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Abstract: The N-functionalized amino acid N-methylanthranilate is an important precursor for
bioactive compounds such as anticancer acridone alkaloids, the antinociceptive alkaloid O-isopropyl
N-methylanthranilate, the flavor compound O-methyl-N-methylanthranilate, and as a building
block for peptide-based drugs. Current chemical and biocatalytic synthetic routes to N-alkylated
amino acids are often unprofitable and restricted to low yields or high costs through cofactor
regeneration systems. Amino acid fermentation processes using the Gram-positive bacterium
Corynebacterium glutamicum are operated industrially at the million tons per annum scale. Fermentative
processes using C. glutamicum for N-alkylated amino acids based on an imine reductase have
been developed, while N-alkylation of the aromatic amino acid anthranilate with S-adenosyl
methionine as methyl-donor has not been described for this bacterium. After metabolic engineering
for enhanced supply of anthranilate by channeling carbon flux into the shikimate pathway, preventing
by-product formation and enhancing sugar uptake, heterologous expression of the geneanmt encoding
anthranilate N-methyltransferase from Ruta graveolens resulted in production of N-methylanthranilate
(NMA), which accumulated in the culture medium. Increased SAM regeneration by coexpression of
the homologous adenosylhomocysteinase gene sahH improved N-methylanthranilate production. In a
test bioreactor culture, the metabolically engineered C. glutamicum C1* strain produced NMA to a final
titer of 0.5 g·L−1 with a volumetric productivity of 0.01 g·L−1

·h−1 and a yield of 4.8 mg·g−1 glucose.

Keywords: N-functionalized amines; N-methylanthranilate; Corynebacterium glutamicum; metabolic
engineering; sustainable production of quinoline precursors; acridone; quinazoline alkaloid drugs

1. Introduction

N-Functionalization of natural products as well as fine and bulk chemicals includes
N-hydroxylation, N-acetylation, N-phosphorylation, or N-alkylation. These amine and amino acid
modifications are found in all domains of life, and they fulfill various physiological roles such as
resistance of bacteria to the antibiotic rifampicin by its N-hydroxylation [1], biosynthesis of the hormone
melatonin via N-acetylated serotonin in plants and mammals [2], or assimilation of methylamine as
carbon and energy source in methylotrophic bacteria [3].
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The biotechnological and chemical interest in N-functionalized amines, especially in N-alkylated
amino acids, has increased recently because of their beneficial impact as building blocks when
incorporated into peptide-based drugs. Better membrane permeability, increased stability against
proteases, stabilization of discrete confirmations, prevention of peptide aggregation by reduced
formation of hydrogen bonds, or increased receptor subtype selectivity were shown for peptide-based
drugs as consequence of amino acid N-alkylation [4]. For example, N-methylation of the N–Cα peptide
bonds of transition state mimetics developed to inhibit malarial protease, which is required for infecting
erythrocytes, improved their lipophilicity and stability against proteolysis, thus enhancing activity
against Plasmodium parasites [5]. Free N-alkylated amines such as the N-ethylated glutamine derivative
l-theanine, which prominently occurs in green tea, or O-methyl-N-methylanthranilate of grapes are
flavoring compounds with applications in the food, cosmetics, flavor, and fragrances industries.

Chemical synthesis of free N-alkylated amino acids is well studied, and various routes are known,
such as by nucleophilic substitution of α-bromo acids, N-methylation of sulfonamides, carbamates
or amides, reduction of Schiff bases generated with an amino acid and formaldehyde or other
aldehydes, by direct alkylation of protected amino acids or by ring-opening of 5-oxazolidinones [6–9].
However, these processes are often limited by low product yields, over-methylation, toxic reagents, or
their incomplete enantiopurity [10,11]. Recently, enzyme catalysis routes with N-methyltransferases,
dehydrogenases, ketimine reductases, or imine reductases that depend on cofactor regeneration
systems have been described [12]. Fermentation processes using simple mineral salts media have been
developed for three different routes for de novo production of N-alkylated amino acids. Two metabolic
engineering strategies for reductive alkylamination of 2-oxo acids with monomethylamine that either
make use of a C1-assimilation pathway present in methylotrophic bacteria [13] or of the imine reductase
DpkA [14] have been established. S-Adenosyl-l-methionine (SAM)-dependent methylation of aromatic
amino acids by N-methyltransferases has also been described [15].

N-methylanthranilate (NMA) is an intermediate of the acridone alkaloid biosynthesis in plants.
The SAM-dependent transfer of a methyl group to anthranilate initiates the biosynthesis of
NMA-dependent biosynthesis of N-methylated acridone alkaloids and avenacin in plants [16,17].
Until now only one N-methyltransferase enzyme ANMT was characterized from the common rue,
Ruta graveolens L., which accumulates N-methylated acridones exclusively. This enzyme shows
narrow specificity for anthranilate, not accepting methylated catechol, salicylate, caffeate, 3- and
4-hydroxybenzoate, and anthraniloyl-CoA as substrates [16]. The acridone alkaloids and avenacin
pathways diverge after SAM-dependent N-methylation of acridone anthranilate with regard to
activation for transfer to the respective alkaloid intermediate. An ATP-dependent transfer of CoA is
postulated for the acridone alkaloid biosynthesis [18], while UDP glucose-dependent O-glycosylation
was shown as second step of the avenacin biosynthesis [17]. Acridone alkaloids and avenacin are
known as bioactive compounds with cytotoxic, anticancer, antimicrobial, or antiparasitic properties
and are, therefore, used for pharmaceutical and therapeutic purposes. Several N-methylated acridones,
namely citrusamine, evoxanthine, arborinine, or normelicopine, were identified in diverse plants [19].
Arborinine, as an example, was found in ethyl acetate extracts from Glycosmis parva, and it
showed anticancer activity against human cervical cancer cells since activation of caspase-dependent
apoptosis without inducing the DNA damage response was observed [20]. N-methylanthranilate
also serves as precursor for the flavoring agent O-methyl-N-methylanthranilate, which has an orange
blossom and grape-like odor, the antinociceptive alkaloid O-isopropyl-N-methylanthranilate, or the
anti-inflammatory active compound O-propyl-N-methylanthranilate [21–23].

