
microorganisms

Article

HbxB Is a Key Regulator for Stress Response and β-Glucan
Biogenesis in Aspergillus nidulans

Sung-Hun Son 1, Mi-Kyung Lee 2, Ye-Eun Son 1 and Hee-Soo Park 1,3,*

����������
�������

Citation: Son, S.-H.; Lee, M.-K.; Son,

Y.-E.; Park, H.-S. HbxB Is a Key

Regulator for Stress Response and

β-Glucan Biogenesis in Aspergillus

nidulans. Microorganisms 2021, 9, 144.

https://doi.org/10.3390/

microorganisms9010144

Received: 10 December 2020

Accepted: 8 January 2021

Published: 11 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Food Science and Biotechnology Kyungpook National University, Daegu 41566, Korea;
rk05555@naver.com (S.-H.S.); thsdpdms0407@naver.com (Y.-E.S.)

2 Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB),
Jeongeup-si 56212, Korea; miklee1010@kribb.re.kr

3 Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
* Correspondence: phsoo97@knu.ac.kr; Tel.: +82-53-950-5751

Abstract: Homeobox transcription factors are conserved in eukaryotes and act as multi-functional
transcription factors in filamentous fungi. Previously, it was demonstrated that HbxB governs
fungal development and spore viability in Aspergillus nidulans. Here, the role of HbxB in A. nidulans
was further characterized. RNA-sequencing revealed that HbxB affects the transcriptomic levels
of genes associated with trehalose biosynthesis and response to thermal, oxidative, and radiation
stresses in asexual spores called conidia. A phenotypic analysis found that hbxB deletion mutant
conidia were more sensitive to ultraviolet stress. The loss of hbxB increased the mRNA expression of
genes associated with β-glucan degradation and decreased the amount of β-glucan in conidia. In
addition, hbxB deletion affected the expression of the sterigmatocystin gene cluster and the amount
of sterigmatocystin. Overall, these results indicated that HbxB is a key transcription factor regulating
trehalose biosynthesis, stress tolerance, β-glucan degradation, and sterigmatocystin production in
A. nidulans conidia.

Keywords: conidia; homeobox domain; RNA-sequencing analysis; transcription factor; sterigmato-
cystin; Aspergillus nidulans

1. Introduction

Asexual spores are the main reproductive cells in most filamentous fungi [1,2]. Asex-
ual spores are widespread in environmental niches, survive in harsh conditions, and
germinate until appropriate conditions [1]. To survive in aggressive environmental con-
ditions, asexual spores contain protective layers on their cell wall, unlike hyphae [3]. In
addition, several signal pathways and regulators are involved in protecting from a myriad
of environmental stresses [4,5].

The process of asexual spore production in filamentous fungi has been mainly studied
in the model fungus Aspergillus nidulans, as various genetic and molecular techniques
have been developed [6,7]. A. nidulans reproduces primarily through asexual development
and produces an asexual-specific structure called conidiophore bearing long chains of
asexual spores termed as conidia [1]. The process of conidiophore production is regulated
by a variety of regulators, such as upstream regulators (FluG and FlbB-E), central regula-
tors (BrlA, AbaA, and WetA), and feedback regulators (VosA and VelB) [8]. For conidia
formation and maturation, three transcription factors—WetA, VosA, and VelB—mainly
regulate the mRNA expression of spore-specific and developmental genes [9–14]. These
regulators also coordinate the biosynthesis of trehalose, a key component for environmental
stress tolerance, and β-glucan, a key polysaccharide for cell wall integrity [11,13,15]. With
these transcription factors, several regulators, such as AtfA, VadA, and CatA, are involved
in the process of spore tolerance against environmental stresses, maturation, dormancy,
and germination [16–20].
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Homeobox domain-containing proteins are found in animals, plants, yeast, and fila-
mentous fungi [21,22]. These proteins contain homeobox DNA-binding motifs and con-
trol the transcription of a variety of genes [23,24]. Previous studies have demonstrated
that homeobox proteins play diverse roles in fungal growth, differentiation, secondary
metabolism, and pathogenesis in several Basidiomycota and Ascomycota [25–27]. For
example, mating-type proteins encoded by MATa and MATα form homocomplexes or
heterocomplexes and regulate gene expression and yeast differentiation in the model yeast
Saccharomyces cerevisiae [28]. In the pathogenic fungus Candida albicans, GRF10 is involved
in filamentous growth, biofilm formation, and virulence [29,30]. In Aspergillus flavus, Hbx1
plays an important role in fungal differentiation and secondary metabolism [31]. Tran-
scriptomic and phenotypic analyses found that the deletion of hbx1 affects the mRNA
expression of developmental genes and secondary metabolite gene clusters [32]. In the hu-
man pathogenic fungus Aspergillus fumigatus, HbxA, a homolog of Hbx1, is a key regulator
for asexual development, secondary metabolism, and pathogenesis [33].

