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Abstract: Yeast taxonomy was introduced based on the idea that physiological properties would
help discriminate species, thus assuming a strong link between physiology and taxonomy.
However, the instability of physiological characteristics within species configured them as not
ideal markers for species delimitation, shading the importance of physiology and paving the way
to the DNA-based taxonomy. The hypothesis of reconnecting taxonomy with specific traits from
phylogenies has been successfully explored for Bacteria and Archaea, suggesting that a similar route
can be traveled for yeasts. In this framework, thirteen single copy loci were used to investigate the
predictability of complex Fourier Transform InfaRed spectroscopy (FTIR) and High-performance
Liquid Chromatography–Mass Spectrometry (LC-MS) profiles of the four historical species of the
Saccharomyces sensu stricto group, both on resting cells and under short-term ethanol stress. Our data
show a significant connection between the taxonomy and physiology of these strains. Eight markers
out of the thirteen tested displayed high correlation values with LC-MS profiles of cells in resting
condition, confirming the low efficacy of FTIR in the identification of strains of closely related species.
Conversely, most genetic markers displayed increasing trends of correlation with FTIR profiles as
the ethanol concentration increased, according to their role in the cellular response to different type
of stress.

Keywords: Saccharomyces; metabolomic fingerprint; barcode markers; yeast taxonomy; FTIR;
LC-MS metabolomic

1. Introduction

Yeast taxonomy debuted at the beginning of the 20th century with a monography based on
morphology and the analysis of a few physiological traits that were eventually increased by the
Dutch School to the over 70 traits suggested in the various editions of “The Yeasts—a taxonomic
study” [1–3]. The idea at that time was simply that the assimilation and fermentation properties
would help discriminated species, thus assuming a strong link between physiology and taxonomy.
Some milestones papers show that these characteristics can be instable and vary within the species,
thus suggesting that they were not ideal markers for species delimitation and that the species is not
a boundary of unique traits combinations. These observations helped molecular taxonomy to take
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off, with DNA–DNA reassociation [4] and then with the sequencing of the LSU marker [2]. In the
meantime, the concept of taxonomy moved from a phenetic description of taxa to their phylogenetic
reconstruction [5]. The overwhelming amount of molecular data produced in the last quarter of a
century has shaded the importance of physiology. This has led to assimilate a taxon to its DNA and,
more specifically, to its marker DNA, to the extent that the OTU (Operational Taxonomic Unit) are
transformed in the MOTU (Molecular OTU) [6]. This approach allowed a rapid and relatively stable
description of new species and, above all, paved the way to the concept of barcoding [7] and hence
to metagenomics. The vast use of DNA for species delimitation and identification soon became the
only system available to uncover the vast extent of viable but non-culturable biodiversity [8–10].
Parallel to this evolution of the DNA-based taxonomy, the advent of proteomics and metabolomics
gave new impetus to the study of the phenotype in broad sense [11–14]. Whereas the application
of artificial intelligence [15–17] will surely improve the ability of metabolomics and metabolomic
fingerprinting tools in the species identification, the primary role of these analytical systems is their
ability to finely characterize the physiological status in various conditions, including different types of
stress [18]. The ability of microbial cells to withstand stress is part of the phenotypical traits used in
species description with good discriminating ability both at the specific and at the subspecific level [19].
Beyond this purely taxonomic application, the response of cells to the stress is of primary importance
in ecology and in industrial applications. This consideration poses the question on the role of the stress
response in discriminating taxa over and, more importantly, below the species level.

Most of the efforts outlined above proved very effective in improving the taxonomic efficacy
and its resolution [20], although the question remains on what is the real meaning of this species
concept, especially when it should be applied to applicative fields where it is not so important to
define the species, or its name, but rather to infer some basic characteristics of the strains from the
fact that they belong to a given species. As long as the taxonomy was basically phenotype-based,
several species were separated for one or few physiological characteristics, as it was in the case of the
Saccharomyces sensu stricto group up to the 1984 revision by Yarrow, which merged all the species of the
group in the single species S. cerevisiae, and then split them into four species (S. cerevisiae, S. bayanus,
S. paradoxus and S. pastorianus) on the basis of DNA–DNA reassociation studies [21], later reinforced
with chromosomal electro karyotyping [22]. When S. cerevisiae, S. chevalieri and S. italicus where merged
in S. cerevisiae for their rDNA homology [4], their specific physiological and even oenological traits
that had led to the delimitation of different species were hidden under a common name. It is not the
everlasting phenomenon of splitting and lumping typical of taxonomic rearrangements, but rather
a was a choice for the trait stability, and therefore in a way for the taxonomic stability, sacrificing
the specificity of groups that could not be any more considered “species”. The choice by itself is
taxonomically correct but takes away the fact that people in the applicative field associated species
epithets with physiological and industrially relevant features.

In the current situation, the idea of turning back to phenotypic identification is far from optimal
because it would strongly block all the studies on the viable and not culturable microbial diversity.
However, reconnecting taxonomy with relevant phenotypic features is an important aim from both
an applicative and a general point of view, which can be obtained by exploring the predictability of
important features of the studied strains, using not only the traditional rRNA based markers ITS and
LSU, but also other single copy genes that have been suggested as new generation markers.

Predictability of specific traits from phylogenies has been explored for Bacteria and Archaea with
quite encouraging results for both binary and quantitative traits [23], suggesting that a similar route can
be endeavored in yeast biology as well, considering their paramount importance as a model organism
and in various applicative fields from oenology to biotechnology.

