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Abstract: The exopolysaccharide (EPS)-producing Lactobacillus plantarum (renamed as
Lactiplantibacillus plantarum) LBIO1, LBIO14 and LBIO28 strains, isolated from fermented dairy
products typical from Algeria, were characterized to evaluate the impact of the polymers in milk
fermentations. Their genomes revealed the presence of two complete eps clusters of the four described
for the reference strain WCFS1. Besides, the three strains presented identical sequences of eps3 and
eps4 clusters, but LBIO1 and LBIO28 harbour three genes belonging to eps2 which are absent in the
LBIO14 genome. The EPS purified from fermented skim-milks manufactured with the strains showed
identical nuclear magnetic resonance (\H-NMR) and size exclusion chromatography coupled with a
multiangle laser light scattering detector (SEC-MALLS) profiles for polymers LBIO1 and LBIO2S,
whereas LBIO14 EPS was different due to the lack of the high-molecular weight (HMW)-EPS and
the absence of specific monosaccharide’s peaks in the anomeric region of its proton NMR spectrum.
The presence of the HMW-EPS correlated with optimal sensorial-physical characteristics of the
fermented skim-milks (ropy phenotype). Their microstructures, studied by confocal scanning laser
microscopy (CSLM), also showed differences in the organization of the casein-network and the
distribution of the bacteria inside this matrix. Therefore, the strain LBIO1 can be proposed for the
manufacture of dairy products that require high whey retention capability, whereas LBIO28 could be
applied to increase the viscosity.

Keywords: exopolysaccharide; dairy fermented product; lactic acid bacteria; permeability;
viscosity; microstructure

1. Introduction

Lactic acid bacteria (LAB) are a key group a microorganisms playing a pivotal role in food
fermentation, being responsible for the quality, safety and nutritional value of the final product [1].
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Rural communities have maintained in their heritage traditional uses for food preservation, which
has driven to the “domestication” and the selection of strains very well adapted to a specific food
environment. However, this practice conducted to a microbial biodiversity loss [2]. Therefore,
exploring novel strategies to improve the performance of LAB for industrial application is the focus
of research [3], although the natural reservoirs of novel bacteria must be also taken into account for
the selection of strains targeted for a potential biotechnological exploitation such as food cultures.
Indeed, many LAB have been isolated from traditional fermented products worldwide, including dairy
foods [4,5].

The selection of the most suitable LAB for dairy manufacturing involves the search for a
series of functional characteristics, among others, the synthesis of exopolysaccharides (EPSs) [6-8].
EPSs produced in situ, during milk fermentations, play a pivotal role in the improvement of the
sensorial properties of the final product. In fact, they can act as natural bio-thickeners and are
efficient viscosifying agents, thus improving the viscosity and texture of low-fat stirred yogurts.
Besides, due to their hydrocolloid properties they are effective at retaining water avoiding syneresis
in set-type yogurts or increasing the cheese yield [6-8]. In addition, these polymers have also
attracted interest because they are key molecules linked in the interaction of specific bacteria with
the host, thus triggering some of the health benefits induced by the EPS-producing strains [9,10].
Both technological and functional effects on health promotion are due to the extracellular location
of EPSs, since they are surface molecules of carbohydrate nature that can be loosely attached to the
cell envelope forming a slimy layer, or covalently linked forming a capsule (CPS). In the context of
dairy foods, the interaction of the EPS-bacterial layer with the milk matrix, mainly caseins, has a
profound impact on the physical-chemical characteristics of the products fermented with EPS-producing
LAB [8]. Depending on the chemical composition and the way of synthesis, two main EPS groups,
homopolysaccharides and heteropolysaccharides, are distinguishable. The homopolysaccharides are
polymerized by means of glycosyl hydrolases (GH) of families GH68 (fructansucrases) and GH70
(glucansucrases) which render -fructans and o-glucans, respectively [11]. p-linked glucans are
intracellularly synthesized by means of a glucosyltransferase which has several membrane segments
that facilitate the homopolymer export [12]. The heteropolysaccharides are built from repeating units
of monosaccharides (mainly, D-glucose, D-galactose and L-thamnose) that can be decorated with other
sugar and non-sugar monomers. Their synthesis requires clusters of eps (or cps) genes which, in the
case of LAB-EPSs, have a conserved structural organization [9,13]. The chemical composition, size and
structure of the EPS molecules are directly linked with their biological functions and technological
properties. Generalizing, polymers having negative charge and/or high molecular weight (HMW) are
able to modify the viscosity and texture of dairy products [14], or to modulate the immune response in
the host [9]. In this regard, the production of a HMW-EPS has been associated with the occurrence
of a ropy phenotype in the producing bacterium [15]. This phenotype is denoted by the formation
of a long filament when the bacterial colony growing in the surface of an agar-plate is touched with
an inoculation loop or, similarly, when a liquid culture is poured forming a strand that remains for
some time. The ropy strains are linked to the manufacture of fermented milks with optimal sensorial
characteristics, which is dependent on the degree of ropiness desired in the final product [16].

In a previous work, a collection of EPS-producing Lactobacillus plantarum (recently reclassified
as Lactiplantibacillus plantarum, [17]) strains were isolated from traditional Algerian dairy products,
identified and preliminarily characterized [18]. In the current work, three of these strains were further
studied in order to find their potential application in controlled milk fermentations. To this end, the in
silico analysis of their genomes, together with the characterization of the purified EPSs, gave us some
clues to understand the physical properties measured in fermented skim-milks manufactured with
these strains.
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2. Material and Methods

2.1. Bacterial Strains

The strains L. plantarum LBIO1, LBIO14 and LBIO28 were isolated from traditional Algerian dairy
foods and were selected for this study based on their ropy character, present in LBIO1 and LBIO28 and
absent in LBIO14 [18]. In order to obtain standardized cultures, stocks stored at —80 °C were streaked
on the surface of agar-MRS (de Man, Rogosa y Sharpe, Biokar Diagnostics, Beauvais, France) and
incubated under aerobic conditions (at 30 °C for 48 h). Afterwards, a single colony was picked up to
inoculate 10 mL MRS broth, which was cultivated overnight and used to inoculate (2%) appropriate
volumes of fresh MRS that were further incubated for 22 + 2 h under the same conditions before using
them for the different experimental procedures.