Safe production of amino acids for the food and feed industry has been established at the
annual million-ton scale for decades with Corynebacterium glutamicum as the dominant production
host [24]. C. glutamicum grows on simple mineral salts media and can utilize various sugars [25,26],
acids such as citrate [27], and alcohols such as ethanol [28]. A well-established toolbox enabled
metabolic engineered-based approaches for production of diverse value-added compounds. Besides
the production of proteinogenic amino acids, also a broad range of non-proteinogenic amino acid



Microorganisms 2020, 8, 866 3 of 20

products like γ-aminobutyrate [29], 5-aminovalerate [30,31], pipecolic acid [32,33], N-methylated
amino acids like N-methylalanine (NMeAla) [34] and sarcosine [35], aromatic compounds like
4-hydroxybenzoate [36,37] or protocatechuic acid [38], and functionalized aromatics like 7-chloro- or
7-bromo-tryptophan [39,40] and O-methylanthranilate [41] have been demonstrated.

Here, we describe fermentative N-methylanthranilate production by metabolic engineering of
genome-reduced chassis strain C. glutamicum C1*, a robust basic strain for synthetic biology and
industrial biotechnology [42]. Fermentative NMA production from glucose involved SAM-dependent
ANMT from R. graveloens combined with metabolic engineering for efficient supply of the precursor
anthranilate (Figure 1).
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Figure 1. Schematic representation of N-methylanthranilate (NMA) biosynthesis (A) embedded into 
aromatic amino acid metabolism of engineered C. glutamicum (B). Continuous arrows indicate single 
reactions, dashed arrows indicate multiple reactions. Green arrows and gene names indicate genome-
based overexpression, yellow arrows and gene names indicate vector-based expression, crossed 
arrows and red gene names indicate gene deletion. (A) N-methylation of anthranilate by N-
methylanthranilate transferase (ANMT) from R. graveolens under consumption of S-

Figure 1. Schematic representation of N-methylanthranilate (NMA) biosynthesis (A) embedded
into aromatic amino acid metabolism of engineered C. glutamicum (B). Continuous arrows indicate
single reactions, dashed arrows indicate multiple reactions. Green arrows and gene names
indicate genome-based overexpression, yellow arrows and gene names indicate vector-based
expression, crossed arrows and red gene names indicate gene deletion. (A) N-methylation of
anthranilate by N-methylanthranilate transferase (ANMT) from R. graveolens under consumption
of S-adenosylmethionine (SAM). The SAM regeneration cycle is depicted with overexpression of sahH,
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S-adenosylhomocysteine hydrolase. SAH, S-adenosylhomocysteine; HCYS, l-homocysteine; MET,
l-methionine; metE/metH, methionine synthase; metK, methionine adenosyltransferase. (B) Strain
engineering towards production of NMA. Grey sugR indicates reversion of deleted sugR back to wild
type sugR. PEP, phosphoenolpyruvate; TCA, tricarboxylic acid; PPP, pentose phosphate pathway; E4P,
erythrose-4-phosphate; DAHP, 3-deoxy-d-arabinoheptulosonate-7-phosphate; 3DHQ, 3-dehydroquinate;
3DHS, 3-dehydroshikimic acid; PCA, protocatechuic acid; iolR, transcriptional regulator; sugR,
transcriptional regulator; ppc, phosphoenolpyruvate carboxylase; ldhA, lactate dehydrogenase; tkt,
transketolase; aroF, DAHP synthase; aroGFBR, feedback-resistant DAHP synthase from Escherichia coli;
aroB, 3-dehydroquinate synthase; qsuC, 3-dehydroquinate dehydratase; qsuB, 3-dehydroshikimate
dehydratase; qsuD, shikimate dehydrogenase; aroE, shikimate dehydrogenase; qsuA, putative shikimate
importer; aroK, shikimate kinase; aroA, 5-enolpyruvylshikimate-3-phosphate synthase; aroC, chorismate
synthase; csm, chorismate mutase; trpEFBR, feedback-resistant anthranilate synthase from E. coli.

2. Materials and Methods

2.1. Bacterial Strains and Culture Conditions

All bacterial strains used are listed in Table 1. Escherichia coli DH5α [43] was used for plasmid
construction. C. glutamicum C1* was used as host organism for shikimate, anthranilate, and NMA
production. Pre-cultures of E. coli and C. glutamicum were performed in lysogeny broth (LB) and
brain heart infusion (BHI) medium at 37 or 30 ◦C in baffled shake flasks on a rotary shaker (160 rpm
or 120 rpm). Cultures were inoculated freshly from LB agar plates. When necessary, spectinomycin
(100 µg·mL−1) and kanamycin (25 µg·mL−1) were added to the medium. For induction of gene
expression from vectors pEKEx3 and pGold, isopropyl-β-d-1-thiogalactopyranoside (IPTG) was added
to the medium. For the performance of growth or production experiments of C. glutamicum, pre-cultures
were inoculated as described above. After cell harvesting (3200× g, 7 min), cells were washed with
TN-buffer pH 6.3 (50 mM Tris-HCL, 50 mM NaCl) and inoculated to an optical density at 600 nm (OD600)
of 1 in CGXII minimal medium [44] and 40 g glucose as sole carbon source. C. glutamicum grown in
500 mL baffled shake flasks was followed by measuring OD600 using a V-1200 spectrophotometer
(VWR, Radnor, PA, USA). An OD600 of 1 was determined to be equivalent to a biomass concentration
of 0.25 g cell dry weight per liter.

