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Abstract: The metabolism and accumulation of flavor compounds in Chinese Baijiu are driven
by microbiota succession and their inter-related metabolic processes. Changes in the microbiome
composition during Baijiu production have been examined previously; however, the respective
metabolic functions remain unclear. Using shotgun metagenomic sequencing and metabolomics,
we examined the microbial and metabolic characteristics during light-flavor Baijiu fermentation to
assess the correlations between microorganisms and their potential functions. During fermentation,
the bacterial abundance increased from 58.2% to 97.65%, and fermentation resulted in the accumulation
of various metabolites, among which alcohols and esters were the most abundant. Correlation analyses
revealed that the levels of major metabolites were positively correlated with bacterial abundance
but negatively with that of fungi. Gene annotation showed that the Lactobacillus species contained
key enzyme genes for carbohydrate metabolism and contributed to the entire fermentation process.
Lichtheimia ramosa, Saccharomycopsis fibuligera, Bacillus licheniformis, Saccharomyces cerevisiae, and Pichia
kudriavzevii play major roles in starch degradation and ethanol production. A link was established
between the composition and metabolic functions of the microbiota involved in Baijiu fermentation,
which helps elucidate microbial and metabolic patterns of fermentation and provides insights into
the potential optimization of Baijiu production.
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1. Introduction

Baijiu, a traditional fermented alcoholic beverage, is very popular in China. As is the case with all
naturally fermented food products, changes in the microbiome composition during fermentation are
essential for the development and final quality of Baijiu [1,2]. Therefore, it is important to elucidate
the structure and metabolic function of the microbiome so as to better understand the mechanisms
underlying fermentation. Moreover, a comprehensive understanding of food microbiota may help
elucidate microbial ecology and evolution in more natural, complex ecosystems [3–5]. Thus, there is
increasing interest in uncovering the characteristics of Baijiu-making microbiota and revealing the
important effects of changes in microbiota on Baijiu fermentation [1,6].
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Chinese Baijiu can be classified into different categories based on their flavor profiles, in which
sauce-flavor Baijiu, strong-flavor Baijiu, and light-flavor Baijiu comprise the three dominating categories [6].
Light-flavor Baijiu is famous for its pure, pleasantly fruity, and mild taste, and for its refreshing aftertaste [7],
which have made it the predominant type of Baijiu in the Chinese liquor market [1,8]. Light-flavor Baijiu
is produced in an open solid-state fermentation process. Typically, sorghum is used as raw material
to which low-temperature Daqu, the fermentation starter for Chinese Baijiu, is added as culture starter,
and fermentation is allowed to occur in large earthenware containers. Fermented grain is subsequently
distilled to produce Baijiu [6]. During light-flavor Baijiu fermentation, microorganisms originating from
Daqu and from the environment, such as Bacillus, Lactobacillus, Pediococcus, Saccharomycopsis, Saccharomyces,
Pichia, Wickerhamomyces, and Aspergillus, were found to be predominant [9,10].

In previous studies, culture-dependent and -independent methods were used to describe the
microbial community in Daqu and during the fermentation process of light-flavor Baijiu [9–12].
The functions of particular species characterized in a simulated environment differed substantially from
those of species in situ [13,14]. In the past few decades, high-throughput amplicon sequencing has helped
to uncover and analyze additional microorganisms that participate in Baijiu fermentation [6,8,9,15].
However, amplicon sequencing only provides limited information on microbial metabolic functions [16],
whereas shotgun metagenomic sequencing approaches offer a higher resolution regarding taxonomic
annotation, circumvent amplification biases, and provide a higher taxonomic accuracy at the species
level [17,18]. Moreover, this method facilitates elucidating the functional distribution of microbiota
through non-selective genomic assembly followed by gene annotation [19,20]. This approach has
thus been applied in a few studies to reveal potential metabolic functions in fermented food products,
including sausage [21], milk Kefirs [18], pu-erh tea [22], and various cheeses [23,24].

In the current study, shotgun metagenomic sequencing, metabolomic analyses, and gene
annotation were used to investigate the microbial and metabolic characteristics during light-flavor
Baijiu fermentation and further to assess the mechanistic correlations between microbial community
composition and fermentation functions. The key microorganisms of Baijiu fermentation and potential
metabolic functions of microorganisms were identified. Our results may help increase the production
efficiency and improve the quality and flavor of the final product.