The aim of this paper is to investigate on the correlation between thirteen taxonomic markers
and the LC-MS and FTIR profiles of the representative type strains of the four historical species the
Saccharomyces sensu stricto group [22], in order to explore the predictability that each of these markers
has with the complex phenotypic profiles obtained by these omic tools.
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2. Materials and Methods

2.1. Cultures and Growth Conditions

The yeast strains used in this work are: S. bayanus CBS 380, S. paradoxus CBS 432, S. cerevisiae CBS
1171 and S. pastorianus CBS 1538. Cultures were inoculated at an optical density at 600 nm (OD600)
of 0.2 in 500-mL bottles with 50 mL of fresh Yeast Nitrogen Base (YNB) medium supplemented with
5% glucose (Difco Laboratories, Franklin Lakes, NJ, USA) and grown at 25 ± 0.5 ◦C under shaking at
150 ± 1 rpm. Cell growth was monitored by determining OD600 and stopped after 18 h. Each culture
was prepared for an FTIR-based bioassay, as detailed in the following paragraph.

2.2. FTIR-Based Bioassay

An FTIR-based assay for stress response analysis was carried out according to the procedure
proposed by Corte and colleagues [18]. Each suspension was centrifuged (5 min at 5300± 10× g), washed
twice with distilled sterile water and re-suspended in High Performance Liquid Chromatography
(HPLC) grade water to obtain an optical density of OD600 = 50. Each cell suspension was distributed
in 15-mL polypropylene tubes, one for each tested concentration of the chemicals. In each tube, 5 mL
of cell suspension and 5 mL of double-concentrate ethanol solution were pipetted to obtain the final
concentrations of 8%, 12% and 16% (v/v) and a uniform cell density at OD600 = 25. Control (0% ethanol
concentration) was obtained by re-suspending cells in distilled sterile water. All tests were carried out in
triplicate. Polypropylene tubes were incubated for 1 h at 25 ◦C in a shaking incubator set at 50 ± 1 rpm.
After the incubation, 1.5 mL of each cell suspension were centrifuged (5 min at 5300 ± 10× g), washed
three times with distilled sterile water and resuspended in HPLC grade water to reach the final
concentration of 2.5 × 108 cells mL−1. For each condition, 105 µL volume was sampled for three
independent FTIR readings (35 µL each, according to the technique suggested by Essendoubi and
colleagues [24] while 100 µL were serially diluted for viability assessment. Viable cell count was
carried out on YPDA (Yeast extract 1%, Peptone 1%, Dextrose 2%, Agar 1.8%) supplemented with
chloramphenicol (0.5 g L−1) plates. Cell mortality (M) was calculated as M = (1 − Cv/Ct) × 100,
where Cv is the number of viable cells in the tested sample and Ct the number of viable cells in the
control suspension.

2.3. Spectra Pre-Processing

FTIR measurements were performed in transmission mode. All spectra were recorded in the range
between 4000 and 400 cm−1. Spectral resolution was set at 4 cm−1, sampling 256 scans per sample to
obtain high quality spectra (signal to noise ratio values greater than 4000 within the 2100–1900 cm−1

interval). The software OPUS v. 6.5 (BRUKER Optics GmbH, Ettlingen, Germany) was used to
assess the quality test, subtract the interference of atmospheric CO2 and water vapor, correct baseline
(rubberband method with 64 points) and apply vector normalization to the whole spectra.

2.4. Untargeted Metabolomics Profile Determination of Yeast Cells by LC-MS Analysis

The metabolomic analysis of CBS 380, CBS 432, CBS 1171 and CBS 1538 samples at increasing
ethanol concentrations (0%, 8%, 12% and 16%, v/v) was performed using a LC-MS untargeted workflow.
Each thesis was tested in five replicates (n = 5), with a total of 80 samples processed. Cell suspensions,
calibrated at 108 cells, was centrifuged (5 min at 5300 ± 10× g) and the resulting pellet was mixed with
glass beads and lysed using FastPrep®-24 Tissue and Cell Homogenizer (MP Biomedicals, Irvine, CA,
USA), at a speed setting of 6.0 for 120 s. The degree of cell breakage was checked microscopically.
One milliliter of methanol was added to each lysate, vortexed and centrifuged at 3000 rpm for
5 min. Supernatants were transferred to the HPLC vials and 0.5 µL was injected into the LC-MS
system. LC-MS analyses were performed using an Agilent 1260 Infinity UHPLC system coupled to
an Agilent 6530 Q-TOF with Agilent JetStream source (Agilent Technologies, Santa Clara, CA, USA).
The LC consists of a quaternary pump and an autosampler with a thermostated column compartment.
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The whole LC-MS system was governed by Agilent MassHunter software (v. B.09.00). The Ion Pairing
Chromatography (IPC) method was used to achieve a wide separation of polar metabolite classes
with ACMETM Amide C18 column (150 × 2.1 mm, 3 µm, Phase Analytical Technology LLC, State
College, PA, USA) thermostated at 50 ◦C. The separation of metabolites was achieved using a flow of
0.35 mL min−1 of a binary gradient of 0.2% heptafluorobutyric acid (HFBA) in water (Solvent A) and
0.1% formic acid in methanol (Solvent B). The initial condition was 2% of B for 2 min, followed by a
transition to gradient from 2% to 80% of B in 5 min and an isocratic step of 8 min. After that, the run was
stopped, and the column was reconditioned for 4 min at initial conditions. An autosampler injected
each sample using a needle wash program of 10 sec with methanol. Each run cycle was completed in
20 min. The ion source operated in positive ion mode using nitrogen as drying gas at 35 psi and 250 ◦C.
The capillary was set at 2000 V with fragmentor, skimmer and octopole Radio Frequency (RF) set at
110, 65 and 750, respectively. Dynamic mass axis calibration with accuracy < 5 ppm was achieved by
continuous infusion in the source of a reference mass solution (Agilent G1969-85001). The spectrometer
acquired data in full-scan mode in the 50–1700 mass range at 1.5 spectra/s. LC-MS raw files were
aligned and processed using Batch Recursive Feature Extraction algorithm of MassHunter Profinder
(Agilent B.08.00). The data of features with score > 90% were imported in Mass Profiler Software
(Agilent B.08.01) to perform features annotation using the Search Database algorithm. For this purpose,
the Yeast Metabolome Database [25] was adapted to work in Agilent Mass Profiler. Only annotated
metabolites with a quality identification score > 90% were retained.