For cryo-scanning electron microscopy (SEM), standardized cultures were
centrifuged (7780x g, 10 min) and 10 times concentrated in Ringer ; solution (Merck, Darmstadt,
Germany). Finally, these bacterial suspensions were quickly frozen by immersion in liquid N; and
sent into dry-ice for microscopic analysis. These bacterial suspensions were visualized by cryo-SEM at
the “Electron Microscopy Service” of the Institute of Marine Sciences (ICM-SCIS, Barcelona, Spain).
Samples were placed on a cryo-stub, immediately plunged into liquid nitrogen and transferred to the
cryo-preparation chamber Quorum PP3000T (Quorum Technologies, Sussex, UK), attached to the
microscope. The frozen samples were fractured, sublimed at —90 °C for 5 min, sputter coated with Pt
for 30 s and transferred to the Hitachi S-3500N (Hitachi High-Technologies Corporation, Tokyo, Japan)
SEM. Observation of samples, kept at =135 °C, was made at an acceleration voltage of 4 kV.

2.2. Genome Analysis

For genome sequencing analysis, total DNA was isolated from overnight grown cultures prepared
as previously described. Then cells from 5 mL of each culture were collected by centrifugation
(12,070x g, 4 °C, 10 min) and DNA was isolated by using the DNeasy blood and tissue kit (Qiagen,
Hilden, Germany). Genome sequencing was performed using 250290 paired-end libraries in a MiSeq
instrument (Illumina, San Diego, CA, USA) at GenProbio SRL (Parma, Italy). Genome assemblies
were conducted with the PATRIC 3.5.23 online resource (https://www.patricbrc.org/app/Assembly,
accessed on June 2019) [19] by using the SPAdes assembler (v. 3.10.0) [20]. Automatic annotation
of the open reading frames (ORF) were conducted with RAST (Rapid Annotation using Subsystem
Technology) [21] and the NCBI (National Center for Biotechnology Information) Prokaryotic Genome
Annotation Pipeline [22]. Deduced nucleotide and protein sequences of interest within the assembled
and annotated genomes were individually located through BLASTP (Basic Local Alignment Search
Tool Protein homology searches employing, as query, the corresponding protein sequences from
the clusters cpsl, cps2, cps3 and cps4 annotated in the reference genome L. plantarum WCFS1 [23].
Similar approach was used to search for genes of GH68 and GH70 enzymes described from lactobacilli
sequences in the NCIB gene database. Besides, carbohydrate metabolic enzymes of the genomes
were also annotated through the dbcan tool [24] and comparison against the CAZyme database
(http://www.cazy.org accessed on March 2020). RAST annotation was surveyed to search for vitamins
biosynthetic pathways. Bacteriocin encoding clusters were screened for with the BAGEL4 web
tool [25]. Antibiotic resistance determinants were predicted through homology searches against CARD
(Comprehensive Antibiotic Resistance Database) (http://arpcard.mcmaster.ca/ accessed on March
2020) [26] and the RESfinder online tool was used to predict acquired antimicrobial resistance genes or
point mutations likely conferring antibiotic resistances [27]. To identify plasmid-associated sequences,
raw sequencing reads were analyzed using PLACNETw, a graph-based tool to reconstruct plasmids
from next generation sequence pair-end datasets, via the creation of a network of contig interactions [28].
Genomic assembled data were submitted to the GenBank database, under the accession numbers
SAMN14671341, SAMN14671394 and SAMN14671401.
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2.3. Milk Fermentations

Skimmed milk (Difco, Thermo-Fisher Scientific, Madrid, Spain) was reconstituted (11% w/v) and
supplemented with 1% (w/w) pancreatic casein hydrolysate (Sigma, St. Louis, MO, USA) to obtain
SMC (skimmed milk-casein) which was pasteurized as previously described [18]. Variable volumes
of pasteurized SMC were inoculated (5%) with the standardized MRS cultures previously washed
twice with phosphate-buffered saline (PBS). Fermentations were carried out in a thermostatic bath
(Julabo TW20 Gmbh, Seelbach, Germany) at 30 °C for variable times, as specified in each section.

2.4. Exopolysaccharide (EPS) Purification and Analysis

The EPSs of milks fermented for 48 h were isolated following a procedure previously reported [29].
In a first step, 100 g of fermented milk were mixed with trichloroacetic acid (TCA, 12% final
concentration), vigorously stirred for 45 min at room temperature and centrifuged (15,880x g, 4 °C,
30 min). The pH of the supernatant was raised to 5.0 + 0.5 and dialyzed, for 3 days against ultrapure
water (dialysis tubes 12-14 kDa MWCO, Sigma, St. Louis, MO, USA), before being freeze-dried. In a
second step, 5 mg/mL of the EPS lyophilised powder was dissolved in a buffer containing DNAse type
I (2.5 pg/mL final concentration, Sigma, St. Louis, MO, USA) and incubated at 37 °C for 6 h. Later,
pronase E from Streptomyces griseus (50 pg/mL final concentration, Sigma, St. Louis, MO, USA) was
added and the mixture incubated at 37 °C for 18 h. Finally, the same first procedure (starting from the
TCA peptide precipitation) was followed to get the purified EPS fraction. The protein content of this
fraction was determined by the BCA protein assay protocol (Pierce, Rockford, IL, USA).

The molar mass distribution of the EPS was analysed by size exclusion chromatography (SEC)
coupled with a multiangle laser light scattering detector (MALLS; Dawn Heleos II, Wyatt Europe
GmbH, Dembach, Germany) as previously described [18]. In short, samples dissolved at 5 mg/mL in
0.1 M NaNOj were separated in two TSK-Gel columns (G3000 PWXL + G5000 PWXL), protected with
TSK-Gel guard column (Supelco-Sigma, St. Louis, MO, USA), at 40 °C and 0.45 mL/min flow rate.
In addition to MALLS detector for average molecular weight (My,) and radius of gyration (Ry)
determination, a PDA (photodiode array) 996 detector (set at 280 nm) and a RI (refractive index) 2414
detector (Waters, Milford, MA, USA) were used to check the presence of proteins and to quantify
the amount (ug) of EPS-peaks (using dextran standards for calibration), respectively. The relative
abundance of each peak was calculated with respect to the total sum of the peaks.