2. Materials and Methods

2.1. Sample Collection

During light-flavor Baijiu production, fermented grain samples were collected from Shanxi
Xinghuacun Fenjiu Distillery Co., Ltd. (Fenyang, China) in 2017. Light-flavor Baijiu is fermented
with sorghum as a raw material and Daqu as a starter culture in earthen jars. Daqu is a saccharifying
and fermenting agent which is prepared by solid-substrate fermentation from barley and peas [11].
The diameter and depth of a jar are 0.8 and 1.2 m, respectively, with the capacity of 260 L. It takes
approximately 28 days for light-flavor Baijiu to ferment [25]. In one fermentation batch, approximately
500 g of fermented grain samples were randomly taken from the center of the middle layer of each jar on
days 1, 7, 15, and 28. The opened jars were subsequently eliminated from the study. Three independent
batches were sampled for adequate representation.

2.2. Microbiological and Physicochemical Analysis

Changes in the physicochemical properties of fermented grain, including moisture content, pH,
core temperature, and acidity, were measured as described by Pang et al. [6]. Fermented grain samples
(10 g) were placed in an appropriate peptone physiological salt solution to determine the population of
microorganisms using selective media. The viable cell counts of total aerobic bacteria were enumerated
on Plate Count Agar at 30 ◦C for 24 h. Lactic acid bacteria (LAB) counts were performed on de Man,
Rogosa, Sharpe Agar (MRSA) with 500 µg/mL of natamycin at 30 ◦C for 48 h. Yeasts and molds were
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enumerated on Rose Bengal Chloramphenicol Agar with 100 mg/L of chloramphenicol at 28 ◦C for
48–72 h [11].

2.3. Polar Non-Volatile Metabolite Analysis

The polar non-volatile compounds in fermented grain were assayed using the proton nuclear
magnetic resonance (1H NMR). Metabolites were extracted by suspending 300 mg of fermented grain
in 1.5 mL of cold ultra-pure water (Milli-Q; Millipore, Bedford, MA, USA), followed by grinding using
a Mini-Beadbeater for 60 s and cooling on ice for 10 min. After centrifugation at 13,000× g for 10 min,
1.0 mL of supernatant was mixed with 1.0 mL of phosphate buffer (0.1 M sodium phosphate consisting
of 10% deuterium oxide (D2O) (v/v), 100 mM of imidazole, 0.2% (w/v) sodium azide, and 1 mM of
trimethylsilylpropionate ([Sigma-Aldrich, St. Louis, MO, USA] as an internal standard)), which was
then centrifuged at 16,060× g and 4 ◦C for 5 min. Then, 600 µL of the supernatant was transferred to
5 mm NMR tubes. The NMR spectra were recorded using an Avance III 600 FT-NMR spectrometer
(Bruker, Billerica, MA, USA) at 14.1 T (600.13 MHz proton frequency). The experimental NMR spectra
were compared with those of known metabolites using the Chenomx NMR Suite software (version 6.0;
Chenomx, Edmonton, AB, Canada) to identify the metabolites.

2.4. Volatile Compound Analysis

The volatile compounds in fermented grain were analyzed using an Agilent 6890 GC equipped
with a 5975B series mass spectrometric detector (Agilent Technologies, Palo Alto, CA, USA). A 50:30 mm
DVB-CAR-PDMS SPME fiber (Supelco Co., Bellefonte, PA, USA) was used for headspace solid-phase
microextraction (SPME). Briefly, 2 g of the fermented grain sample was added to 8 mL of Milli-Q
water. After ultrasonic wave treatment for 30 min, the sample was centrifuged at 6500× g and 4 ◦C for
10 min. The supernatant (8 mL) was transferred to a 20 mL vial containing 2 µL of 4-methyl-2-pentanol
(125.0 mg/L) as an internal standard and 3 g of sodium chloride. Volatile compounds were collected
for 45 min at 50 ◦C, followed by GC-MS analysis [26]. Volatile compounds were identified by
matching with the NIST 14 mass spectral database and were quantified with 4-methyl-2-pentanol as an
internal standard.

2.5. DNA Extraction and Shotgun Metagenomic Sequencing

Samples from each time point were thoroughly mixed, and then 5 g of each fermented grain
sample was placed in 30 mL of phosphate-buffered saline (120 mM, pH = 8.0) and then shaken at
200× g for 30 min. A series of centrifugation steps were executed to enrich the microbial cells in the
samples. First, the suspension was centrifuged at 200× g for 5 min, and the pellet was washed twice
with phosphate-buffered saline. Microbial cells in the suspension were collected by centrifugation at
9000× g for 10 min to pellet microbial cells, followed by three washing steps.