Table 1. Bacterial strains used in this study.

Strains Description Source

Corynebacterium glutamicum
WT C. glutamicum wild-type strain ATCC13032 ATCC
C1* Genome-reduced chassis strain derived from [42]

ARO01 ∆vdh::PilvC-aroGD146N mutant of C1* This work
ARO02 ∆ldhA mutant of ARO01 This work
ARO03 ∆sugR mutant of ARO02 This work
ARO04 ∆aroR::PilvC-aroF mutant of ARO03 This work
ARO05 ∆qsuABCD::Ptuf-qsuC mutant of ARO04 This work
ARO06 ∆ppc::Psod-aroB mutant of ARO05 This work
ARO07 ∆Ptkt::Ptuf-tkt mutant of ARO06 This work
ARO08 ∆iolR::Ptuf-aroE mutant of ARO07 This work
ARO09 ∆sugR::sugR mutant of ARO08 This work

NMA100 ARO09 carrying pEKEx3 and pGold This work
NMA101 ARO09 carrying pEKEx3 and pGold-anmt This work
NMA102 ARO09 carrying pEKEx3 and pGold-anmt-sahH This work
NMA103 ARO09 carrying pEKEx3-trpEFBR and pGold This work
NMA104 ARO09 carrying pEKEx3-trpEFBR and pGold-anmt This work
NMA105 ARO09 carrying pEKEx3-trpEFBR and pGold-anmt-sahH This work

Escherichia coli
S17-1 recA pro hsdR RP4-2-Tc::Mu-Km::Tn7 [45]
DH5α F-thi-1 endA1 hsdr17(r-, m-) supE44 1lacU169 (Φ80lacZ1M15) recA1 gyrA96 [43]
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Evaluation of the effects of anthranilate and NMA on C. glutamicum growth was performed in the
microbioreactor system Biolector (m2p-labs; Aachen, Germany). Pre-cultures were grown in BHI-rich
medium overnight and transferred to second pre-culture of CGXII minimal medium with 40 g·L−1

glucose until the early exponential phase before inoculating to the main medium of CGXII minimal
medium and 40 g·L−1 glucose with addition of varying anthranilate (solved in water) and NMA
(solved in methanol) concentrations. Each condition with NMA contained 1.65 M methanol. Growth
experiments in the Biolector were carried out using 48-well flower plates (MTP-48-B; m2p-labs) with a
filling volume of 1 mL, at 30 ◦C, and 1200 rpm shaking frequency. Humidity was kept constant at 85%,
and online biomass measurements of scattered light were monitored with backscatter gain of 20.

2.2. Fed-Batch Cultivation

Fed-Batch fermentation of C. glutamicum NMA105 was performed in an initial volume of 2 L in
a bioreactor (3.7 L KLF, Bioengineering AG, 8636 Wald, Switzerland) at 30 ◦C, 0.2 bar overpressure,
and an aeration rate of 2 NL·min−1. We did not perform off-gas analysis. To maintain relative dissolved
oxygen saturation at 30%, stirrer speed was controlled during growth. The pH was maintained at
pH 7.0 due to controlled addition of KOH (4 M) and phosphoric acid (10% (w/w)). To avoid foaming,
the antifoam Sruktol® J647 was added manually when necessary. Feeding with 400 g·L−1 glucose
and 150 g·L−1 (NH4)2SO4 (total volume: 500 mL) was activated when the relative dissolved oxygen
saturation (rDOS) signal rose above 60% and stopped when rDOS fell below 60%. Samples were
taken automatically every 4 h during the whole cultivation and cooled down to 4 ◦C until further
use. C. glutamicum NMA105 cells were transferred from a first pre-culture grown in LB in shake
flasks to a second pre-culture in standard CGXII (pH 7.0) medium with 40 g·L−1 glucose (without
IPTG) and the required antibiotics. For the bioreactor culture, standard CGXII medium without
addition of 3-(N-morpholino)propanesulfonic acid (MOPS) and antibiotics was used. The fermenter
was inoculated with the second pre-culture to an OD of 1.5 and immediately induced with 1 mM
of IPTG.

2.3. Molecular Genetic Techniques and Strain Construction

Standard molecular genetic techniques were performed as described [46]. Competent E. coli
DH5α [43] was performed with the RbCl method and transformed by heat shock [46]. Transformation
of C. glutamicum was performed by electroporation [44]. The gene trpEFBR was amplified using specific
primers (Table 2) with ALLinTM HiFi DNA Polymerase (highQu GmbH, Kraichtal, Germany). The PCR
products were assembled with BamHI restricted pEKEx3 via Gibson Assembly [44].

For heterologous expression of the N-methylanthranilate transferase gene, firstly, the pEC-XK99E
vector was modified to be suitable for Golden Gate based modular assembly of multiple genes
simultaneously. To this end, the three BsaI sites present in the vector located in the rrnB terminator,
the vector backbone, and the repA ORF were removed. Next, a linker containing two BsaI sites
(CAGATGAGACCGCATGCCTGCAAGGTCTCAGTAT) was added to the MCS between EcoRI and
SacI restriction sites. The resulting vector was named pGold (GenBank: MT521917). The coding
sequence (CDS) of the plant gene anmt (GenBank: DQ884932.1) encoding the N-methylanthranilate
transferase of Ruta graveolens was codon-harmonized to the natural codon frequency of C. glutamicum
ATCC13032 with the codon usage table of kazusa database [47] and synthesized with Golden Gate
assembly compatible flanking regions including recognition site for the restriction enzyme type
2 BsaI and pGold complementary sequences and an optimized RBS [48,49] (Supplementary Data
Table S1). The gene anmt was amplified using specific primers (Table 2) with ALLinTM HiFi DNA
Polymerase according to the manufacturer (highQu GmbH, Kraichtal, Germany). The PCR products
were assembled with digested pGold-anmtwith BamHI via Gibson Assembly [44].
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Table 2. Oligonucleotides used in this study.

