial community
perturbation caused by the thermal treatment was partially recovered by either A. subflavus
DQS3-9A1T or Dietzia sp. DQ12-45-1b. Compared with A. subflavus DQS3-9A1T, Dietzia sp.
DQ12-45-1b was more effective at inducing culture acidification, crude oil bioemulsifica-
tion, and the proliferation of varied species in one-time heated crude oil during the 30-day
incubation. Meanwhile, it was found that the hypersalinity stress (50 g/L NaCl) had few
negative effects on Dietizia sp. DQ12-45-1b induced crude oil bioemulsification, acidifica-
tion, and residual oil composition alteration. All above results indicated that the locally
isolated bacterial strain Dietzia sp. DQ12-45-1b, which had strong hydrocarbon-degrading
capability and hypersaline resistance, could be potentially utilized for MEOR in thermal
recovery-processed oil reservoirs with mesophilic conditions, regardless of high or low
salinity degrees.

In order to make the thermal-microbial EOR methods more applicable soon, fur-
ther studies of the hybrid processes should aim to characterize and clarify the metabolic
interactions among the endogenous and exogenous microbes during the hybrid recov-
ery processes.
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