DNA was isolated using a CTAB-based method. The microbial pellet of each sample was
resuspended using 1 mL of CTAB lysis buffer (0.1 M of Tris-HCl, 0.1 M of EDTA, 0.1 M of Na3PO4,
1.5 M of Na Cl, 1% w/v CTAB (pH = 8), 5 µL of proteinase K (20 mg/mL), 10 µL of lysozyme (50 mg/mL),
10 µL of lyticase (10 u/mL), and 5 µL of RNase A (10 mg/mL)). The samples were then transferred
to bead-beating tubes containing 0.3 g glass beads (0.3 mm diameter) and were homogenized using
a Mini-Beadbeater twice for 2 min. After this, the samples were incubated at 37 ◦C for 1.5 h under
horizontal shaking at 200× g. Two hundred microliters of 20% sodium dodecyl sulfate (SDS) was
added to each sample, followed by incubation at 65 ◦C for 1 h while gently inverting each tube every
20 min. DNA was extracted using two extraction steps with chloroform-isoamyl alcohol (24:1 v/v) and
was precipitated for 1.5 h using 0.6 volumes of pre-cooled isopropanol. Each DNA pellet was washed
thrice using pre-cooled 70% ethanol. DNA was eluted using 30 µL of ultra-pure water (Milli-Q).

Sequencing was performed at Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China).
Sequence libraries were fragmented to an average size of approximately 300 bp using a Covaris M220
ultrasonicator device (Gene Company Limited, Beijing China) and were tagged with sequencing adapters
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using a TruSeq DNA Sample Prep Kit (Illumina, San Diego, CA, USA) according to the manufacturer’s
instructions. Paired-end sequencing was performed on an Illumina HiSeq 4000 platform (Illumina).

2.6. Sequence Assembly, Taxonomic and Functional Annotation

To improve the accuracy of subsequent analysis, the adapter sequences were trimmed off on the 3′-
and 5′-ends using the SeqPrep software. Sickle software was used to remove low-quality reads shorter
than 50 bp with a quality value below 20 or with ambiguous base calls. Clean reads were assembled
into contigs using the MEGAHIT software and multiple k-mer lengths [27]. The contigs shorter than
300 bp were excluded. Putative open reading frames (ORFs) were predicted using MetaGene and
were clustered using CD-HIT with a 95% sequence identity and 90% coverage [28]. A non-redundant
gene catalog was compiled from each cluster. Sequences were aligned against a non-redundant gene
catalog using SOAPaligner at a 95% sequence identity to assess the gene abundance [29], and the gene
abundance in each sample was calculated and normalized via the Reads Per Kilobase of per Million
mapped reads (RPKM) [30]. The sequence data were deposited in the NCBI Sequence Read Archive
under the project accession number PRJNA630248.

Taxonomic annotation was performed against the NCBI nr database using DIAMOND (http:
//www.diamondsearch.org/index.php, version 0.8.35) BLASTp with an e-value threshold of 1e−5 [31].
The EggNOG (version 4.5) [32], CAZy (version 5.0) [33], and KEGG (https://www.genome.jp/kegg/)
databases [34] were employed for functional annotation using the same threshold value. The KOBAS
2.0 software was used to conduct a KEGG pathway mapping analysis [35]. The functional genes
(i.e., enzyme-encoding genes) associated with fermentation were annotated, and the relative abundance
of functional microorganisms at different times during fermentation was calculated using the total
relative abundance of certain functional genes at different times as 100%.

2.7. Statistical Analyses

Data were tested by conducting a one-way ANOVA followed by Duncan’s test using SPSS (version
20.0; SPSS, Chicago, IL, USA). p-values < 0.05 were considered significant. A principal component
analysis (PCA) was performed using the SIMCA software (version 14.0; Umetricus AB, Umea, Sweden).
The microbial communities at species level in fermented grain were visualized using Circos (version
0.69–6). The orthogonal projection to latent structure discriminant analysis model (O2PLS) was used
to estimate the relationship between the microbial species and polar water-soluble compounds and
volatile compounds, respectively, which consisted of the simultaneous projection of both the microbial
species (X) and metabolites (Y) during Baijiu fermentation with SIMCA-14.0 [36]. The correlation matrix
shows the pair-wise correlation between all variables (X and Y). The microbial species with variable
importance in the projection (VIP) value > 1.0, were the most associated for explaining the metabolites.
The significance of correlation coefficient was calculated via Origin 8.0 (OriginLab Cor., Northampton,
MA, USA). Only the significant correlations of data were presented and discussed. A high correlation
coefficient (|ρ| ≥ 0.8, p < 0.05) between the microbial species (VIP > 1) and metabolites was visualized
via Cytoscape (v.3.4.0). Heatmaps of the gene abundance annotated using eggNOG and the KEGG
database were produced using the pheatmap package with Z-score normalization in R [37].