A recent study indicated that the A. nidulans genome contains eight hbx genes [34].
Among these genes, hbxA and hbxB are essential for appropriate hyphal growth, conidio-
phore production, and cleistothecia formation in A. nidulans. In addition, hbxB deletion
leads to decreased amounts of trehalose, conidia viability, and thermal tolerance in conidia,
implying that HbxB plays a key role in conidia maturation. To further test the role of HbxB
in conidia, we conducted transcriptomic and phenotypic analyses in this study.

2. Materials and Methods
2.1. Strains and Media

In this study, control (THS30, pyrG89; AfupyrG+) [11], hbxB deletion mutant (∆hbxB,
TSH1, pyrG89; pyroA4; ∆hbxB::AfupyrG+), and hbxB-complemented (C’ hbxB, TSH7, pyrG89;
pyroA::hbxB(p)::hbxB::FLAG3x::pyroA; ∆hbxB::AfupyrG+) [34] strains were used. These fungal
strains were grown on minimal medium with 1% glucose (MMG) for general purpose [35].

2.2. RNA-Sequencing (RNA-Seq) Analysis

The whole processes of RNA-seq analysis were performed as described previously [20].
The ∆hbxB conidia were collected from the plates after 2 days of culture and filtrated
through Miracloth (Calbiochem, San Diego, CA, USA). The total RNA from conidia was
extracted using Trizol reagent (Invitrogen, Carlsbad, CA, USA). After RNA extraction,
DNase I (Promega, Madison, WI, USA) was used for the removal of DNA contamination
from RNA samples and then further purification using the RNeasy Mini Kit (Qiagen,
Germantown, MD, USA).

Complementary DNA (cDNA) library preparation and RNA-seq were performed by
Theragen Bio Co., Ltd. (Seongnam, South Korea). Briefly, mRNA from total RNA was
isolated from magnetic beads with oligo(dT). The cDNA library for RNA-seq was prepared
using the TruSeq Stranded mRNA Sample Prep Kit (Illumina, San Diego, CA, USA). The
library was evaluated using the Agilent High Sensitivity DNA Kit (Agilent Technologies,
Santa Clara, CA, USA) and sequenced using an Illumina HiSeq2500 sequencer (Illumina).
All RNA-seq data files are available from the National Center for Biotechnology Information
BioProject database (PRJNA681980).

RNA-seq data were analyzed as reported previously [20]. Briefly, the filtered read-
ings were mapped onto the A. nidulans A4 transcriptome [36] using the aligner STAR
version 2.3.0e software [37]. Gene expression levels were measured using Cufflinks ver-
sion 2.1.1 [38]. Gene-level count data were generated using the HTSeq-count version
0.5.4p3 tool [39] with the options “-m intersection-nonempty” and “-r option consider-
ing paired-end sequence.” Differentially expressed genes (DEGs) were identified using
the R package TCC [40] on the basis of the read count data. Normalization factors were
calculated using the iterative DEGES/edgeR method. DEGs were identified on the
basis of a q-value threshold of less than 0.05.
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2.3. Gene Ontology (GO) Term Enrichment Analysis

GO term enrichment analysis was shown using the Gene Ontology Slim Mapper at
AspGD [36]. A GO-based trend test was conducted using Fisher’s exact test. p < 0.001 was
considered statistically significant to identify the significant category from the analyzed DEGs.