2.5. Data Analysis

2.5.1. Phylogenetic Analysis

Alignment of the concatenated ITS and D1/D2 domain of the 26S rDNA (LSU) sequences of the
four strains was carried out with ClustalW2 built-in tool in MEGA X [26]. Distances were inferred
with the Maximum Composite Likelihood method and expressed as number of base substitutions
per site. This procedure has been chosen because it assumes equal substitution patterns and rates
among lineages and sites, conditions considered appropriate for ongoing separation phenomena.
Both transitions and transversions were considered. The Neighbor-Joining method [27] was used to
reconstruct the tree with 1000 bootstrap reiterations.

2.5.2. Correlation between Genetic Markers and Metabolomic Data

Correlation analysis between genetic and metabolomic markers was performed using a series
of thirteen different loci which included the traditional ITS and LSU rRNA-based markers and other
single copy genes suggested as new generation markers (Table 1).

For each strain, marker sequences were retrieved from whole genome assemblies using an ad-hoc
pipeline, set up using freeware bioinformatic tools, as detailed in the following lines.

For each marker, reference FASTA sequences from S. cerevisiae S288C reference genome (obtained
from Genbank) were aligned to each genome assembly and the coordinates of regions with positive
matchings were retrieved using NUCmer function of MUMmer software [28,29]. Markers sequences
were then extracted as FASTA files from these positive matchings using SAMtools software [30].

Markers alignments were carried out with ClustalW2 built-in tool in MEGA X [26]. Distances were
calculated in R environment (http://www.R-project.org) using dist.dna function from APE R-package
(http://ape.mpl.ird.fr/).

Correlation analysis between genotypic and metabolomic distance matrices from cells in
resting condition was carried out by using the function cor.test included in the Vegan package
(https://CRAN.R-project.org/package=vegan). Data were then exported and analyzed in MS ExcelTM.

http://www.R-project.org
http://ape.mpl.ird.fr/
https://CRAN.R-project.org/package=vegan
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Table 1. Sequence IDs for the thirteen DNA markers used in the study.

Marker Sequence ID

Name Acronym CBS 380T

S. bayanus
CBS 432T

S. paradoxus
CBS 1171T

S. cerevisiae
CBS 1538T

S. pastorianus

Actin ACT1 GCA_001515405.2 GCA_002079055.1 AF527913 GCA_001515465.2
Allantoicase DAL2 GCA_001515405.2 GCA_002079055.1 S000001468 GCA_001515465.2

Beta subunit of fatty acid synthetase FAS1 GCA_001515405.2 GCA_002079055.1 S000001665 GCA_001515465.2
Isocitrate lyase ICL1 GCA_001515405.2 GCA_002079055.1 S000000867 GCA_001515465.2

Internal Transcribed Spacer ITS AY046152 AY046148 AY046146 AY046151
D1/D2 domain of rDNA Large Subunit (26S) LSU D1/D2 U94931 U68555 U44806 AY048172

Mitochondrial subunit II of Cytochrome c oxidase mtCOXII GCA_001515405.2 GCA_002079055.1 GCA_000146045.2 GCA_001515465.2
Mitochondrial small ribosomal subunit mtSSU GCA_001515405.2 GCA_002079055.1 GCA_000146045.2 GCA_001515465.2

RNA polymerase II largest subunit RPB1 GCA_001515405.2 GCA_002079055.1 AF527884 GCA_001515465.2
RNA polymerase II second largest subunit RPB2 AY552472 AY552468 AY497600 GCA_001515465.2

rDNA Small Subunit (18S) SSU GCA_001515405.2 GCA_002079055.1 GCA_000146045.2 GCA_001515465.2
Translation Elongation Factor 1 alpha TEF1-α AF402012 AF402007 AF402004 AF402013

Concatenated ITS-LSU D1/D2 ITS-LSU AY046152-U94931 AY046148-U68555 AY046146-U44806 AY046151-AY048172
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Correlation analysis between genetic vs. FTIR and LC-MS data from cells under stress was carried
out by using the dis.maca function from the R script DADI [31]. Briefly, distance matrices of strains from
each genetic marker were correlated with distance matrices from the first descriptor of each spectral
data matrix, applying the default parameters (Euclidean distances and Pearson correlation calculation).
The procedure was repeated for each descriptor of all spectral matrices. Correlation matrices were
then exported and filtered in MS ExcelTM. Correlations with FTIR data were analyzed considering
both the whole IR spectrum and each of the characteristic spectral region from W1 to W4 [32,33].