3. Results

3.1. General Investigation of Microbiota and Physicochemical Properties

The culture-based microbial abundance estimates and physicochemical properties of fermented
grain provided the first insights into the microbial composition and metabolic changes, which offered a
basis for further omics analyses. During light-flavor Baijiu fermentation, the grain was transformed
from loose, large sorghum particles to a watery, sticky substance (Figure 1a). The total numbers of
bacteria, fungi, LAB, and yeasts were 6.86, 6.04, 6.29, and 5.01 log CFU/g, respectively, on day 1. All of
these groups reached their maximum abundance by day 7. No molds were detected after day 7.

http://www.diamondsearch.org/index.php
http://www.diamondsearch.org/index.php
https://www.genome.jp/kegg/
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The total population of bacteria was higher than that of yeasts, at approximately 3 log CFU/g on
day 28 (Figure 1b). The physicochemical properties indicated the progress of the fermentation and
reflected the quality of the fermented grains [38]. During fermentation, the moisture content and
acidity continually increased, while the pH decreased (Figure 1c). The temperature increased rapidly
from the start of the fermentation to day 7 and then decreased gradually to 24 ◦C on day 28.
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Figure 1. Microbiological and physicochemical characteristics of the fermented grains on the 1st, 7th,
15th, and 28th days of light-flavor Baijiu fermentation. (a) Exemplary images of fermented grains;
(b) changes in the viable microbial counts of fermented grains; (c) changes in the physicochemical
characteristics of fermented grains. F1: fermented grains sampled on the 1st d; F7: fermented grains
sampled on the 7th d; F15: fermented grains sampled on the 15th d; F28: fermented grains sampled on
the 28th d. Different letters obtained by one-way ANOVA followed by the Duncan’s test indicated
significant differences at p < 0.05.

3.2. Microbial Composition and Dynamics Based on Shotgun Metagenomics

The sequencing of metagenomic libraries from the microbiota of fermented grain samples collected
on days 1, 7, 15, and 28 produced a total of 539 million clean reads with each sequencing depth of
10 Gb. Details on the numbers of reads per sample are shown in Table S1. Taxonomic annotation was
performed to reveal the microbial diversity during Baiiju fermentation. Shotgun metagenomics can
help examine relative abundances at the domain level of microbial communities, which would reflect
variations in the microbial populations [39]. At the start of the fermentation process, the abundance of
fungi and bacteria was 58.23% and 41.70%, respectively (Figure 2a). The relative abundance of bacteria
rapidly increased to 94.56% until day 7 and remained predominant until the end of the fermentation
process (97.65%), whereas that of fungi decreased to 2.30%. Microbial diversity decreased sharply
during fermentation. At a relative abundance of >1%, we observed 70 genera and 136 species at
the beginning of the fermentation, and only 12 genera and 53 species at the end of the fermentation
(Table S2). Lactobacillus, Pichia, Lichtheimia, Leuconostoc, Rhizopus, and Bacillus were predominant on
day 1 and, among these, only Lactobacillus and Pichia showed a relative abundance of >10%. The relative
abundance of Lactobacillus had increased to 79.62% by day 7, and it became the most abundant taxon
until the end of fermentation, accounting for 92.02% of the total abundance at the genus level (Figure 2b).
At the species level, p. kudravzerii, Li. ramosa, Le. citreum, and B. licheniformis were predominant on
day 1. La. acetotolerans, La. buchneri, and La. hilgardii increased and were predominant at the end of the
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fermentation (Figure 2c). Saccharomyces cerevisiae, which was the main producer of ethanol, occurred at
a relative abundance of 6.68% to 62.26% of all fungi from the beginning to the end of the fermentation
(Table S3).Microorganisms 2020, 8, x 8 of 22 
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Figure 2. Taxonomic annotation of the microbiota in fermented grain during light-flavor Baijiu
fermentation. (a) Distribution of microorganisms at the domain level; (b) distribution of dominant
microbial genera (only genera which occurred at >0.5% in at least one sample were shown);
(c) distribution of dominant microbial species (only species which occurred at >1% in at least one
sample were shown). The green bars at the outer ring represent different samples (F1, F7, F15, and F28,
at the right side of the diagram), while others represent for different species. The length and number of
the bars on the inner ring represent the percentage of species in each sample. The bands with different
colors demonstrate the sources of different species.