2.4. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) Analysis

For qRT-PCR analysis, total RNAs from control, ∆hbxB, and C’ hbxB conidia were
extracted using the method mentioned above. The GoScript Reverse Transcription System
(Promega) was used for cDNA synthesis. The iTaq Universal SYBR Green Supermix and
the CFX96 Touch Real-Time PCR Detection System (both from Bio-Rad, Hercules, CA, USA)
were used for qRT-PCR. The 2−∆∆CT method was used for calculating the expression levels
of the target genes, and β-actin was used as an endogenous control. The gene-specific
primers used in this study are listed in Table S1. This assay was carried out in triplicate.

2.5. Ultraviolet (UV) Stress Tolerance Assay

The UV stress tolerance assay was carried out as described previously [41]. Briefly,
about 100 conidia were spread on MMG plates and irradiated using the UV Spectrolinke
XL-1000 UV crosslinker (Thomas Scientific, Swedesboro, NJ, USA). After irradiation, the
plates were incubated at 37 ◦C for 48 h, and the colony numbers were counted. The survival
rate was calculated by comparing the number of colonies in the UV-treated plate and the
untreated plate.

2.6. β-. Glucan Assay

The amounts of β-1,3-glucan in conidia were measured by the Glucatell assay (As-
sociates of Cape Cod, East Falmouth, MA, USA) as described previously [11,42]. Briefly,
2-day-old conidia from control and mutant strains were collected using double-distilled
water. Conidia suspension was mixed with Glucatell reagent and incubated at 37 ◦C for
30 min. After incubation, diazo-reagents were added to stop the reaction, and the optical
density was determined at 540 nm.

2.7. Sterigmatocystin Extraction and Thin-Layer Chromatography (TLC) Analysis

The extraction of sterigmatocystin from 2-day-old conidia was conducted as described
previously [20,43]. About 109 conidia were mixed with CHCl3 and 0.5 mm zirconia/silica
beads (RPI, Mt. Prospect, IL, USA) and disrupted using a Mini-Beadbeater (BioSpec Prod-
ucts, Inc., Bartlesville, OK, USA). After centrifugation, the organic phase was transferred
to new vials and evaporated. Each sample was resuspended in CHCl3, spotted onto a
TLC silica plate (Kiesel gel 60, 0.25 mm; Merck, Kenilworth, NJ, USA), and resolved in
toluene/ethyl acetate/acetic acid (8:1:1, v/v). The TLC plates were treated with 1% alu-
minum hydroxide hydrate (Sigma, St. Louis, MO, USA). The images of the TLC plates
were captured after UV exposure (366 nm). The spot intensities of sterigmatocystin were
quantified using ImageJ software.

2.8. Statistical Analysis

The statistical differences between control and ∆hbxB strains were evaluated by Stu-
dent’s unpaired t-test. The mean ± standard deviation are shown. p < 0.05 was consid-
ered significant.

3. Results
3.1. Regulatory Role of HbxB in Conidia

A previous study demonstrated that HbxB governs conidial viability, conidial tre-
halose biosynthesis, and stress response in conidia [34]. On the basis of these results, we
hypothesized that HbxB is a transcription factor that can regulate the mRNA expression of
a variety of genes in conidia. To test this hypothesis, RNA-seq analysis using control and
∆hbxB mutant conidia were conducted. The transcriptomic analysis results found that a
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total of 6230 genes were differentially expressed between control and ∆hbxB mutant conidia
(fold change > 2.0; q < 0.05; Figure S1). The mRNA levels of 3202 genes were upregulated,
and the transcripts of 3028 genes were downregulated in ∆hbxB mutant conidia compared
to control strain.

To further elucidate the regulatory role of HbxB, we performed GO functional enrich-
ment analysis using RNA-seq results and the ASPGD platform [36]. GO analysis revealed
that up-regulated DEGs were enriched in mainly “carbohydrate metabolic process,” “ox-
idoreductase activity,” “cellular amino acid metabolic process,” “secondary metabolic
process,” “translation,” and “cell wall” (Figure 1A). The downregulated genes were mainly
associated with “response to stress,” “organelle organization,” “response to chemical,”
“protein binding,” and “endomembrane system” (Figure 1A).
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Figure 1. Transcriptomic analysis in hbxB deletion mutant conidia. (A) Gene ontology (GO) term enrichment analysis of
upregulated and downregulated genes in hbxB deletion mutant conidia. (B–D) mRNA expression of genes associated with
trehalose biogenesis (B), oxidative stress response (C), and thermal stress response (D) in hbxB deletion mutant conidia.