2.5.3. HCA and Pathway Analyses of LC-MS Data

The sample weight and non-normalized peak areas are available in Table S1.
Metabolomic data analysis was performed with MetaboAnalyst 4.0 [34]. Data were filtered based

on Interquartile Range, normalized to sample median and scaled by Pareto scaling.
HCA was carried out to highlight the variation trend of differential metabolites between strains

challenged by increasing ethanol concentrations setting the Euclidean correlation method and Ward
clustering algorithm. Metabolites were selected according to the VIP scores from Partial Least
Square-Discriminant Analysis (PLS-DA) (Tables S2–S5). Since the average of squared VIP score is
equal to 1, the “greater than one” rule was used as a criterion for variable selection.

Pathway analysis was performed to discover the most relative pathways involved in the
response of these strains to short-term ethanol stress (Tables S6–S9). The global test algorithm
and relative-betweenness centrality algorithm were specified for pathway enrichment analysis and
pathway topology analysis, respectively.

3. Results

3.1. Phylogenetic Predictability: Correlation between DNA-Based and Phenotypic Markers

To assess the relation between metabolomics and DNA taxonomic markers, FTIR and LC-MS
were employed for the former analyses and a set of thirteen loci of taxonomic use for the latter (Table 1,
M&M section). The choice of these markers was guided by the following criteria: the ITS, LSU and
the concatenated ITS_LSU sequences were included as benchmark since they were used over the last
22 years as identification tool [2,7]; DAL2, FAS1 and ICL1 single copy genes were selected as genes
involved in crucial metabolic pathways [35–38]; and ACT1, mtCOXII, mtSSU, RPB1, RPB2, SSU and
TEF1-α sequences were selected because they are currently proposed as new generation markers for
yeast taxonomy [7,39–42].

Out of these 13 loci, the concatenated sequence ITS_LSU was chosen for the preliminary
investigation on the phylogenetic predictability of metabolomics profiles, whereas the whole set
of markers was used for a second step analysis described below. The phenotypic analysis suffers
traditionally of repeatability problems and is obviously sensitive to the growth phase at which cells are
analyzed. In this respect, late exponential phase was chosen, because it can be easily detected from the
growth curve.

Interestingly, trees from cluster analysis of metabolomic data substantially reproduced the same
clusterization of the strains obtained through their phylogenetic description with ITS_LSU barcode
(Figure 1A). In fact, with both FTIR fingerprint (Figure 1B) and LC-MS metabolomics (Figure 1C)
S. bayanus CBS 380 and S. pastorianus CBS 1538 clustered separately from S. paradoxus CBS 432 and
S. cerevisiae CBS 1171. However, the distances among the strains provided by the ITS-LSU clustering
were significantly different from those indicated by the phenotypic markers.
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obtained analyzing concatenated ITS_LSU sequences; distances were inferred with the Maximum 
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Joining method was used to reconstruct the tree. (B) Clustering obtained analyzing FTIR spectra 
considering the regions from 3200 to 2800 cm−1 (fatty acids) and from 1800 to 1200 cm−1 (amides and 

Figure 1. Genotypic vs. phenotypic FTIR and LC-MS description of S. bayanus, S. pastorianus, S. paradoxus
and S. cerevisiae reference strains. Hierarchical clustering of S. bayanus CBS 380, S. pastorianus CBS 1538,
S. paradoxus CBS 432 and S. cerevisiae CBS 1171 control samples (0% ethanol). (A) Clustering obtained
analyzing concatenated ITS_LSU sequences; distances were inferred with the Maximum Composite
Likelihood method and expressed as number of base substitutions per site. The Neighbor-Joining
method was used to reconstruct the tree. (B) Clustering obtained analyzing FTIR spectra considering
the regions from 3200 to 2800 cm−1 (fatty acids) and from 1800 to 1200 cm−1 (amides and mixed region).
(C) Clustering obtained analyzing LC-MS spectra using Spearman’s distance measure and Ward’s
algorithm. Hierarchical clustering of phenotypes was performed.

The substantial identity among S. paradoxus CBS 1538 and S. bayanus CBS 380, as for the ITS_LSU
analysis, was not confirmed by means of FTIR and LC-MS, showing an increased distance among these
strains, particularly marked in the LC-MS data cluster. Conversely, the distance between S. paradoxus
CBS 432 and S. cerevisiae CBS 1171 was roughly the same when comparing ITS_LSU and FTIR clusters
while it was reduced by the LC-MS description.

The discrepancies among the qualitative and quantitative representation of strains depicted in
Figure 1 suggested to deepen the study by using the whole set of taxonomic markers (Table 1) to better
evaluate if and to what extent the DNA-based markers can be effective in predicting the phenotypic
profiles of these strains.

Distance matrices from FTIR and LC-MS spectra of each strain were correlated with those obtained
for each locus included in the study (Figure 2).

Overall, the correlation between DNA-based and FTIR data (Figure 2A) was lower than that
obtained for LC-MS (Figure 2B).