Proton nuclear magnetic resonance (NMR) spectra were recorded on a Bruker DRX-600 MHz
spectrometer (Bruker, Mannheim, Germany) equipped with a cryogenic probe at 298 K. Samples (2-3 mg)
were solved in D,O (500 uL), spectra were acquired with 16 scans each, 16 K points in resolution,
and calibrated on the signal of the residual water signal, set at 4.7 ppm. Standard Bruker Topspin
(Topspin 3.5, Bruker) program was used to process the data.

The chemical composition of the polymers was determined analysing the acetylated methyl
glycosides (AMG) by gas chromatography mass spectrometry (GC-MS) obtained as follows. To favour
EPS dephosphorylation, samples (0.5 mg) were dissolved in 50 puL of 50% aqueous hydrofluoric acid
(HF), for 6 h at 25 °C. Then, they were dried in a stream of air and washed with water and methanol,
before carrying out their derivatization as peracetylated O-methyl glycosides [30]. Derivatives were
then analyzed on Agilent Technologies (Santa Clara, CA, USA) gas chromatograph 7872A coupled
with a mass selective detector 5977B and equipped with a Zebron ZB-5 capillary column (Phenomenex,
Torrance, CA, USA, 30 m X 0.25 mm internal diameter X 0.25 um, flow rate 1 mL/min, He as carrier
gas). Electron impact mass spectra were recorded with an ionization energy of 70 eV and an ionizing
current of 0.2 mA. The following temperature program was employed: 150 °C for 5 min, 150 to 280 °C
at 3 °C/min, and 300 °C for 5 min.
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2.5. Viscosity of Fermented Milks

The dynamic viscosity () of SMC fermented until pH 4.5 + 0.1 (around 24 h) with three
strains LBIO1, LBIO14 and LBIO28 was measured at 25 °C using a rheoviscosimeter Haake VT550
(Haake™ Thermo Fisher Scientific, Dreieich, Germany). For that, 10 g of fermented milks samples
were carefully placed between the cone and plate (with angle 0.5°) and sheared at shear rate sweeps
from 0.1 to 1000 s~! in 180 s, under controlled temperature (25 °C) by the Haake K115 bath connected
to the viscometer. The collected data were analysed with the VT1.x0s 550 software (Haake). The flow
behaviour of the SMC-fermented samples was described by the Ostwald-de Waele model (power law;
equation T = Ky ", where 7 is the shear stress (Pa), K is the consistency index (Pa s"), y is the shear
rate (s™1), and 7 is the dimensionless flow behaviour index). SMC fermentations were carried out in
triplicate for each strain to determine viscosity values.

2.6. Macrostructure of Fermented Milks

The permeability (Bt) of the fermented SMC gels, i.e., the measurement of the flux rate of the
aqueous phase (whey) through the casein matrix (milk-gel) giving an indication of the porosity of the
fermented milk, was determined as previously reported [31]. As a first step, 4 L (per strain) of fermented
SMC (at 30 °C, for 24, to reach pH 4.5 + 0.1) were manufactured for obtaining the whey by means of
centrifugation (15.880x g, 30 min, 5 °C) and filtration through filter paper (Whatman filter paper for
technical use, Grade 1574 %, Sigma, St. Louis, MO, USA). The kinematic viscosity (v) of the whey was
measured at 20 °C in a capillary Ubbelodhe type 0C (SI Analytics GmbH, Mainz, Germany). In addition,
1 L (per strain) of pasteurised SMC was inoculated (5%) with strains LBIO1, LBIO14 or LBIO28 and 12
graduated glass-tubes (25 cm length, graduation mark 1 mm, internal diameter 4 mm; Pobel, Barcelona,
Spain) open in both ends, were carefully introduced into the inoculated milk. The flasks, with tubes
(filled with about 11 cm inoculated milk) inside, were incubated at 30 °C for 24 h. Afterwards, gel-tubes
were cleaned and placed in a rack, together with 3 empty reference-tubes, which was introduced
in a transparent vat filled with the fermented whey corresponding to each strain. The permeability
measurements were performed at 20 °C. With intervals of 1 h (along 8 h) the increase in the level of
whey in each tube was annotated and the B; for each tube was calculated using the corresponding
formula [31,32]. Finally, the B; of a given fermented milk was calculated from the average values
measured in all tubes. This experimental procedure was carried out, at least, two times per strain
measuring, at least, 8 tubes in each replicate.

To determine the capability of the fermented milk gels to retain the aqueous phase, the amount
of whey released after applying differential centrifugal forces was quantified [31]. For that, 200 mL
of pasteurized SMC were inoculated (5%) with the standardized (PBS-washed) cultures and divided
in 4 tubes of 50 mL each, which were incubated in the water bath at 30 °C until pH 4.5 + 0.1 (24 h).
Fermentations were carried out in triplicate for each strain. Afterwards, the tubes were centrifuged at
4 °C for 10 min at four different speeds ranging from 1430 to 15,880x g in a fixed-angle conical tube
rotor. The quantity of whey released, expressed as a percentage, was calculated by the ratio between
the weight of whey recovered and the weight of the initial fermented milk sample.