Name Oligonucleotide Sequence (5′ to 3′)

vdh-conf-fw GACCTCTAGGGCAGCAGTG
vdh-conf-rv CTGTTCAGCGGATTAGCG
ldhA-conf-fw TGATGGCACCAGTTGCGATGT
ldhA-conf-rv CCATGATGCAGGATGGAGTA
sugR-conf-fw CGAGATGCTGTGGTTTTGAG
sugR-conf-rv GCTTATCGGGTGTGGGAATG
US-aroR-fw CCTGCAGGTCGACTCTAGAGCGATGCAGAATAATGCAGTTAG
US-aroR-rv CGGAGCTTGCCTGGGAGTTTGGAACCTTAACACACTTTC
PilvC-aroR-fw GAAAGTGTGTTAAGGTTCCAAACTCCCAGGCAAGCTCCGCGC
PilvC-aroR-rv GAAAAAACCTCCTTTAGTGTGTAGTTAAGTTATGGTGATGGGAGAAAATCTCGCCTTTCG
DS-aroR-fw ATCACCATAACTTAACTACACACTAAAGGAGGTTTTTTCATGAGTTCTCCAGTCTCACTCGAAAAC
DS-aroR-rv GAATTCGAGCTCGGTACCCGGGCAATGCGCAAGCCCTCTGGG
aroR-conf-fw GGAACTCCCGTTGAGGTG
aroR-conf-rv GTGGTACGAGCGCCGATTG
US-qsuA-fw CCTGCAGGTCGACTCTAGAGGTTGGCAGCGCAACCAGTC
US-qsuA-rv CTACTGACACGCTAAAACGCTGTCGATCCTGTTCATCG
Ptuf-qsuC-fw CGATGAACAGGATCGACAGCGTTTTAGCGTGTCAGTAG
Ptuf-qsuC-rv CTGAAGGGCCTCCTTTCTCCTCCTGGACTTCGTGG
qsuC-fw GGAGAAAGGAGGCCCTTCAGATGCCTGGAAAAATTCTCCTCC
qsuC-rv GTCGAGGTTTTACTGACTCTTCTACTTTTTGAGATTTGCCAGG
DS-qsuD-fw CTCAAAAAGTAGAAGAGTCAGTAAAACCTCGACGC
DS-qsuD-rv GAATTCGAGCTCGGTACCCGGGATTTCGCGGATGGGTCTAAGTATG
qsu-conf-fw GTTCGTGGACAAGTGTGGTGG
qsu-conf-rv GTTCGTGGACAAGTGTGGTGG
US-ppc-fw GCCTGCAGGTCGACTCTAGAGCGCTCAGGAAGTGTGCAAGGC
US-ppc-rv GTACTACCCAGCCGGCTGGGGATCCCTACTTTAAACACTCTTTCACATTGAGGGTG
Psod-aroB-fw AATGTGAAAGAGTGTTTAAAGTAGGAAGCGCCTCATCAGCGGTAAC
Psod-aroB-rv CTCCTTTAAAAATAAGTCGCCTACCAAAATCCTTTCGTAGGTTTCCGC

aroB-fw GCGGAAACCTACGAAAGGATTTTGGTAGGCGACTTATTTTTAAAGGAGGTTTTTT
ATGAGCGCAGTGCAGATTTTC

aroB-rv CTTCTCTCATCCGCCAAAATTAGTGGCTGATTGCCTCATAAG
Term-aroB-fw CTTATGAGGCAATCAGCCACTAATTTTGGCGGATGAGAGAAG
Term-aroB-rv AGTACTACCCAGCCGGCTGGGGATCCAAAAGAGTTTGTAGAAACGC
DS-ppc-fw TGAAAGAGTGTTTAAAGTAGGGATCCCCAGCCGGCTGGGTAGTAC
DS-ppc-rv GAATTCGAGCTCGGTACCCGGGCAGTGGGGAGACAACAGGTCG
ppc-conf-fw CCGTCGGGAAACAGTTCCCC
ppc-conf-rv GCAGACCCGTAAGTCCCTTGC
US-tkt-fw GCATGCCTGCAGGTCGACTCTAGAGTGACCCAGGTGGACGCCAAC
US-tkt-rv GTGGACATTCGCAGGGTAACGGCCAAGGTGTGATCAATCTTAAGTC
Ptuf-tkt-fw GACTTAAGATTGATCACACCTTGGCCGTTACCCTGCGAATGTCCAC
Ptuf-tkt-rv CGTCAAGGTGGTCATCTGAAGGGCCTCCTTTCTGTATGTCCTCCTGGACTTC
DS-tkt-fw CAGGAGGACATACAGAAAGGAGGCCCTTCAGATGACCACCTTGACGCTGTC
DS-tkt-rv GAATTCGAGCTCGGTACCCGGGTGGCGGTACTCAGGGTGTCC
tkt-conf-fw GTTCCCGAATCAATCTTTTTAATG
tkt-conf-rv GACCCTGGCCAAGAGGGCCAGTG
US-iolR-fw GCCTGCAGGTCGACTCTAGAGCGACCCTCACGATCGCATG
US-iolR-rv CTACTGACACGCTAAAACGCGATGTCTCCTTTCGTTGCCC
Ptuf-aroE-fw GGGCAACGAAAGGAGACATCGCGTTTTAGCGTGTCAGTAG
Ptuf-aroE-rv CCCATCTGAAGGGCCTCCTTTCTCCTCCTGGACTTCGTGGTG
aroE-fw GGAGAAAGGAGGCCCTTCAGATGGGTTCTCACATCACTCACCG
aroE-rv CAGAAGGGCTCTTTGGTTTATTTCTTAGTGTTCTTCTGAGATGCCTAAAGACTC
DS-iolR-fw GAGTCTTTAGGCATCTCAGAAGAACACTAAGAAATAAACCAAAGAGCCCTTCTG
DS-iolR-rv GAATTCGAGCTCGGTACCCGGGCGCTCTCCATCCGCTGGAC
iolR-conf-fw CAGATAGAGGAACCCAAGGCG
iolR-conf-rv GGACTTCGTGAGTGCTCGTC
sugR_reintegr-fw CTGCAGGTCGACTCTAGAGCCTGCGCAGGGACCCTAATAAG
sugR_reintegr-rv GAATTCGAGCTCGGTACCCGGGCCTGCAGTAAAAGATTCCCGC