A previous study reported that hbxB deletion decreases the trehalose content and stress
tolerance in conidia [34], suggesting that the mRNA expression of the related genes can also
be affected. Therefore, the mRNA levels of genes associated with trehalose biosynthesis
and response to oxidative and thermal stresses were evaluated. As shown in Figure 1B,
the expression of tpsA, orlA, and tpsC, which are involved in trehalose biosynthesis [44],
was decreased. In addition, the transcript levels of genes associated with oxidative and
thermal stress response were decreased (Figure 1C). The RNA-seq results were verified by
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qRT-PCR analysis (Figure S2). Overall, these transcriptomic results supported the reason
why and how hbxB deletion affects conidial phenotypes.

3.2. Function of HbxB in UV Stress Response

As shown in Figure 1A, many genes associated with stress response were downreg-
ulated in hbxB mutant conidia. The list of these genes was screened, and several genes
associated with radiation and UV stress response were downregulated (Figure 2A–C),
suggesting that hbxB deletion can also affect the UV stress tolerance. To confirm this, we
irradiated conidia of control, ∆hbxB, and C’ hbxB strains using a UV crosslinker. As shown
in Figure 2D, the resistance of ∆hbxB conidia to UV stress was less than those of control
and C’ hbxB conidia. Taken together, these results demonstrated that HbxB is required for
an appropriate response to UV and other environmental stresses.
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Figure 2. Role of hbxB on UV stress tolerance in Aspergillus nidulans conidia. (A–C) mRNA expression of genes associated
with radiation stress gene clusters in hbxB deletion mutant conidia (p < 0.05, log2fc > 1.0). (B) mRNA levels of genes involved
in UV-sensitive gene clusters in hbxB deletion mutant conidia. (C) mRNA expression of uvsC, uvsD, and uvsF in control
(TNJ36), ∆hbxB (TSH1.1), and C’ hbxB (TSH7.1) strain conidia were verified by qRT-PCR analysis. * p < 0.05; ** p < 0.01,
differences between control and ∆hbxB conidia. (D) UV sensitivity of control (TNJ36), ∆hbxB (TSH1.1), and C’ hbxB (TSH7.1)
strain conidia. ** p < 0.01, differences between control and ∆hbxB conidia.

3.3. Function of HbxB in UV Stress Response

RNA-seq analysis results showed that the genes involved in cell wall integrity were
also affected by hbxB deletion (Figure 1A). Among them, 12 genes associated with β-glucan
degradation were upregulated in ∆hbxB conidia (Table 1; Figure 3A). To test the phenotypic
change according to the alteration of gene expression, we examined the amount of β-
glucan in conidia. As shown in Figure 3B, β-glucan production was decreased in the ∆hbxB
mutant conidia compared to control and C’ hbxB conidia. These results demonstrated that
HbxB affects the production of β-glucan in conidia by regulating the mRNA expression of
β-glucan degradation-related genes
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Table 1. Differentially expressed genes (DEGs) associated with cell wall integrity in ∆hbxB conidia.

Category (Number of Genes
in the Category)

Upregulated Genes in ∆hbxB
Conidia

Downregulated Genes in
∆hbxB Conidia

β-Glucan biosynthesis (12) gelB, crhD, sunA gelD

β-Glucan degradation (41)
bglA, bglB, bglG, bglH, bglL,
crhB, crhD, eglA, exgB, exgC,

exgE, AN3883
-

Chitin biosynthesis (17) chsF chs7
Chitin degradation (23) chiC, AN0221, AN0299 nagA, AN12280, AN8999
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3.4. HbxB Affects Sterigmatocystin Production in Conidia.