3.3. Metabolic Succession during Light-Flavor Baijiu Fermentation

Metabolites in fermented grain produce the aroma of Baijiu, either directly or as a precursor,
and the succession of metabolites is affected by the microbiota changes during fermentation [21].
To gain a broad understanding of the metabolite changes in fermented grains during fermentation,
both polar water-soluble metabolites and volatile compounds were analyzed. A total of 54 polar
water-soluble metabolites, including carbonic and nitrogen compounds, was annotated at different
fermentation stages, including 4 alcohols, 6 sugars, 23 organic acids, 3 alditols, 6 amino acids, and 12
other compounds (Table S4). Among these six categories, the concentrations of alcohols and amino
acids increased from day 1 to day 15; organic acids and alditol increased throughout the fermentation
process, whereas sugars increased until day 15 and then decreased until day 28 (Figure 3a). Sugars and
organic acids were the main metabolites at the beginning of fermentation, with relative abundances of
45.14% and 25.38%, respectively; however, these abundance substantially decreased to 18.43% and
11.04% (p < 0.05) by day 7. Meanwhile, alcohols were the predominant compounds from day 7 to
day 28, at an abundance of 67.67% (Figure 3b). Based on the profile of these compounds, a principal
components analysis (PCA) plot was produced to characterize the different fermentation periods of
fermented grain (Figure 3c). The first two principal components (PC1 and PC2) explained more than
85% of the total variance. The fermented grain collected on day 1 was separated from all the other
samples, suggesting that the most substantial changes in the polar metabolites occurred during the
first seven days.
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Figure 3. Dynamics of metabolites in the fermented grain in light-flavor Baijiu fermentation, including
(a) the concentration and (b) relative abundance of six categories of polar water-soluble compounds
detected by 1H NMR; (d) the concentration and (e) relative abundance of six categories of volatile
compounds detected by GC-MS; a principal components analysis of (c) polar water-soluble compounds
and (f) volatile compounds. Different letters obtained by one-way ANOVA followed by Duncan’s test
indicated significant differences at p < 0.05.

Furthermore, 112 volatile compounds were identified and quantified in fermented grains, including
42 esters, 27 alcohols, 16 acids, 13 aldo-ketones, 5 phenols, and 9 heterocyclic compounds (Table S5).
The concentrations of esters, alcohols, acids, and phenols peaked on day 15 and gradually decreased
until day 28. The aldo-ketone concentrations continuously increased, and those of heterocycles
fluctuated during fermentation (Figure 3d). Esters were the main volatile compounds during
fermentation, with relative abundances ranging from 52.99% on day 1 to 55.39% on day 28. The relative
abundance of alcohols increased until day 7 and then decreased during the remaining time period.
The concentrations of acids, aldo-ketones, phenols, and heterocycles were reduced by day 7 and then
remained relatively constant until the end of fermentation (Figure 3e). A PCA analysis was conducted
to relate different times of fermentation to concentrations of volatile compounds. The first and second
principal components (PC1 and PC2) explained 49.7% and 23.9% of the total variance, respectively.
The biplot suggested that alcohols, esters, and acids were responsible for the separation of fermented
grains at different fermentation stages (Figure 3f).

3.4. Correlations of Microorganisms and Metabolites in Fermented Grain

To explore the microbial functions during fermentation, the O2PLS-DA model was constructed for
the correlation analysis between microbial species and metabolites, including both polar water-soluble
compounds and flavor compounds (Tables S6 and S7). The R2Y and Q2 of the polar and water-soluble
compounds model were 0.973 and 0.981, respectively, and those of the volatile compounds were 0.888
and 0.705, respectively. The VIP of microbial species is displayed in Figure S1. A total of 139 significant
correlations (correlation coefficient ≥ |0.8|, p < 0.05) between microbial species (VIP > 1) and metabolites
are displayed in Figure 4. Most LABs showed positive correlations with the metabolites; for instance,
La. acetotolerans and La. parabuchneri were positively correlated with ethanol production; La. acetotolerans,
La. buchneri, La. odoratitofui, La. hilgardii, La. similis, and La. parabuchneri showed a positive correlation
with glucose and lactate; La. odoratitofui, La. Hilgardii, and La. diolivorans were positively correlated
with acetate (Figure 4a). La. brevis was positively correlated with ethyl acetate, isobutyl acetate,
pentanoic acid, ethyl ester, ethyl benzeneacetate, 2-methyl-1-propanol, and 4-ethyl phenol (Figure 4b),
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whereas La. paralimentarius exhibited negative correlations with most metabolites. Most fungi showed
negative correlations with the majority of metabolites, apart from Pichia kudriavzevii Li. ramose, Rhizopus
delemar, and Hanseniaspora uvarum, which produced positive correlations with sucrose, galactonate,
galactitol, maltose, and acetone.
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nodes represent the metabolites, the purple nodes represent the bacterial species, and the green nodes
represent the fugal species.