2.7. Microstructure of Fermented Milks

The microscopic structure of milks fermented with the three strains was visualized using confocal
scanning laser microscopy (CSLM) and fluorescent dyes [16,31]. For that, the SMC was centrifuged
(10,160x g, 30 min, 5 °C) to remove most non-dissolved milk particles before pasteurization. Then,
after pasteurization, two dyes were added: rhodamine B (Sigma, St. Louis, MO, USA) and acridine
orange (Sigma) at final concentrations of 0.001% (w/v) and 0.002%, (w/v) respectively. Rhodamine B
dyes proteins and acridine orange bacterial nucleic acids. After proper homogenisation, stained milk
was inoculated (5%) with the PBS-washed MRS cultures and 2 mL were carefully placed into
high-optical quality plastic 2-wells p-slides (Ibidi GmbH, Gréfelfing, Germany) for direct CSLM
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analysis. The p-slides were incubated at 30 °C for 24 h (to a pH about 4.5) to ensure the formation
of the milk-gel. The confocal microscope Ultra-Spectral Leica TCS AOBS SP2 (Leica Microsystems
GmbH, Wetzlar, Germany) located in the University of Oviedo facilities (Oviedo, Asturias, Spain) was
used. Bacteria dyed with acridine orange were visualized with the laser 488 nm ion argon/krypton
(green), and proteins (mainly caseins) dyed with rhodamine B were visualized with the laser 543 nm
nm He/Ne (red), but also with the laser 488 nm. Thus, after image treatment with the program LCS
(Leica Microsystems GmbH, Wetzlar, Germany), bacteria were visualized in green and the casein
matrix in yellow (combination red and green). Z-stack images were obtained using a 63%/1.40NA oil
objective (1.58 zoom) and the 3D reconstruction was performed using the Leica LCS and the Confocal
Uniovi Image J software.

2.8. Statistical Analysis

The IBM-SPSS statistics for Window version 25.0 (IBM Corp., Armonk NY, USA) was
used to analyse the quantitative data. One-way analysis of variance (ANOVA) and the SNK
(Student-Newman-Keuls) mean comparison tests were used to assess the differences (p < 0.05)
among the three strains used in this study.

3. Results and Discussion

3.1. Insight into the Genomes of L. Plantarum Strains: Focus on eps Cluster Analysis

The L. plantarum strains used in this study had different origins, as they were isolated from different
dairy fermented products manufactured from cow milk in different geographical areas. The strain
LBIO1 was isolated from the soft-ripened cheese “Bouhezza” and LBIO14 from the fresh cheese “Klila”
both in the region of Batna, whereas LBIO28 was obtained from the fermented milk “Rayeb” in the
region of Bordj El Ghadir [5,18]. The strains were selected based on the presence (LBIO1 and LBIO28) or
absence (LBIO14) of the ropy character [33]. Since the ropy character is directly linked to the synthesis
of certain type of EPS, our first approach to characterize these strains was the visualization of the
bacterial surface using cryo-SEM. This is one of the less destructive electron microscopy techniques that
only involve freezing the sample in liquid N, and is thus, highly recommended to avoid changes on EPS
structure induced by dehydration of samples [34]. Surprisingly, the three lactobacilli strains presented
an EPS-like structure around their surface (Figure 1), but that of the ropy LBIO1 and LBIO28 strains was
much more dense and compact than observed for the non-ropy LBIO14. This suggests that the last one
produces less polymer and/or produces an EPS having different length (molecular weight), whereas the
ropy strains produced a slimy polymer able to establish a compact network entrapping and connecting
inside several cells. As far as we could find, there are no reports in literature regarding visualization of
EPS-producing LAB under cryo-SEM. Nevertheless, the structure observed for LBIO1 and LBIO28 EPSs
resembles that found with the same technique for ropy EPS-producing bifidobacteria [10]. The use of
SEM for the visualization of some EPS-producing lactobacilli, which involves different fixation steps
prior to coating, gives similar homogeneous sheet-like structures [35]. However, more open-loose
(porous) structures, such as the ones detected for LBIO14 EPS, were also reported [36]. In our study,
the three EPS-producing lactobacilli were not submitted to dehydration, so the structure differences
detected among the strains must be due to intrinsic differences of their polymers.
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Figure 1. Cryo-scanning electron microscopy (cryo-SEM) of bacterial biomass collected from 24 h
MRS broth cultures of the exopolysaccharide (EPS)-producing L. plantarum strains LBIO1, LBIO14 and
LBIO28. The EPSs are the matrix surrounding the bacterial surface. Bar 5 pm.

In a further bacterial characterization, the genetic fingerprinting obtained by RAPD-PCR
amplification showed that only the primer M13, a probe designed from the bacteriophage M13
of Escherichia coli, allowed the identification of distinctive band patterns among the three strains
(see results and methodology details for this analysis in Supplementary Figure S1), as previously
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reported for other LAB [37]. This likely suggests that the L. plantarum isolates under study represent
different strains. In order to better characterize their genetic background, the genomes of LBIO1,
LBIO14 and LBIO28 were sequenced and their sequences held in the NCIB GeneBank database (Table 1).

Table 1. Some features of the genomes from the L. plantarum strains used in this study. The LBIO1,
LBIO14 and LBIO28 genome sequences are available in the GenBank database (http://www.ncbi.nih.

gov/genbank).
Genome
Accession No. Length (bp) CDSs %G + C rRNA tRNA
LBIOT g\ MN14671341 3,186,843 3113 1432 9 66
(Ropy)
LBIO14 SAMN14671394 3,155,118 3072 44.44 10 68
(non-ropy)
LBIO28 SAMN14671401 3,187,061 3108 44.32 10 66
(Ropy)

Overall, the three draft genomes were 3.19, 3.15 and 3.18 Mbp length, respectively, an average GC
content ranging from 44.32 % (LBIO1 and LBIO28) to 44.44 % (LBIO14), and a total of 3113, 3072 and
3108 ORFs which could be predicted and annotated. These general values are in agreement with the
available data for other reported L. plantarum genomes [38,39]. Some genome-encoded potential traits
of these strains, that could provide additional functional (health promoting) or technological benefits
for their application into the elaboration of fermented milks, were screened through RAST annotation
and in silico homology searches. For instance, the genomes of the three strains included genes involved
in the pathways for riboflavin, folate and pyridoxin biosynthesis, while the machinery required to
synthesize other vitamins, such as thiamine and biotin, are incomplete, as previously described in other
L. plantarum strains. Indeed, the vitamin-producing strains could help produce fortified fermented
foods, aiding to prevent nutritional deficiencies in target populations [23,39]. On the other hand,
a search against the BAGEL4 database identified putative bacteriocin encoding gene clusters in the
three strains, trait that was previously reported for others and could have potential applications to
extend the product shelf-life, conferring protection against spoilage and foodborne pathogens [40].
In relation to genetic encoded traits which may impede the technological exploitation of microbial
strains, such as the presence of antibiotic resistance genes or virulence factors, it is worth remarking
that no potential antibiotic resistance or virulence determinants were detected in any of the three
genomes, accordingly with results from other strains of the same species [39].