x3-trpE-fw CCTGCAGGTCGACTCTAGAGGAAAGGAGGCCCTTCAG
ATGCAAACACAAAAACCGACTCTCGAACTG

x3-trpE-rv AAAACGACGGCCAGTGAATTTCAGAAAGTCTCCTGTGCATGATGCGC

pGANMT-sahH-fw ATGAGCTCGGTACCCGGGCGGGACGAAGAGAACCGTTACAAGAATAAAGGAGGTTTTTT
ATGGCACAGGTTATGGACTTC

pGANMT-sahH-rv CTGCAGGTCGACTCTAGAGTTAGTAGCGGTAGTGCTCCGG

Ribosomal binding sites are in bold, and binding regions of Gibson oligonucleotides are underlined.

Chromosomal gene deletions and replacements in C1*-derived strains were performed by two-step
homologous recombination [44] using the suicide vector pK19mobsacB [50]. The genomic regions
flanking the respective gene for homologous recombination were amplified from C. glutamicum WT as
described elsewhere [51] using the respective Primer pairs containing artificial RBS ([48,49], Table 2).



Microorganisms 2020, 8, 866 7 of 20

The purified PCR products were assembled and simultaneously cloned into restricted pK19mobsacB
by Gibson Assembly resulting in the plasmids listed in Table 3. Transfer of the suicide vectors was
carried out by trans-conjugation using E. coli S17 as donor strain [33]. For the first recombination
event, integration of the vector in one of the targeted flanking regions was selected via kanamycin
resistance. The resulting clones showed sucrose sensitivity due to the levansucrase gene sacB. Suicide
vector excision was selected by sucrose resistance. Gene deletions or replacements were verified by
PCR and sequencing with respective primers (Table 2).

Table 3. List of plasmids used in this study.

Plasmids Description Source

pK19mobsacB
KmR; E. coli/C. glutamicum shuttle vector for construction
of insertion and deletion mutants in C. glutamicum (pK19

oriVEc sacB lacZα)
[50]

pK19-∆vdh::PilvC-aroGD146N
pK19mobsacB with a construct for replacement of vdh
(cg2953) by aroGD146N from E. coli under control of C.

glutamicum promoter PilvC

[36]

pK19-∆ldhA pK19mobsacB with a construct for deletion of ldhA (cg3219) [52]
pK19-∆sugR pK19mobsacB with a construct for deletion of sugR (cg2115) [53]

pK19-∆aroR::PilvC

pK19mobsacB with a construct for replacement of aroR and
the native promoter of aroF by C. glutamicum promoter

PilvC and an artificial RBS
This work

pK19-∆qsuABCD::Ptuf-qsuC
pK19mobsacB with a construct for replacement of qsuABCD

(cg0501-cg0504) by qsuC (cg0503) with an artificial RBS
under control of C. glutamicum promoter Ptuf

This work

pK19-∆ppc::Psod-aroB
pK19mobsacB with a construct for replacement of ppc
(cg1787) by aroB (cg1827) with an artificial RBS under

control of C. glutamicum promoter Psod

This work

pK19-∆Ptkt::Ptuf

pK19mobsacB with a construct for replacement of the tkt
(cg1774) promoter by C. glutamicum promoter Ptuf and

artificial RBS
This work

pK19-∆iolR::Ptuf-aroE
pK19mobsacB with a construct for replacement of iolR
(cg0196) by aroE (cg1835) with an artificial RBS under

control of C. glutamicum promoter Ptuf

This work

pK19-∆sugR::sugR pK19mobsacB with a construct for reintegration of sugR
(cg2115) into its native locus This work

pEKEx3 SpecR, PtaclacIq, pBL1 oriVCg, C. glutamicum/E. coli
expression shuttle vector

[54]

pEKEx3-trpEFBR SpecR, pEKEx3 overexpressing trpES40F from E. coli K12
containing an artificial RBS

This work

pEC-XK99E KmR, PtrclacIq, pGA1 oriVEc, C. glutamicum/E. coli
expression shuttle vector

[55]

pGold
KmR, PtrclacIq, pGA1 oriVEc, C. glutamicum/E. coli

expression shuttle vector with BsaI recognition site for
Golden Gate assembly

This work

pGold-anmt KmR, pGold overexpressing codon harmonized anmt from
Ruta graveolens with an artificial RBS

This work

pGold-anmt-sahH
KmR, pGold overexpressing a synthetic operon with codon
harmonized anmt from R. graveolens with an artificial RBS

and sahH from C. glutamicum with an artificial RBS
This work

2.4. Quantification of Amino Acids and Organic Acids

Extracellular amino acids and carbohydrates were quantified by high-performance liquid
chromatography (HPLC) (1200 series, Agilent Technologies Deutschland GmbH, Böblingen, Germany).
The culture supernatants were collected at different time points and centrifuged (20,200× g) for
HPLC analysis.