No significant correlations (correlation coefficients > 0.75) was detected among FTIR and taxonomic
markers (Figure 2A). Conversely, eight markers out of the thirteen tested showed correlation coefficients
higher than 0.75 with distance matrices from LC-MS spectra (Figure 2B). The mitochondrial subunit
2 of cytochrome oxidase (mtCOXII) gene was the marker that correlated best with the LC-MS data
(0.97; p value < 0.01). High correlation values (≥0.9) were also registered for the 18S nuclear ribosomal
small subunit (SSU) and the Translation Elongation Factor 1 alpha (TEF1α) sequences, with 0.91
and 0.90 coefficients, respectively (p values < 0.01). In addition, the FAS1 (Beta subunit of fatty
acid synthetase) and the small subunit mitochondrial rRNA (mtSSU) genes have proved to be good
markers towards LC-MS profiles of the four strains (0.88 and 0.76 correlation coefficients, respectively;
p values < 0.01). Interestingly, results obtained with traditional markers revealed that the ITS barcode
showed a better correlation with these phenotypic data than the concatenated sequence ITS_LSU,
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which in turn displayed a better correlation than the LSU alone (0.89, 0.88, 0.85 correlation coefficients;
p values < 0.01).

Finally, the analysis did not reveal any significant correlation between RPB1, RPB2, ICL1 and
ACT1 coding sequences and these metabolomic phenotypic descriptors.
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Figure 2. Correlation between taxonomic markers and phenotypic responses of control samples of
S. bayanus, S. pastorianus, S. paradoxus and S. cerevisiae reference strains. Correlation coefficients obtained
from the comparison between the distance matrices calculated on the basis of each of the thirteen loci
employed in the study and those obtained analyzing FTIR (A) and LC-MS (B) spectra of strains in resting
condition are reported. Distances were calculated using dist and dist.dna functions included in R-Ape
package (https://cran.r-project.org/web/packages/ape/index.html). Correlation analysis was carried out
using cor.test function included in the R-Vegan package (https://CRAN.R-project.org/package=vegan).

https://cran.r-project.org/web/packages/ape/index.html
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3.2. Stress Predictivity

The potential applicability of some of the mentioned above markers for the prediction of strains
phenotypes in resting condition paved the way for another question on whether this set of taxonomic
loci could be used to predict the phenotypes under stress. This hypothesis springs from the observation
that these species evolved with a stringent selection due to the highly challenging environments with
high alcohol content. At this aim, the genetic distances between the four strains, calculated for each of
the thirteen markers employed in the study (Table 1), were compared with distances obtained from
FTIR spectra of cells in response to short-term ethanol stress. More in detail, a FTIR-based assay,
specifically designed for stress response assessment [18], was carried out on the whole cells of each
culture at increasing ethanol concentrations (0%, 8%, 12% and 16% v/v), paralleling with viable analysis.

3.2.1. Mortality Analysis

The analysis of cell mortality showed a strain-specific pattern in response to ethanol (Table 2).
S. bayanus CBS 380 was the most sensitive strain with around 40% mortality already at the lowest
ethanol concentration tested (8%), almost saturated at 12% ethanol. Conversely, ethanol did not
significantly affect the viability of S. pastorianus CBS 1538 until 12%, which in any case remained over
90% at higher ethanol concentrations, suggesting a strong resistance for this strain. The mortality
induced by ethanol on the other two strains, S. paradoxus CBS 432 and S. cerevisiae 1171, is close to that
of S. pastorianus CBS 1538. In fact, the first displayed mortality values ranging from 11% to 13% for all
the tested concentrations while the latter showed mortality values around 10% and 20% at 12% and
16% ethanol, respectively.

Table 2. Mortality (%) induced by increasing ethanol concentrations on the four strains from
Saccharomyces sensu stricto complex.

Ethanol%
(v/v)

Mortality (%)

CBS 380T

S. bayanus
CBS 432T

S. paradoxus
CBS 1171T

S. cerevisiae
CBS 1538T

S. pastorianus

0 0 0 0 0
8 40.6 12.3 0.0 0.0

12 97.2 12.5 10.8 3.7
16 100.0 13.3 20.3 9.7

3.2.2. Correlation between Molecular Markers and FTIR Metabolomic Fingerprints of Cells under
Short-Term Ethanol Stress

The comparison between genetic data and FTIR profiles of ethanol stressed cells was carried out
calculating Pearson’s correlations between the distances obtained considering each of the thirteen
genetic markers and those obtained comparing each of wavelength of each spectral matrix. The resulting
correlation matrices were filtered, in order to retain only the wavelength with a correlation higher than
0.75 (Table S10), and then expressed as percentage on the total values obtained (hereinafter reported as
percentage of significative wavelengths, PSW).

The low variability showed by LC-MS data did not make it possible to outline any defined relation
with phylogenetic markers (data not shown). We therefore decided to concentrate the analysis on the
only FTIR dataset by plotting the percentages of significative correlations with each marker in each
tested condition, obtaining the trends reported in Figure 3.
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Figure 3. Trends of significative correlations between taxonomic markers and whole FTIR spectra
from cells under short-term ethanol stress. Correlations between the distances of the IR spectra from
cells challenged with four different ethanol concentrations (0%, 8%, 12% and 16%) and those obtained
considering each taxonomic marker under study were reported as trends of Percentages of Significative
Wavelengths (PSW). Markers were grouped according to their correlation trend in: low intensity
responses (A); high intensity responses (B); and non-monotonous responses (C).