In agreement with the aim of this work, the genome analysis of these strains was focused to the
genes involved in the EPS-synthesis. None of the approaches applied to search for genes involved
in the production of B-fructans and x-glucans revealed any significant hit, suggesting that the three
genomes did not harbor genes coding for GH68 and GH70 enzymes. The production of these type of
homopolysaccharides was demonstrated only for very few L. plantarum strains, such as the x-glucans
synthesized by the strains DM5 [41] and CIDCA 8327 [42]. A closer look at the genetic determinants
linked to the synthesis of heteropolymer-like EPSs revealed the presence of two complete eps clusters
(eps/cps3 and cps4), of the four described for the strain L. plantarum WCFS1 [43], in the three strains of
this study (Figure 2, Supplementary file 1). The cps1 cluster was absent, whereas three (cps2ABC) out
of the 10 genes belonging the WCFS1 cps2A-] cluster were detected only in the ropy LBIO1 and LBIO28
strains. The gene cps2E (in WCFS1) encoding a priming-glycosyltransferase (p-GTF) showed a very
low degree of homology (40%, Supplementary file 1), thus we consider that was not present in LBIO1
and LBIO28 clusters.
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Figure 2. Physical maps of the biosynthetic eps clusters found in the genome (chromosome) of the strains L. plantarum LBIO1, LBIO14 and LBIO28 in comparison with

the reference strain WCFS1. The length of the arrow is not proportional to the length of the predicted open reading frame (ORF). For detailed description of the genes
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The absence of these three cps2 genes in LBIO14 was the only difference found among the three
Algerian origin lactobacilli, since the homology (% of genetic identity) of these genetic regions was 100%
among them). Therefore, taking into account the pattern obtained from the comparison of 43 L. plantarum
genomes [44], the LBIO1 and LBIO28 strains fit in the type B pattern (complete eps/cps3 and cps4 and
partial cps2) whereas LBIO14 fit into type C pattern (two clusters, in this case cps3 and cps4). Apparently,
the eps clusters from our strains are not harboured in plasmids, as suggested using the in silico PLACNET
search network analysis tool, which revealed that the eps genes are not included in contigs displaying
homology to plasmid replication proteins. The homology of our eps genes in comparison with those
of WCEFSI strain was, in general, higher than 94%. Only the GTF cps3A presented lower homologies,
around 70%, in our strains (Supplementary file 1). The cps4 cluster seems to be present in all L. plantarum
strains currently analyzed and is located in a chromosomal region separated from that containing the
other three clusters, as is the case in our genomes. However, cps1 seems to be present in only a few
strains [44]. As previously described by Remus and co-workers in WCFS1 strain [43], cps2A-] and
cps4A-] have the complete “consensus” functional structure required for the synthesis of EPS. That is,
both harbour genetic elements involved in polymerization/ chain-length determination, a core of GTFs
starting with the p-GTF, and genes related to polymerisation/(flippase-type) export, all flanked with
mobile elements and keeping the same gene order and orientation within the eps-encoding clusters [9].
In general, the p-GTF initiates the intracellular synthesis of the EPS repeating units after being linked
to a lipid membrane carrier. Latter the GTFs catalyzes the addition of different monosaccharides
to form the repeat unit which is translocated across the membrane by means of a flippase-system.
Finally, the polymerization of the repeating units takes place extracellularly by means of a polymerase,
and other proteins are involved in the determination of the chain length of the polymer. The presence of
transposases and insertion sequences flanking eps clusters is a common characteristic among bacteria,
which would facilitate the horizontal transfer of eps genes among different bacteria that occupy a
common habitat [9]. Genes involved in regulation seemed no to be present inside the cps loci coding
for EPS biosynthesis in L. plantarum WES1 [43], as is the case for other LAB [13,45]. The WCEFS1
cps1 and cps3 clusters lack some key-genes for EPS production, such as the p-GTF that initiates the
intracellular synthesis of the repeating units. However, these clusters were required for the synthesis
of the capsular EPS in this strain, as it was demonstrated by the construction of several gene-deletion
and cluster-deletion mutants [43]. The EPS produced by the mutant Acps1A-] genes has modified
the molecular weight and lacks rhamnose, whereas mutations in the other three individual cluster
deletions, or the quadruple-deletion, resulted in a reduction of the amount of polymer synthesised.
Later, by means of transcriptional analysis it was found that the four cps loci of WCFS1 were organized
in five operons, three of them under the control of the global regulator CcpA [46]. It is worth noting
that L. plantarum WCFS1 does not have a ropy phenotype, which was present in the strains SF2A35B
and Lp90 [47]. The genomic comparison among these strains revealed that Lp90 harbors the four cps
clusters and SF2A35B lacks cps1, as is the case of the ropy LBIO1 and LBIO28 reported here. Moreover,
cps2 seemed to be the most variable among WCFS1, SF2A35B and Lp90 strains since additional (not
orthologs) genes are present in the last two ropy-strains [47]. These authors conclude that the set of
genes present in SF2A35B and Lp90 cps2 is involved in the occurrence of the ropy phenotype since
their deletion causes the loss of this character. In our case, the differences between the ropy LBIO1 and
LBIO28 L. plantarum strains and the non-ropy LBIO14 were also located in cps2, which was not present
in the last one. However, in our case LBIO1 and LBIO28 cps2 had a reduced (not increased) number of
genes with respect to WCFS1. Nevertheless, the three genes present in these strains are related with
the polymerization and chain length regulation (see Supplementary file 1). This finding suggests that
the cps2ABC found in LBIO1 and LBIO28 might play a relevant role in the synthesis of the HMW-EPS
responsible for the synthesis of a ropy polymer.
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3.2. Characterization of EPS Purified from Fermented Milks