For the detection of α-ketoglutarate (α-KG), trehalose, and lactate, an amino exchange column
(Aminex, 300 mm × 8 mm, 10 µm particle size, 25 Å pore diameter, CS Chromatographie Service
GmbH, 52379 Langerwehe, Germany) was used. The measurements were performed under isocratic
conditions for 17 min at 60 ◦C with 5 mM sulfuric acid and a flow rate of 0.8 mL·min −1. The detection



Microorganisms 2020, 8, 866 8 of 20

was carried out with a Diode Array Detector (DAD, 1200 series, Agilent Technologies, Santa Clara,
CA 95051, USA) at 210 nm.

Separation of shikimate, anthranilate, and NMA was performed with a pre-column (LiChrospher
100 RP18 EC-5µ (40 × 4 mm), CS Chromatographie Service GmbH, Langerwehe, Germany) and a main
column (LiChrospher 100 RP18 EC-5µ (125 × 4 mm), CS Chromatographie Service GmbH). A mobile
phase of buffer A (0.1% trifluoroacetic acid dissolved in water) and buffer B (acetonitrile) was used
with a flow rate of 1 mL·min−1. The following gradient was applied: 0–1 min 10% B; 1–10 min a linear
gradient of B from 10% to 70%; 10–12 min 70% B; 12–14 min a linear gradient of B from 70% to 10%;
14–18 min 10% B [41]. The injection volume was 20 µL, and detection was performed with DAD at 210,
280, and 330 nm.

3. Results

3.1. Corynebacterium glutamicum as Suitable Host for NMA Production

C. glutamicum is widely used in amino acid fermentation, which operates at a million tons per
annum scale [56]; however, it has not been engineered so far for NMA production. As expected,
inspection of the genome revealed that there was no gene(s) encoding for a native enzyme that may
N-methylate anthranilate to yield NMA. To study the growth responses of C. glutamicum to anthranilate
and NMA, the wild-type strain ATCC13032 (WT) was cultivated with addition of varying anthranilate
and NMA concentrations to CGXII minimal medium and 40 g·L−1 glucose. Neither anthranilate nor
NMA were utilized or converted by C. glutamicum WT, since their concentrations in supernatants
analyzed at the beginning and the end of cultivation were comparable. Maximal biomass concentrations
(expressed as ∆OD600) were hardly affected by addition of anthranilate or NMA. By extrapolation, the
concentrations of anthranilate (about 36 mM) and NMA (about 34 mM), which reduced the specific
growth rate in glucose minimal medium to half-maximal, were determined (Figure 2). Based on the
observed tolerance, C. glutamicum is a suitable candidate for production of anthranilate and NMA.Microorganisms 2020, 8, x FOR PEER REVIEW 10 of 22 
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with NMA contained the same amount of methanol (1.65 M) in minimal media. Averages and standard
deviation of triplicate cultivations are shown.
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3.2. Construction of a C. glutamicum Platform Strain for Production of Anthranilate

Since anthranilate, an intermediate of the tryptophan branch in the shikimate pathway, is a direct
precursor of NMA, C. glutamicum C1* was engineered for increased supply of shikimate pathway
intermediates by eliminating bottlenecks and minimizing formation of by-products (Figure 1). Hence,
in sequential steps, aroGD146 encoding feedback resistant 3-deoxy-d-arabino-heptulosonate-7-phosphate
(DAHP) synthase from E. coli [57] was inserted into the locus of vdh coding for vanillin dehydrogenase,
which oxidizes vanillin and other aromatic aldehydes such as protocatechic aldehyde [58]. Next, an
in-frame deletion of ldhA to reduce l-lactate formation (ARO02) and an sugR deletion to increase
glycolytic gene expression and sugar uptake [59] were introduced to yield strain ARO03.

Upon transformation with pEKEx3 as an empty vector control and pEKEx3-trpEFBR for expression
of feedback-resistant anthranilate synthase from E. coli [60], strains were evaluated regarding their
growth behavior, anthranilate production, and formation of by-products. After 48 h of shake flask
cultivation, ARO03(pEKEx3) exhibited decreased biomass formation and increased trehalose and
α-ketoglutarate accumulation as compared to ARO01(pEKEx3). Expression of trpEFBR further decreased
biomass formation (i.e., 16.4% less than in empty vector). Comparing strains C1* to ARO03 carrying
pEKEx3-trpEFBR revealed a stepwise increase both in anthranilate and in shikimate production (Figure 3).
For example, ARO03 strain harboring pEKEx3-trpEFBR produced 17.6 ± 1.0 mM anthranilate and
6.8 ± 0.8 mM shikimate as compared to C1*(pEKEx3-trpEFBR) that accumulated only 9.0 ± 0.2 mM
anthranilate and 1.7 ± 0.1 mM shikimate.Microorganisms 2020, 8, x FOR PEER REVIEW 11 of 22 
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Figure 3. Production of shikimate (maroon bars) and anthranilate (light blue bars), maximal specific
growth rate (gray diamonds) and biomass formation (yellow squares) by C. glutamicum strains C1* and
ARO01 to ARO09 carrying either pEKEx3 (left panel) or pEKEx3-trpEFBR (right panel) were grown in
shake flasks in CGXII minimal medium with 40 g·L−1 glucose for 48 h. Means and arithmetic errors of
duplicate cultures are shown.

To further increase the carbon flux towards shikimate, several further metabolic engineering
steps were undertaken. In ARO04, the gene aroR, which codes for a translational regulatory leader
peptide and is located upstream of DHAP synthase gene aroF [61], was replaced by an ilvC
promoter followed by an optimized RBS in order to relieve negative translational control of aroF by
phenylalanine and tyrosine. As described previously [36], the qsuABCD operon was replaced by qsuC
transcribed from the constitutive strong tuf promoter in strain ARO05. This blocked conversion of
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3-dehydroshikimate (3-DHS) to the unwanted by-product protocatechuate (PCA) on the one hand
and increased the flux from 3-dehydroquinate (3-DHQ) to 3-DHS on the other hand. The replacement
of ppc encoding phosphoenolpyruvate (PEP) carboxylase by a second copy of endogenous aroB
encoding 3-DHQ synthase in ARO06 probably increased supply of PEP as precursor for the shikimate
pathway, and overexpression of aroB increased conversion of DHAP to 3-DHQ. To increase supply of
erythrose-4-phosphate (E4P) as second precursor of the shikimate pathway [62], the native promoter
upstream of transketolase gene tkt was exchanged by the constitutive strong promoter Ptuf with an
artificial RBS. Since tkt is co-transcribed with other genes of the pentose phosphate pathway as operon
tkt-tal-zwf-opcA-pgl, this promoter exchange is expected to increase flux into the pentose phosphate
pathway towards E4P in strain ARO07.