Data presented in Figure 3 defined three different types of progression: (i) low intensity response
(Figure 3A), characterized by monotonous trends and maximum PSW value between 2% and 4%;
(ii) high intensity response (Figure 3B), characterized by monotonous trends and a maximum PSW
value between 6% and 32%; and (iii) non-monotonous response (Figure 3C).

Low intensity responses were shown by SSU, TEF-1α, ITS, Beta subunit of fatty acid synthetase
(FAS1) and mitochondrial COX (mtCOXII) genes (Figure 3A). The first four markers were characterized
by an absence of correlations with 0% and 8% ethanol conditions; PSW values for SSU and TEF-1α
showed then an increase to 1.67% and 1.8% at 12% ethanol and reached their maximum value (2.44%)
in the last condition. A similar correlation rise was shown by ITS and FAS1 markers after 12% ethanol
exposure, reaching their maxima of 1.93% and 2.05%, respectively, at 16% ethanol.

The last marker with a low response is mtCOXII, characterized by a PSW value of 1.5% at 0%
ethanol, followed by a decrease to zero and then a subsequent increase, similar to those of SSU and
TEF-1α, to 1.80% at 12% ethanol. A maximum PSW value of 3.47% was finally reached in the last
stressing condition.

High intensity response (Figure 3B) was shown by Actin encoding gene (ACT1), Allantoicase
encoding gene (DAL2), ICL1, RPB1 and LSU markers. These last three displayed very low PSW values
at 0%, 8% and 12% ethanol stressing condition, reaching then their maxima of 7.70%, 7.45% and 6.29%,
respectively, for 16% ethanol. ACT1 and DAL2 genes conversely showed, respectively, a PSW value of
7.19% and 5.01% in the resting condition and then slowly decreased, reaching zero at 12% ethanol;
after that, PSW increased again, reaching values of 22.34% and 31.84% respectively.

The last type of response was that displayed by mitochondrial SSU and RPB2. Both trends showed
a three-fold increase of PSW between 0% and 8% ethanol, followed by a gradual decrease to values of
2.05% and 2.18%, respectively, in correspondence of the last considered condition.
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Noteworthy, ITS_LSU concatenation did not show in any case a correlation above the 0.75 threshold
therefore its trend cannot be reported.

The analysis of these progressions has shown the existence of a certain correlation between some
markers and the phenotypic response represented by the whole FTIR spectra. The subsequent step of
the analysis focused then on the search for a more specific signal of the predictability of these markers
towards the FTIR profiles.

Therefore, the correlation between the distances of the strains on the basis of the thirteen markers
and the distances between the same strains calculated on the four specific spectral region related to
stress response (Fatty acids W1, Amides W2, Mixed region W3 and Carbohydrates W4) considered
separately was investigated. The spectra were divided into two groups: control cells spectra and
ethanol stressed cells spectra, grouping together the data from the three stressing conditions (Figure 4
and Tables S11 and S12).
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Figure 4. Correlations between taxonomic markers and characteristic spectral regions of the FTIR
spectrum of both control and stressed cells. Maximum correlation values between each taxonomic
marker and fatty acids (W1), amides (W2), mixed (W3) and carbohydrates (W4) spectral areas are
reported for both control (A) and stressed (B) cells. The latter analysis was carried out grouping
together data from the three stressing conditions tested. Colored labels refer to markers displaying
correlation values higher than 0.75 threshold, represented by the red dashed lines.

Maximum correlation values of each marker with the four IR regions are reported and quartiles
thresholds are indicated as horizontal dashed lines. ICL1, RPB1 and ACT1 showed relatively high
correlation values (0.76 for the first two and 0.91 for the third) with fatty acid (W1) region of control
samples, followed by RPB2, placed just below 0.70. All the other markers showed lower correlation
values, always below 0.40 (Figure 4A). The same four marker, together with DAL2, were highly
correlated also with amides (W2) region of control samples.

Only RPB2 and DAL2 maintained a high correlation value with mixed (W3) and carbohydrates
(W4) region, despite being the second marker slightly below 0.70 in W3 region; all the other markers
showed correlation values around 0.5 or lower.
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Noteworthy, the current official species markers ITS, LSU and their concatenation did not display
significative correlations with the four IR regions, being always in the range between 0.25 and 0.5 for
control samples.

Analyzing the correlation between the same markers and the 4 regions in the spectra of ethanol
stressed cells (Figure 4B), a quite different picture is obtained. W1 region showed a correlation higher
than 0.75 only with DAL2 and RPB2, while the correlation with all the other markers was always lower.

The same two markers, together with ACT1 and mtCOXII, were highly correlated also with W2
region. Interestingly, in this region, the correlation value for all the other markers was around 0.6,
with the only exception of ITS_LSU concatenation, which showed a correlation around 0.4. The same
decrease in correlation with W3 and W4 region observed for control cells spectra is present also in this
second situation, in which all markers showed values below 0.75.