To determine whether differences among the three polymers could be detected in milk products
fermented with either of the strains under study, the purified EPS fractions obtained from milks
fermented with the three L. plantarum strains were analysed by means of SEC-MALLS. The SEC profile
shows the presence of three major peaks differing in size, showing average retention times about 27,
38 and 42 min. The ropy LBIO1 and LBIO28 EPSs presented the three peaks whereas the non-ropy
LBIO14 lacks that corresponding with the biggest polymer fraction (Figure S2; [18]). It is worth noting
that in the smallest peak (42 min) the ultraviolet (UV)-detector signal (set at 280 nm) was very intense
in the three purified EPS, with denotes the presence of protein in all the polymer fractions. This was
supported by the results obtained with the BCA-protein assay that showed a protein content of 31.8,
98.5 and 38.9 pg/mg for the EPS fractions purified from LBIO1, LBIO14 and LBIO28 fermented milks,
respectively. Given that in this work an additional treatment with DNAse and pronase E, followed by
12%-TCA precipitation, was performed for EPS purification, this suggests that proteins could be
strongly linked to the surface structures extracted. In this regard, some authors have reported that
proteins could form part of cell-wall polysaccharides [48], although other surface structures (such as
teichoic acids) could have co-precipitated with the polysaccharides [49,50]. Nevertheless, most authors
do not report checking the presence of proteins in the EPS they have characterized. In our EPS fractions,
the peak 3 has an average molecular weight (M) of 4 to 9 kDa, depending on the strain, and it is the
most abundant in the three EPS fractions (Table 2). Thus, we cannot discard the presence of a smaller
EPS fraction in this peak [51,52]. As indicated above, the most noticeable finding in the SEC-MALLS
analysis was the presence of the high M,, peak (about 1.2 x 10 Da) in LBIO1 and LBIO28 strains,
with a relative abundance of 16% in both cases. The presence of this high-molecular weight (HMW)
peak could explain the ropy character of these strains [15,53], whereas its absence could explain the
non-ropy phenotype in the LBIO14 strain.

Table 2. Analysis of the average molecular weight (M,,) and radius of gyration (Ry) determined by
size exclusion chromatography coupled with multiangle laser light scattering (SEC-MALL) of EPSs
purified from skim-milks fermented for 48 h with the L. plantarum LBIO1, LBIO14 or LBIO28 strains.
The Supplementary Figure S2 shows the SEC-MALLS (LS detector 90°) chromatograms.

Mean + Standard Deviation (SD)

Strain Parameters Peak 1 Peak 2 Peak 3
Retention time (min) 26.83 + 0.01 37.61 + 7.40 4152 +0.01
3
LBIO1 (Ropy) My (x 10° g/mol) 1154.5 + 16.26 19.9 + 0.07 441 +0.47
Ry (nm) 74.6 +2.26 34.8 +11.9 689 +1.34
% relative abundance 15.8 £ 0.1 153 +0.2 68.2 + 0.2
Retention time (min) 37.80 + 0.01 41.54 +0.01
M, (x 10% g/mol) 203 + 1.57 8.81 + 3.61
LBIO14 (No- w
(No-ropy) Ry (nm) ND 39.0 + 8.9 137.1 + 42.0
% relative abundance 14.6 £ 0.0 85.0 £ 0.1
Retention time (min) 26.73 + 0.01 37.63 + 0.01 41.53 +0.01
3
LBIO28 (Ropy) M,y (x 10° g/mol) 1183.5 +43.13 22.4 +0.08 9.90 +0.11
Ry (nm) 74.7 + 0.50 459 + 0.7 143.1 + 0.56
% relative abundance 159 +0.5 152 +0.2 68.0 + 0.3

ND: no detected.

The purified EPS fractions were also examined via proton NMR (Figure 3). The three spectra
profiles were rather similar and denoted that the carbohydrate-related material was co-extracted with
lipid-like substances and/or proteins resistant to the purification treatment, as inferred from the signals
at 3.0-0.5 ppm. As for the carbohydrate component, the three spectra had a crowded anomeric region,
with signals representative of monosaccharide residues both « (5.5-4.8 ppm) and 3 (4.65-4.3 ppm)
configured to the anomeric centre. Moreover, some differences were noted in the 5.5-4.8 ppm region,
where all samples shared two main signals at 5.21 and 5.04 ppm, representative of x-configured
monosaccharides, in agreement also with their small coupling constant value Gl 2.95 and 3.41 Hz,
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respectively). However, the two ropy strains, LBIO1 and LBIO28, had two additional peaks at 5.44
and 4.86 ppm, of lower intensity, which seem to be related to the EPS, as they are absent in LBIO14,
the non-ropy strain.
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Figure 3. Proton spectra measured by nuclear magnetic resonance (+H-NMR) for the EPSs purified
from milks fermented with L. plantarum LBIO1, LBIO14 or LBIO28. The anomeric region corresponding
with EPSs is enlarged in the left corner of the spectra (amplified range 5.5-4.8 ppm).

This finding was also confirmed by preliminary data performed on the same strains collected from
the biomass obtained from agar-MRS grown plates. Regarding the structure of the EPSs, their repeating
unit likely presents a phosphodiester linkage, as suggested by the peculiar shape of the signal at
5.44 ppm that is representative of a sugar in the x-configuration attached to a phosphate group.
This finding is not unusual since there are several cases in LAB strains in which these non-carbohydrate
substituents are part of EPS/CPS structures [14,54,55] or where two repeating units are joined by a
phosphodiester linkage [50].