Upon transformation with pEKEx3-trpEFBR, ARO07 produced only slightly more anthranilate
(18.2 ± 0.1 mM) than ARO03(pEKEx3-trpEFBR), but less shikimate, trehalose, and α-ketoglutarate
(Figure 4). Growth was comparably fast (µ of 0.14 ± 0.01 h−1 compared to 0.13 ± 0.01 h−1), but a higher
biomass was reached (OD600 of 24.4 ± 1.0 compared with 16.1 ± 0.1) (Figure 3).

In ARO08, shikimate dehydrogenase gene aroE was overexpressed from the strong constitutive
promoter Ptuf and used to replace iolR. In the absence of IolR, the inositol catabolism operon
(cg0197-cg0207), cg1268, and PEP carboxykinase gene pck are deregulated [63,64], and iolT1, which
codes for a non-phosphoenolpyruvate dependent phosphotransferase transporter (non-PTS) inositol
uptake system, is derepressed. Non-PTS uptake of glucose is known to improve availability of PEP.
The final strain, ARO09, is a sugR-positive derivative of ARO08. ARO09(pEKEx3-trpEFBR) grew faster
than ARO7(pEKEx3-trpEFBR) (Figure 3) and accumulated less trehalose as unwanted by-product. The
maximum anthranilate titer of 22.0 ± 1.4 mM (equivalent to about 3.1 g·L−1 anthranilate) was achieved
with ARO09(pEKEx3-trpEFBR) after 48 h of shake flask cultivation. This titer was 2.5 times more than
that obtained with C1*(pEKEx3-trpEFBR). Taken together, an anthranilate producing C. glutamicum
strain converting 12.7% of carbon from glucose (Figure 4) to about 3.1 g·L−1 of anthranilic acid, the
direct precursor for NMA, was constructed.

3.3. Establishing Fermentative Production of NMA by C. glutamicum

NMA is synthesized from anthranilate in a single SAM-dependent methylation reaction
at its amino group (Figure 1). Therefore, the anthranilate producing C. glutamicum strain
ARO09(pEKEx3-trpEFBR) was used for heterologous expression of the anthranilate N-methyltransferase
gene anmt from R. graveolens. Transformation of ARO09(pEKEx3-trpEFBR) with pGold-anmt yielded
strain NMA104. To improve SAM regeneration, the endogenous S-adenosylhomocysteinase gene sahH
was expressed as synthetic operon with anmt from plasmid pGold-anmt-sahH and used to transform
ARO09(pEKEx3-trpEFBR) yielding strain NMA105. As negative control, pGold was introduced into
ARO09(pEKEx3-trpEFBR) yielding strain NMA103 (Table 1). For comparison, the shikimate producing
strain ARO9(pEKEx3) was transformed with pGold, pGold-anmt, and pGold- anmt-sahH yielding
strains NMA100, NMA101, and NMA102, respectively (Table 1).

In order to test for NMA production, strains NMA100 to NMA105 were cultivated in CGXII
minimal medium supplemented with 40 g·L−1 glucose as carbon source. HPLC analysis of supernatants
after cultivation for 48 h revealed that NMA100 and NMA103 did not produce NMA, which was
expected since they lacked anmt from R. graveolens (Figure 5). Expression of anmt alone or in
combination with endogenous sahH resulted in production of about 0.5 mM NMA by strains NMA101
and NMA102, respectively. This indicated functional expression of anmt from R. graveolens in
C. glutamicum.
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Figure 4. Fate of carbon from glucose in cultivations of C. glutamicum ARO strains carrying the empty
vector (left) or pEKEx3-trpEFBR (right). Carbon (given in mol%) derived from glucose found after 48
h in secreted products anthranilate (blue), shikimate (maroon), α-ketoglutarate (light red), trehalose
(green), lactate (black) as well as in the formed biomass (yellow) are shown for C. glutamicum strains
C1*, ARO03, ARO07, and ARO09 harboring either pEKEx3 (left) or pEKEx3-trpEFBRfbr (right). Carbon
that could not be accounted for is depicted in gray (other). Values were determined from duplicate
cultures. Experimental error was less than 20%. Abbreviations used: α-KG, α-ketoglutarate. Carbon
distribution of all ARO strains can be found in the Supplementary Data (Figure S1; Figure S2).

Coexpression of trpEFBR to boost anthranilate production with anmt alone (strain NMA104)
resulted in production of 1.7 ± 0.1 mM (0.25 ± 0.02 g·L−1) NMA. The finding that the anthranilate
concentration was reduced from 20.8 ± 0.0 mM as obtained with NMA103 to 17.3 ± 0.9 mM
(NMA104) indicated that conversion of anthranilate to NMA was incomplete (at about 10 mol%).
Upon coexpression of trpEFBR with both anmt and sahH in strain NMA105, 15.8 ± 1.9 mM anthranilate
remained as unconverted precursor (Figure 5), and a significantly increased NMA titer of 2.2 ± 0.2 mM
was obtained. This maximal titer in shake flasks corresponds to 0.34 ± 0.02 g·L−1. Thus, metabolic
engineering of C. glutamicum for NMA production was achieved.
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Figure 5. Production of anthranilate (light blue) and NMA (dark blue) by C. glutamicum strains NMA100
to NMA105. Cultivation was performed in minimal medium supplemented with 40 g·L−1 glucose as
carbon source. 1 mM IPTG was added for induction of gene expression. Means and standard deviations
of triplicate cultures determined after 48 h cultivation are depicted. Significance has been determined
for NMA concentrations based on a two-sided unpaired Student’s t-test (*: p < 0.05; ns: not significant).