3.3. Phenotype Analysis in Response to Short-Term Ethanol Stress

LC-MS metabolomics was employed to assess the phenotypes of S. bayanus, S. pastorianus,
S. paradoxus and S. cerevisiae type strains in response to short-term stress induced by ethanol. LC-MS was
carried out on cell extracts from controls (0% ethanol) and treated cells at 8%, 12% and 16% ethanol (v/v),
identifying a total of 89 metabolites with known structures (Table S1). To focus on the differentially
altered metabolites between strains, Hierarchical Clustering Analysis (HCA) was performed according
to the VIP scores from PLS-DA (Figure 5A–D).Microorganisms 2020, 8, x FOR PEER REVIEW 12 of 17 
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Figure 5. Heatmaps of the top significantly altered metabolites and pathways of S. bayanus CBS
380, S. pastorianus CBS 1538, S. paradoxus CBS 432 and S. cerevisiae 1171 strains after 1hr exposure to
increasing ethanol concentrations. (A–D) Heatmaps of the top significantly altered metabolites at
ethanol concentrations (v/v) of: 0% (A); 8% (B); 12% (C); and 16% (D). The colored boxes indicate the
relative concentrations of the corresponding metabolite in each group under study. The color scale is
log2 transformed value and indicates relatively high (red) and low (green) metabolite levels. (E–H) The
most important altered pathways in the response of the four strains to ethanol (v/v) at: 0% (E); 8%
(F); 12% (G); and 16% (H). y-axis, -log(p) represents metabolic pathways containing metabolites that
are significantly different between the four strains; x-axis, pathway impact represents the impact of
these significantly changed metabolites on the overall pathway, based on their position/number within
the pathway.
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Differentially altered metabolites were mainly amino acids and clustered separately into two main
groups, defining a strain-specific pattern in each of the four conditions tested. Despite this evidence, the
strains response at 8% and 12% ethanol (v/v) was very similar to that of controls, diverging significantly
only at 16% ethanol. Interestingly, metabolites of the upper cluster were always upregulated in
S. bayanus type strain, suggesting that the metabolome of this strain was significantly different from
the others both in resting that in stressing conditions.

According to the results of significance of the perturbed metabolic pathway and the centrality of
metabolites in the metabolic pathway, the perturbation of few metabolic pathways was found to be
significant (Figure 5E–H).

Interestingly, two pathways distinguished the four strains regardless of the presence of ethanol.
These differences were attributable to the upregulation of several metabolites in S. bayanus CBS 380
and S. paradoxus CBS 432, impacting mainly on the pathways of Aminoacyl-tRNA biosynthesis
(d-Asparagine, d-Histidine, d-Arginine, d-Glutamine, d-Serine and d-Alanine) and Arginine
biosynthesis (d-Arginine, d-Glutamine, N-Acetylornithine and d-Ornithine). Conversely, the only
differences in cell metabolomes at increasing concentrations of ethanol concerned the differential
regulation of metabolites such as Glutathione, gamma-l-Glutamyl-l-cysteine, l-Ornithine, Spermidine
and (5-l-Glutamyl)-l-amino acid, all involved in the Gluthathione metabolism pathway.

4. Discussion

In the present study, we investigated the predictability of thirteen markers towards the complex
FTIR and LC-MS metabolomic profiles of S. cerevisiae, S. paradoxus, S. bayanus and S. pastorianus
reference strains. These loci were selected to check whether they could be used as predictors of specific
physiological traits in addition to their taxonomic interest. The search of genes more correlated to
ethanol stress, or other physiological features, is another type of work currently undergoing in our
labs, in which all genes of the genomes are employed, independently of their taxonomic interest.

FTIR fingerprint has been proposed to classify and to identify species [32,33,43] and was able to
detect sub-specific variations bound to the substrate of isolation (medical vs. food) more efficiently than
DNA barcoding tools [44], whereas it was less efficient for the identification of strains of closely related
species [45]. This evidence could explain the fact that no significant correlation was detected between
molecular markers and FTIR profiles of strains under resting condition. Conversely, eight markers
out of thirteen displayed correlation values over 0.75 with LC-MS data. DNA sequences accumulate
mutations which then flow into proteome, whereas cell metabolism is the result of selective pressures
occurred over a long time. The evolutionary changes in DNA, and consequently in proteins, describe
relatively recent events compared to changes in metabolic pathways, which can be dated back in the
past. It is therefore plausible that highly conserved sequences such as the mitochondrial genes mtCOXII
and mtSSU; the traditional markers ITS and LSU and their concatenation ITS_LSU; and the coding
sequences TEF1α and FAS1 correlated highly with the LC-MS profiles of these four strains. These loci
can therefore be proposed as “double usage” markers for taxonomy and general metabolic evolution.

The patterns of mortality under short-term ethanol stress confirmed what was previously
described about the alcohol-tolerance of these species. Most strains of S. cerevisiae, S. pastorianus and
S. paradoxus resulted tolerant up to 16% ethanol while S. bayanus strains showed serious difficulties
withstanding 12% ethanol, and, when the percentage of ethanol increased up to 15%, the majority
of strains were not able to grow [46]. The species of the Saccharomyces sensu stricto complex have
all evolved into fermentation processes in highly challenging environments due to the presence of
alcohol [47,48] supporting the hypothesis that functional associated traits have evolved slowly and are
more phylogenetically conserved. In fact, most of the molecular markers showed increasing trends of
correlation with FTIR profiles at increasing ethanol concentrations, confirming the primary role of the
FTIR analytical system in finely characterizing the physiological status of cells in various conditions,
including stress [18,49–52]. Several studies have shown that the transcription of TEF-1α can be induced
by increasing stressing condition [53,54]. In addition, FAS-1, one of the main actors in yeast long-chain
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fatty acid metabolism, was interested in stress response to ethanol [55,56], antifoaming compounds [57]
and high temperature [58], whereas the mitochondrial COX gene is a known to be part of the cellular
response to different types of stressing agents, such as ethanol or high temperatures [59]. It has also
been demonstrated that most of these genes play an important role in the response of yeasts to stressful
fermentation conditions [56,60] and oxidative stress [61,62]. In light of these considerations, the coding
sequences mtCOXII, mtSSU, TEF-1α, FAS1, DAL2 and ACT1 can be considered particularly interesting
as putative markers for taxonomy and ethanol stress predictability. Further research in this area
without restrictions regarding taxonomic markers is already underway to shed more light on this issue.