As mentioned above, hbxB deletion affects gene expression for secondary metabolic
processes (Figure 1A). Among the secondary metabolite gene clusters, the mRNA expres-
sion of several genes involved in the sterigmatocystin gene cluster was upregulated in the
∆hbxB mutant conidia compared to control and C’ hbxB conidia (Figure 4A). In addition,
∆hbxB conidia had a higher amount of sterigmatocystin than control and C’ hbxB conidia
(Figure 4B,C). These results suggested that HbxB is essential for the proper production of
sterigmatocystin in conidia.
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4. Discussion

Homeobox proteins are conserved in most filamentous fungi and play diverse roles
in fungal development and metabolisms [21,26]. Most Aspergillus species contain eight
homeobox proteins, of which HbxA (or Hbx1) has been mainly studied [31,33]. In three As-
pergillus species, including Aspergillus nidulans, Aspergillus fumigatus, and Aspergillus flavus,
hbxA (or hbx1) deletion affects hyphal growth, conidiophore formation, and secondary
metabolite production. The roles of hbxA in asexual development has been demonstrated
in other fungi, such as Fusarium graminearum, Magnaporthe oryzae, and Ustilaginoidea virens,
suggesting that the roles of HbxA (or HbxA orthologs) are conserved in fungal develop-
ment [25,27,45]. Unlike HbxA, the function of other homeobox domain-containing proteins
including HbxB (or HbxB orthologs) has not been studied well in other fungi. Recently,
our study revealed the role of HbxB in A. nidulans [34]. HbxB acts as a key regulator for
the balance between asexual and sexual development in A. nidulans. In this study, we
first reported the function of HbxB in spores through the transcriptomic and phenotypic
analyses. These results can provide an insight into the basic knowledge about the function
of the HbxB orthologs in other fungal species.

One of the important findings in this study is that HbxB is important for response to
various stresses in conidia. RNA-seq results found that the mRNA expression of approx-
imately 150 genes associated with stress response was downregulated in ∆hbxB conidia
(Figure 1). These are associated with response to oxidative (catA, cpeA, and trxA), thermal
(hsp30, hsp70, and hsp140), radiation (nopA, denA, velB, and sizA), and UV (uvsC, uvsD,
and uvsF) stresses (Figures 1 and 2). This decreased mRNA expression of stress-related
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genes might affect the phenotype and increase susceptibility to various stresses, includ-
ing thermal, oxidative, and UV stresses. In addition, decreased mRNA expression of
trehalose biosynthesis genes and the amount of trehalose in ∆hbxB conidia can also af-
fect the response to various stresses. These results supported the idea that HbxB is a
key controller for the various stress responses in conidia. Although we found that HbxB
affects mRNA expression of stress-related genes, the detailed molecular mechanism of
HbxB has not been studied yet. Moreover, the genetic relationship between HbxB and
other regulators involved in conidial stress response has not been studied. In conidia, the
high-osmolarity glycerol (HOG) pathway and the velvet proteins control conidial stress
tolerance in A. nidulans [4,46]. We can speculate that HbxB cross-talk with the HOG path-
way or the velvet regulators for regulating mRNA expression of genes involved in conidial
stress response. Further research will be needed to illuminate how conidial stress response
is precisely regulated by these regulators.

Another finding in this study is that HbxB is involved in gene expression related to
secondary metabolite gene clusters (Figure 4). In particular, HbxB can function as a negative
regulator for sterigmatocystin production. The mRNA levels of several sterigmatocystin
biosynthesis genes and the amount of sterigmatocystin were increased in ∆hbxB conidia.
However, this result is the opposite of a previous result. In dark conditions for sexual
development, hbxB deletion decreased sterigmatocystin production and the mRNA levels
of aflR, encoding an activator of the sterigmatocystin gene cluster [34]. It was speculated
that the function of HbxB works differently depending on the temporal or cell type-specific
regulation, and additional studies are needed to reveal this.

Overall, this study suggests that HbxB has a multi-functional role in fungal develop-
ment and metabolism in A. nidulans. During the developmental process, HbxB regulates
the balance between asexual and sexual development. In conidia, HbxB regulates the
mRNA levels of genes associated with stress response, β-glucan biosynthesis, trehalose
biosynthesis, and secondary metabolism, thereby governing conidial stress response, pri-
mary and secondary metabolism, and conidial maturation (Figure 5). Although HbxB has
been found to affect the transcription of thousands of genes, the direct targets of HbxB and
the detailed molecular mechanism of HbxB are still unknown. It should be required for
understanding conidiogenesis in A. nidulans.
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