3.5. Functional Gene Categories of Microbiota in Fermented Grain

To interpret the observed correlation between the microorganisms and metabolites, the distribution
of metabolic functional genes in fermented grain was annotated using the COG, CAZy, and KEGG
databases, respectively. Regarding functional prediction, 1,847,233 ORFs were found, and the total and
average lengths of these genes were 875 Mbp and 473.57 bp, respectively. Within the COG category
related to metabolism, the relative abundance of carbohydrate, amino acid, lipid, and nucleotide
transport and metabolism showed an increasing trend from the beginning of the fermentation process
until day 7, and then remained stable until the end of the experiment (Figure S2). According to the
CAZy database annotation, the abundance of genes associated with carbohydrate esterase, glycoside
hydrolases, glycosyl transferases, and carbohydrate-binding modules increased from the beginning
of the fermentation until day 7, while the auxiliary activities and polysaccharide lyases decreased.
After day 7, the respective abundance of all the enzyme families was constant or decreased slightly
(Figure S3). The metabolic pathways and potential functional enzymes were annotated by KEGG
pathway mapping. The functional genes in fermentation were divided into 13 categories at level 2,
and carbohydrate metabolism was found to be the most abundant category (Figure 5a). The majority
of genes for carbohydrate metabolism increased by day 15 and then remained constant until the
end of fermentation. The enzymes in the carbohydrate metabolism categories, including starch and
sucrose metabolism, pentose phosphate pathway, glycolysis/gluconeogenesis, pyruvate metabolism,
and some carbolic-ester hydrolases, are essential for Baijiu fermentation [40]. Within the category
of starch and sucrose metabolism, the relative abundance of enzyme-encoding genes for α-amylase
(EC 3.2.1.1) increased from day 1 to day 7 and then decreased until the end of the fermentation
(Figure 5b). The relative abundance of genes for glucoamylase (EC 3.2.1.3) decreased throughout
the fermentation process, and the relative abundance of enzyme-encoding genes for β-glucosidase
(EC 3.2.1.21) decreased during the first 15 days, but slightly increased until the end of fermentation.
The majority of enzymes encoding genes associated with the pentose phosphate pathway and
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glycolysis/gluconeogenesis showed an increasing trend during the first 15 days. Carboxylic-ester
hydrolases are the most important contributors to flavor compound formation. The relative abundance
of the triacylglycerol lipase (EC 3.1.1.3)-encoding genes decreased throughout the fermentation process,
whereas the carboxylesterase (EC 3.1.1.1)-encoding genes generally increased.Microorganisms 2020, 8, x 12 of 22 
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Figure 5. Functional gene analysis of the fermented grain microbiota in light-flavor Baijiu fermentation
based on metagenome annotation. (a) Changes in the function distribution as annotated using the
KEGG database; (b) changes in the enzyme-encoding genes as annotated using KEGG within the
carbohydrate metabolism category. Heatmap is scaled by the relative abundances for each row (a) and
column (b), ranging from low relative abundance to high relative abundance.

3.6. Metabolic Potential of Microbiota in Fermented Grain

To further explore the metabolic potential and the respective microorganisms during fermentation,
the most abundant pathways, enzymes, and dominant microorganisms associated with the respective
enzymes were identified, and a metabolic illustration was produced (Figure 6). These metabolic
processes can be divided into three stages: (i) starch and cellulose degradation, (ii) alcoholic production,
and (iii) flavor development. There were three main pathways for starch degradation in which
α-amylase (EC 3.2.1.1) was required. The dominant microorganisms containing α-amylase genes
were Saccharomycopsis fibuligera, B. licheniformis, and Li. ramosa at the beginning of the fermentation,
and La. plantarum in the following days. Since sorghum is the main raw material, cellulose hydrolysis
is also important during fermentation, and B. licheniformis and Li. ramosa were associated with
cellulase (EC 3.2.1.4), while the dominant microorganisms producing β-glucosidase (EC 3.2.1.21)
varied on day 1, with Saccharomycopsis fibuligera being the most abundant. After this, La. Buchneri,
and La. brevis were the dominant β-glucosidase-producing microorganisms. During alcoholic
fermentation, alcohol dehydrogenase (EC 1.1.1.1) and alcohol dehydrogenase (NADP+) (EC1.1.1.2)
were the most abundant enzymes for ethanol production. The predominant species producing these
enzymes were La. acetotolerans, Saccharomyces cerevisiae, and P. kudriavzevii. In addition, P. kudriavzevii
also primarily participated in acetaldehyde formation, which was a precursor of ethanol. For instance,
La. plantarum, La. acetotolerans, and La. brevis contributed to L-lactate dehydrogenase (EC 1.1.1.27)
and acetate kinase (EC 2.7.2.1), which are required for lactate and acetate formation. After the
accumulation of the precursors, flavor compounds were produced. The dominant genera producing