Finally, the results from pathways analysis suggest that the common ancestor of these species has
evolved along the fermentation processes at high sugar concentrations and that the selective pressure
that separated these species corresponded to a sugar concentration such as to produce around 12%
(v/v) alcohol. These processes selected also the metabolisms of these organisms, leaving a specific trace
in the two pathways of the Aminoacyl-tRNA and arginine biosynthesis. Many studies reported that,
in S. cerevisiae, the amino acid arginine exerts a protective role against ethanol stress by maintaining the
integrity of cell wall and plasma membrane [63] and by triggering the TCA cycle to provide more energy
to contrast the stress [64]. On the other hand, the differential regulation of metabolites involved in the
Glutathione metabolism looks like a strain-specific signal, linked to the participation of Glutathione of
several cell functions, by searching for free radicals (ROS) present in the cytosol [65] and by playing a
key role in inducible adaptive response mechanisms able to confer to cells the resistance to oxidative
stress [65–67].

5. Conclusions

In this study, we aimed at establishing a new methodology in a well-known but restricted
panel of strains and genes. The results presented prove the existence of a strong link between
physiology and taxonomy suggesting that many loci could be particularly interesting as “double usage”
markers for taxonomy and general metabolic evolution or ethanol stress. The approach is sound
and can be replicated in other models, even with more components. On the other hand, we also
showed that FTIR and LC-MS are complementary techniques that should be ideally deployed together.
Reconnecting taxonomy with relevant phenotypic features represents an important challenge for
microbiologists, the question on the real meaning of the species concept remaining open in light
of the fact that most of the biotechnologically and industrially relevant characteristics of microbial
cultures are encoded by quantitative trait loci (QTL). The application of artificial intelligence will surely
improve the ability of omics tools in the species identification opening new scenarios to unravel this
fascinating complexity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/8/1242/s1,
Table S1: Metabolites identified for S. bayanus CBS 380, S. pastorianus CBS 1538, S. paradoxus CBS 432 and S. cerevisiae
1171 in response to short-term ethanol stress. Table S2: Important features identified by PLS-DA on control
samples. VIP scores are calculated for each component. Table S3: Important features identified by PLS-DA
on samples at 8% ethanol (v/v). VIP scores are calculated for each component. Table S4: Important features
identified by PLS-DA on samples at 12% ethanol (v/v). VIP scores are calculated for each component. Table S5:
Important features identified by PLS-DA on samples at 16% ethanol (v/v). VIP scores are calculated for each
component. Table S6: Detailed results from pathway analysis. Comparison of the four strains at 0% ethanol (v/v).
The statistical p values from enrichment analysis are further adjusted for multiple testing. Total is the total number
of compounds in the pathway; Hits is the actually matched number from the user uploaded data; Raw p is the
original p value calculated from the enrichment analysis; Holm p is the p value adjusted by Holm–Bonferroni
method; FDR p is the p value adjusted using false discovery rate; Impact is the pathway impact value calculated
from pathway topology analysis. Table S7: Detailed results from pathway analysis. Comparison of the four
strains at 8% ethanol (v/v). The statistical p values from enrichment analysis are further adjusted for multiple
testing. Total is the total number of compounds in the pathway; Hits is the actually matched number from the
user uploaded data; Raw p is the original p value calculated from the enrichment analysis; Holm p is the p value
adjusted by Holm–Bonferroni method; FDR p is the p value adjusted using false discovery rate; Impact is the
pathway impact value calculated from pathway topology analysis. Table S8: Detailed results from pathway
analysis. Comparison of the four strains at 12% ethanol (v/v). The statistical p values from enrichment analysis are
further adjusted for multiple testing. Total is the total number of compounds in the pathway; Hits is the actually
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matched number from the user uploaded data; Raw p is the original p value calculated from the enrichment
analysis; Holm p is the p value adjusted by Holm–Bonferroni method; FDR p is the p value adjusted using false
discovery rate; Impact is the pathway impact value calculated from pathway topology analysis. Table S9: Detailed
results from pathway analysis. Comparison of the four strains at 16% ethanol (v/v). The statistical p values
from enrichment analysis are further adjusted for multiple testing. Total is the total number of compounds in
the pathway; Hits is the actually matched number from the user uploaded data; Raw p is the original p value
calculated from the enrichment analysis; Holm p is the p value adjusted by Holm–Bonferroni method; FDR p is the
p value adjusted using false discovery rate Impact is the pathway impact value calculated from pathway topology
analysis. Table S10: Percentage of significative wavelengths in the correlations between markers and IR bioassay
conditions. Table S11: Correlation values of genetic markers and four IR regions in control samples; Table S12:
Correlation values of genetic markers and four IR regions in ethanol stressed samples.
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