The monosaccharide analysis of the LBIO1, LBIO14 and LBIO28 polymers obtained from fermented
milks has been performed with dephosphorylated samples to appreciate the presence of teichoic acids.
The three samples had glucose as the main component, followed from galactose (about 35 % of the
glucose), along with traces of mannose, hexosamines and neuraminic acid (Table 3). The latter has
already been found as component of lactobacilli polymers, including L. plantarum [56]. Importantly,
this analysis disclosed the presence of glycerol and ribitol, the two polyols related to teichoic acid
(Supplementary Figure S3). This finding indicated that teichoic acids were co-extracted together with
EPS, and also that they were more abundant in LBIO14 (Table 3) compared to LBIO1 and LBIO28
polymers. Accordingly, LBIO1 and LBIO28 have higher proportions of other carbohydrate molecules,
the EPS, which we suppose related to the ropy phenotype of the two strains.
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Table 3. Monomer composition, as ratio referred to glucose or as percentage (in brackets), of acetylated
methyl glycosides (AMG), after dephosphorylation with aqueous hydrofluoric acid (HF), of EPSs
purified from skim-milks fermented for 48 h with the L. plantarum LBIO1, LBIO14 or LBIO28
strains. The Supplementary Figure S3 shows the GC-MS (gas chromatography coupled with mass
spectrometry) chromatograms.

Monomer ! Ratio/(%)

EPSs Glycerol Ribitol Man Gal Glc GalN GIcN NeuA
LBIO1 0.06 (3.2) 0.19 (10.1) 0.07 (3.7) 0.38 (20.1) 1.00 (52.9) 0.05(2.6) 0.07(3.7) 0.07(3.7)
LBIO14 0.12 (5.4) 0.31 (13.8) 0.14 (6.3) 0.33 (14.7) 1.00 (44.6) 0.09 (4.0) 0.12(54) 0.13(5.8)
LBIO28 0.06 (3.4) 0.16 (8.9) 0.08 (4.5) 0.36 (20.1) 1.00 (55.9) 0.03(1.7)  0.05(2.8) 0.05(2.8)

1 Man: mannose, Gal: galactose, Glc: glucose, GalN: galactosamine, GIcN: glucosamine, NeuA: neuraminic acid.

A preliminary purification by ion exchange chromatography failed in the isolation of the
EPS-related material from the polymeric material obtained from the fermented milks. Thus,
purification and structural studies of EPS from LBIO1, LBIO14 and LBIO28 strains will be the object of
further work. The physical-chemical properties of EPSs purified from different L. plantarum strains
have been characterized and all of them presented glucose and galactose in their composition [8,44],
such as we have denoted in our polymers. Very often, these monosaccharides are combined with
other monomers such as mannose [8], fructose [57], N-acetyl-galactosamine [58], galactosamine,
glucosamine [47], thamnose [50], glucuronic acid [59] and/or glycerol [50,58], among others.
The physical-chemical characteristics of the EPS are of special relevance for their functional and
technological characteristics [14,60].

3.3. Characterization of Skim Milks Fermented with the EPS-producing L. Plantarum

The flow behaviour and viscosity of milks fermented with the three strains were analysed
using a rotational viscometer. At low shear rate, the apparent viscosity decreased when increasing
the shear rate in all cases (Figure 4). This flow is a typical shear-thinning and non-Newtonian
behaviour, characteristic of pseudoplastic fluids, as reported by several authors for milks fermented
with EPS-producing and non-producing LAB [61,62]. At higher shear rates, the viscosity decreased
and remained without noticeable changes, then behaving as a Newtonian fluid [63].

ELBIO1 ®mLBIO14 mLBIO28
N (mPa.s?)

200
160
120

80

40

121 300 504 806 999
Shear rate (s!)

Figure 4. Dynamic viscosity (1) at different shear rates of stirred fermented milks obtained after
fermentation for 24 h of skim-milk with the EPS-producing strains L. plantarum LBIO1, LBIO14 or
LBIO28. Within each shear rate, bars that do not share a common letter are significantly different
according to analysis of variance (ANOVA) and Student-Newman-Keuls (SNK) (p < 0.05) mean

comparison test.



Microorganisms 2020, 8, 1101 14 of 21

The flow parameters obtained at shear rate of 300 s™! (Supplementary Table S1) showed that the
value of the flow behaviour index “n” was lower than 1 for the three fermented milks, which confirmed
this shear-dependent behaviour [61]. The “n” index, as well as the consistency coefficient “K”,
were significantly different (p < 0.05) among the three fermented milks; those fermented with the strain
LBIO28 presented the higher K and lower n values. In agreement with this, different viscosity was
observed among the three fermented milks (p < 0.05). LBIO28-fermented milks had values higher than
those fermented with LBIO1 or LBIO14 strains and, as it could be expected, the non-ropy one presented
the lowest viscosity. This fact is in agreement with the well-known statement that the capability to
modify the viscosity of fermented milks is a strain and/or EPS-dependent feature [64]. It seems that
LBIO28-fermented milks had a consistent structure that is more difficult to breakdown during shearing
which, presumably, could be linked to the degree of ropiness of its EPS [65]. It seems that the role of
this polymer is slowing the breakdown of the casein network through establishing strong EPS-protein
interactions [66]. At this time, we cannot explain the influence of specific chemical or structural features
exclusive of the LBIO28 EPS on viscosity and casein-interactions.