Microorganisms 2020, 8, 1281 10 of 15

carboxylesterase (EC 3.1.1.1) were Lactobacillus, including La. plantarum and La. brevis at the early stage,
and La. odoratitofui from day 7 to day 28.
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Figure 6. Schematic overview of the metabolic processes with dominant microorganisms during
light-flavor Baijiu fermentation. For each enzyme, only a microbial relative abundance of >10% in at
least one sample is present. “Sa”: Saccharomycopsis; “B”: Bacillus; “Li”: Lichtheimia; “La”: Lactobacillus;
“Pe”: Pediococcus; “Sc”: Scheffersomyces; “T”: Torulaspora; “Le”: Leuconostoc; “H”: Hanseniaspora; “Se”:
Saccharomyces; “W”: Wickerhamomyces; “Pi”: Pichia; “C”: Candida; “Se”: Saccharomyces.
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4. Discussion

Optimizing the fermentation process of food products is challenging because of the complex
composition and succession of the microbiota [1,2,21]. Unraveling the functionality of the microbiota
is fundamental to manipulating the community so as to produce the desired outcome, and this is
the theoretical basis of solid-state fermentation mechanisms [22,40]. Our results contribute to an
understanding of the microbial mechanisms during solid-substrate Baijiu fermentation and offer
potential guidance for improving Baijiu quality via fermentation.

Coupling metagenomics with plate-counting techniques provided a clear overview of the microbial
population. Compared with fungi, the bacteria at the late stage of fermentation were dominant. Notably,
metagenomic sequencing showed that bacteria represented over 90% of all the microorganisms at
the end of fermentation. This was in line with the results of culture-dependent analyses (Figure 1b),
which was also in agreement with the results of a previous study [41]. Microbial composition during
Baijiu fermentation has been investigated using multiple approaches, however, most previous studies
produced taxonomic identification only at the genus level [6,9,42,43]. Over the time of fermentation,
the microbial diversity decreased rapidly due to environmental factors, including nutrient limitation,
high ethanol concentrations, and low pH values [44], and only Lactobacillus and several yeasts survived
until the end of the process.

Considering that microbiota drive the fermentation process, functional microorganisms—i.e.,
metabolically active microorganisms—and their dynamics appear to be more important than the
microbial composition [21]. We combined two metabolomic approaches in order to detect metabolites to
improve our understanding of the biochemical processes involved in fermentation [45]. The concentration
of the majority of metabolites, such as alcohols, esters, acids, amino acids, and phenols, that accumulated
in fermented grain increased during the first 15 days, and then remained stable or decreased. Moreover,
based on the PCA analysis of metabolites, there was an obvious shift from day 1 to day 7. Subsequently, to
reveal the metabolic functions of the microbiota at gene level, functional gene categories were identified
and annotated using sequence data. Shotgun metagenomics can provide strong evidence for functional
predictions [16,40]. We found that the abundance of genes associated with metabolism generally increased
during the first 15 days, as annotated using different databases. Considering microbial composition
dynamics, the most critical changes in both microorganisms and metabolites may be speculated to
occur during the first 15th days. This finding suggests that fermentation time during the solid-state
fermentation process of light-flavor Baijiu may be reduced.