The structure of a fermented skim-milk gel is formed along the acidification due to the bacterial
metabolism of lactose to (mainly) lactic acid, which generates a casein-network that encloses the
aqueous (whey components) phase into pores. The flow properties of this matrix is related to the
porosity degree of the casein aggregates, as well as to the viscosity of the whey, and it can be determined
by measuring the coefficient of permeability over time (B;) [67]. The three milk gels fermented with the
lactobacilli strains under study showed B; coefficients between 0.6 to 1.1 x 10713 m? (Figure 5A). The By
value obtained for the non-ropy LBIO14 strain (1.10 + 0.15 x 10713 m?) fitted into the range reported
for milk gels acidified at 30 °C with glucono-é-lactone (1-2 X 10713 m?; [67]). Whereas, those of milk
gels obtained with the ropy-strains were lower (0.59 + 0.12 and 0.92 + 0.13 x 10~!3 m?, for LBIO1 and
LBIO28 milk-gels, respectively). In fact, statistical differences (p < 0.05) were found among the Bt
coefficients of the three strains (Figure 5A). LBIO14 gels were the most permeable as it was previously
reported for gels formed with non-EPS producing LAB strains [31]. This is related with the lowest
viscosity of the LBIO14 whey (1.12 + 0.002 x 10® mm? s71) that flowed through the casein network,
as it was detected by measuring the kinematic viscosity (v) of the three whey samples obtained from
the fermented milks (Figure 5B). The lowest viscosity of the non-ropy LBIO14 whey is linked to
the absence of the HMW-EPS fraction. As expected, the v values obtained for the ropy LBIO1 and
LBIO28 whey were higher than for LBIO14, but were equal between them (1.19 + 0.02 x 107® mm? s71).
This suggests that the porosity of the casein network, or the EPS—casein matrix interactions, accounted
for the variations in the By coefficient detected between these two strains [66]. No significant differences
in the capability to retain whey between LBIO1 and LBIO28 milk gels were detected after applying
different centrifugal forces (Figure 5C), although these strains were able to hold more whey (p < 0.05)
than the non-ropy LBIO14 (Figure 5C). This was due to the presence of the HMW-EPS, as previously
reported for other EPS-producing LAB [68].
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Figure 5. Physical parameters of skim milks fermented with the EPS-producing strains L. plantarum
LBIO1, LBIO14 or LBIO28. (A) Mean permeability coefficient (B;) of the fermented milk-gels;
(B) Kinematic viscosity (v) obtained by Ubbelohde measurement of the whey used to measure
the permeability coefficient. (C) Amount of whey separation (% w/w) as a function of centrifugal force
of fermented milk-gels. Bars or symbols (within each centrifugal force) that do not share a common
letter are significantly different according to ANOVA and SNK (p < 0.05) mean comparison test.

On this point, it is worth noting that the acidification rate and the increase in the number of bacteria
during fermentation were different among the strains (Supplementary Table S2; [18]). The strain
LBIO28 was able to drop the pH faster and to accumulate more EPS around the gelation point than
LBIO1 [18], both parameters influencing the gel permeability. It seems that the formation of LBIO1
gels, that is the casein aggregates enclosing pores, took place before the highest accumulation of EPS.
Then, the polymer surrounding the bacteria mostly occupies the pores, partially blocking the flow
through them (reducing permeability). In the case of LBIO28 gels, the acidification and synthesis of the
highest amount of polymer runs parallel, thus the EPS tended to be distributed between the casein
network and the pores, which were not totally blocked with EPS (higher permeability). Similar findings
were previously reported [31,69], and they can be supported with the microstructure of the three
fermented milks visualized under CLSM (Figure 6). In fact, the more permeable gel obtained with the
non-ropy LBIO14 strain showed a coarse and dense protein network with non-distinguishable pores
and the bacteria precipitated in the bottom (green sediment in the 3D-rotated micrograph), because the
acidification rate was the slowest (Supplementary Table S2). On the contrary, “black” pores or “void”
spaces were detected into the casein-aggregates network of the ropy LBIO1 and LBIO28 gels. In the first
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type of gel, the pores were more regularly distributed and the casein structure, with the bacteria and
their polymers entrapped inside, was more homogeneous than that of LBIO28 gel. In the latter, the EPS
more equally distributed into the protein matrix could be linked to caseins, causing a tightening of the
protein network that is more resistant to mechanical action. Thus, the permeability and microstructure
of the casein aggregates formed during bacterial milk fermentation were depending on the strain
used, that determined the acidification rate, as well as the type of polymer produced that might have
influenced the interactions EPS-casein network [31,70,71].

LBIO14

Figure 6. Three-dimensional microstructure of skim-milk gels (casein network stained in yellow)
fermented with the EPS-producing strains L. plantarum LBIO1, LBIO14 or LBIO28 (stained in green).
Left microphotographs (bar 10 um): 3D projection (visualized in XY axes) of several Z-stack images
obtained using a 63%/1.40NA oil objective on an inverted Ultra-Spectral Leica TCS AOBS SP2 confocal
microscope. Right microphotographs: rotation of the 3D Z-stack images, to see the projection in the
three axes (XYZ).
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4. Conclusions

Summarizing, in this work we have found that the three L. plantarum strains isolated from
traditional Algerian fermented milks have EPS surrounding their surface but showing different
structure. This is probably due to the presence of a HMW-EPS detected only in the ropy LBIO1 and
LBIO28 strains but absent in the non-ropy LBIO14. Although the genomes of the strains were quite
similar, the main difference among the strains, in comparison with L. plantarum WCFS1, was denoted in
the cps2 cluster which was only present in the ropy strains. This points to its implication in the synthesis
of the HMW-EPS and thereby, in the occurrence of the ropy phenotype. Following, the physical
characterization of skim-milks fermented with the three strains allowed us to propose the technological
applications of the ropy EPS-producing strains. L. plantarum LBIO1 produced milk gels with a less
permeable structure, and thus this strain could be used for the manufacture of dairy products to avoid
syneresis and/or to increase the water retention. Milks fermented with L. plantarum LBIO28 presented
the highest viscosity, indicating that the polymer produced in situ can be used as a natural fat replacer
to improve the rheological properties of less caloric products.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/8/1101/s1,
Figure S1: genetic fingerprinting obtained by polymerase chain reaction (PCR) amplification of different genomic
regions from L. plantarum LBIO1, LBIO14 and LBIO28 DNA. Figure S2: SEC-MALLS chromatograms of the
EPS-fraction extracted from milks fermented with the L. plantarum LBIO1, LBIO14 and LBIO28 strains. Table S1:
rheological parameters of milks fermented with L. plantarum LBIO1, LBIO14 and LBIO28 strains. Table S2:
acidification rate and increase of bacterial counts of milks fermented with L. plantarum LBIO1, LBIO14 and LBIO28
strains. Supplementary File 1: ORF location, gene function, and % of identity of genes included in the eps clusters
found in LBIO1, LBIO14 and LBIO28 L. plantarum genomes in comparison to that of the strain WCFS1.
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