Based on the observed relationships between microorganisms and metabolites as well as functional
gene annotation associated with the metabolic potential of microbial species, it was found that
lactic acid bacteria were the predominant bacteria in light-flavor Baijiu fermentation, particularly
Lactobacillus. Different Lactobacillus species contributed to the fermentation process. La. plantarum provided
enzyme-encoding genes for starch degradation, and some Lactobacillus species such as La. buchneri and
La. collinoides contributed to the production ofβ-glucosidase (EC3.2.1.21), which is associated with cellulose
degradation and completes hydrolysis by converting cellobiose to glucose [46]. In addition, β-glucosidase
can improve the production of some terpenes, which enhance floral aroma characteristics [47]. La. plantarum
was reported to produce high-yield extracellular α-amylase for starch degradation, following isolation
from Nigerian fermented products [48]. At the alcohol production stage, Lactobacillus mainly contributed
to pyruvate metabolism associated with lactic acid, acetic acid, and acetyl-CoA production, which has
been well studied previously [49]. Interestingly, the genes of La. acetotolerans strongly contributed to
alcohol dehydrogenase (EC 1.1.1.1) production, which is responsible for ethanol production during the
fermentation of food products [21]. Meanwhile, La. acetotolerans was positively correlated with ethanol
(Figure 4a). Lactobacillus was previously found to simultaneously produce lactate, ethanol, and acetate [50].
A high abundance of genes encoding alcohol dehydrogenases could explain why La. acetotolerans was
predominant at the late stage of fermentation, suggesting that this species was generally tolerant to high
ethanol concentrations. Specific cultures of La. acetotolerans could be adapted to ethanol concentrations of
more than 12% (v/v) [51]. Some Lactobacillus species such as La. odoratitofui, La. plantarum, and La. brevis
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contributed to carboxylesterases (EC3.1.1.1), which are responsible for ester formation and are important
enzymes enhancing the flavor of fermented food products [52]. Ethyl esters are the most typical flavor
compounds of light-flavor Baijiu [53]. La. paralimentarius was only abundant on day 1 and then almost
disappeared during fermentation (Table S3). This may explain why it produced a negative correlation with
most metabolites and did not play a significantly role in gene functional annotations. These results imply
that Lactobacillus groups with multiple functions are vital for light-flavor Baijiu production, but further
research would be needed, including, for instance, fortified fermentation with Lactobacillus species but
avoiding excessive acidification.

In addition to Lactobacillus, B. licheniformis is also a functional species during fermentation, and it
is known for starch and degradation functions due to its prominent ability to produce α-amylase and
cellulase under a wide range of pHs and temperatures [54]. Although fungi only accounted for a small
proportion of the total microorganisms from day 7 day to the end of fermentation (Figure 2), they were
crucial for starch degradation and alcoholic fermentation, and they provided precursors for the
synthesis of flavor compounds. In particular, all the microorganisms associated with the production of
glucoamylase (EC 3.2.1.3) were fungi, including Saccharomycopsis fibuligera and P. kudriavzevii (Figure 6).
Furthermore, P. kudriavzevii contributed to acetate, acetaldehyde, and ethanol formation in the pyruvate
metabolism. Saccharomycopsis fibuligera is a major amylolytic yeast in the food industry which can
assimilate multiple carbohydrate sources such as glucose, sucrose, cellobiose, and soluble starch [55].
P. kudriavzevii has shown multi-stress tolerance, and it is known to produce organic acids during wine
fermentation [56]. Furthermore, P. kudriavzevii has been reported to contribute to ester formation during
Baijiu production [57]. However, in the current study, P. kudriavzevii mainly participated in the synthesis
of flavor compound precursors. In addition to the main producer of ethanol, Saccharomyces cerevisiae
played a role in the conversion of acetyl-CoA and acetaldehyde, to which flavor compound formation
was attributed. Li. ramosa was predominant in starch degradation by the potential production of
α-amylase, glucoamylase, and cellulase, which has been demonstrated in previous studies [58,59].

In conclusion, microbiomes in a light-flavor Baijiu fermentation were systematically investigated
via the combination of shotgun metagenomics and metabolomics. The microbial structure and
characteristic metabolites were examined during fermentation. The microbe–metabolite relationship
was established, and the further metabolic potential of core microbial species were constructed.
Lichtheimia ramose, Saccharomycopsis fibuligera, and Bacillus licheniformis contributed the most to starch
saccharification. Yeasts, such as Saccharomyces cerevisiae and Pichia kudriavzevii, were responsible for
ethanol formation. Different kinds of Lactobacillus species, such as La. plantarum, La. Brevis, and
La. odoratitofui, contributed to fermentation and acted as the main flavor-producing microorganisms
potentially during the late stage of fermentation. This work provides information for the fermentation
mechanism of Chinese Baijiu and contributes a further step to high and uniform product quality.
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of function distribution annotated by CAZy database. Table S1: Statistics of the metagenomic sequencing after
quality trimming from fermented grain samples. Table S2: The number of genus and species in fermented grain
detected by shotgun metagenomic sequence. Table S3: Relative abundance of dominant bacteria and fungi in
fermented grain, perspectival (>1%). Table S4: Concentration of polar non-volatile metabolites in fermented grain
by 1H NMR. Table S5: Concentration of volatile compounds in fermented grain by HS-SPME-GC-MS. Table S6:
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O2PLS correlation matrix and P value between microbial species and volatile compounds.
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