3.4. Fed-Batch Production of NMA in Bioreactors

For industrial applications, a production in larger volumes is preferable, which runs under
controlled conditions to obtain a constant production titer. The stability of the NMA production of
the metabolically engineered strain NMA105 was investigated in a fed-batch cultivation. Starting
with a working volume of 2 L CGXII minimal medium containing 40 g·L−1 glucose as carbon source,
160 mL feed (400 g·L−1 and 150 g·L−1 (NH4)2SO4) was added in a controlled manner depending on the
rDOS (see Section 2.2). In total, 104 g glucose was consumed during 48 h fed-batch cultivation with no
residual substrate concentrations detectable in the cultivation broth. The strain showed slow growth to
OD600 5 in the first 24 h. In the following phase, growth was faster (growth rate of 0.12 h−1, which was
comparable to the growth rate observed in shaking flasks), and a maximal optical density of 53 was
reached (Figure 6). High concentrations of by-products accumulated, i.e., 1.4 g·L−1 of the intermediate
shikimate and 2.6 g·L−1 of the direct precursor anthranilate (Figure 6). Compared to production in
shaking flasks (Figure 5), a reduced product yield on glucose (4.8 mg·g−1 as compared to 8.4 mg·g−1

in shaking flask) and a comparable volumetric productivity were observed, but NMA accumulated
to an about 1.5-fold higher titer (0.5 g·L−1 as compared to 0.34 g·L−1). Taken together, the fed-batch
fermentation with the newly constructed C. glutamicum strain NMA105 showed stable production of
NMA in bioreactors at the 2 L scale (Figure 6). A final titer of 0.5 g·L−1 with a volumetric productivity
of 0.01 g·L−1

·h−1 and a yield of 4.8 mg·g−1 glucose was achieved.
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mode. The cultivation (initial volume of 2 L) was performed in minimal medium supplemented with
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and 150 g·L−1 (NH4)2SO4. 1 mM IPTG was added for induction of gene expression during inoculation.
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4. Discussion

N-methylanthranilate production was achieved by applying the plant enzyme
N-methylanthranilate transferase ANMT of R. graveolens in a newly metabolically engineered
C. glutamicum anthranilate overproducer. N-methylanthranilate is known as precursor for several
industrially and medically relevant compounds. ANMT of R. graveolens showed a narrow substrate
specificity when various amino benzoic or benzoic acids or phenolic derivatives were tested as
substrates [16]. However, feeding O-methylanthranilate (OMA) to E. coli expressing ANMT led to
production of the flavoring compound O-methyl-N-methylanthranilate [15]. Hypothetically, ANMT
could also be an interesting candidate to produce the pharmaceutically interesting compounds
O-propyl- or O-isopropyl-N-methylanthranilate [22,23]. In the biosynthesis of acridone alkaloids,
e.g., in R. graveolens, N-methylation of anthranilate catalyzed by ANMT is a key step preceding CoA
activation and, thus, separating primary metabolism (here tryptophan synthesis) from secondary
metabolism [16,19]. Recently, production of about 26 mg·L−1 1,3-dihydroxy−10-methylacridone [65]
and about 18 mg·L−1 4-hydroxy-1-methyl-2(1H)-quinolone [66] were established in E. coli coexpressing
anmt from R. graveloens, anthranilate coenzyme A ligase from P. aeruginosa, and acridone synthase of
R. graveolens or the anthraniloyl-CoA anthraniloyltransferase from P. aeruginosa. In these biosynthesis
pathways, one molecule of NMA is required per one molecule 1,3-dihydroxy-10-methylacridone or
4-hydroxy-1-methyl-2(1H)-quinolone [65,66]. The NMA-producing C. glutamicum strain NMA105
developed here may in the future be used in combination with this engineered E. coli strain, possibly
as synthetic consortium [67,68], or C. glutamicum NMA105 itself may be engineered for production of
acridone alkaloids.

Biosynthesis of N-alkylated amino acids can be catalyzed by other enzymes besides
N-methyltransferases. However, while reductive amination using free ammonia is known for many
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enzymes, only few enzyme classes accept alkyl amines for N-alkylation, e.g., opine dehydrogenases,
N-methyl amino acid dehydrogenases, ketimine reductases, pyrroline-5-carboxylate reductases,
or imine reductases [12]. These processes differ regarding the substrate spectra of the involved enzymes.
For example, anthranilate N-methylation described here as well as N-methylglutamate production
established in Pseudomonas putida using N-methylglutamate synthase and γ-glutamylmethylamide
synthetase of the methylamine assimilation pathway of Methylobacterium extorquens [13] have narrow
substrate spectra (e.g., GMAS from Methylovorus mays also forms γ-glutamylethylamide, also known as
theanine [69]) compared with N-alkylation using the imine reductase DpkA of Pseudomonas putida [12].
Several methylated or ethylated amino acids could be produced by C. glutamicum using the wild-type
or a mutant version of DpkA and either MMA or ethylamine as substrates [14,34,35]. With respect to
aromatic amino acids, N-methyl-l-phenylalanine could be obtained from phenylpyruvate by enzyme
catalysis using DpkA and MMA [12]; however, production of NMA via DpkA by N-alkylamination of
a carbonyl precursor of NMA has not been described.

The NMA process described here showed lower titers (0.5 g·L−1) than the processes depending
on reductive alkylamination using MMA (about 32 g·L−1 N-methylalanine [34] and about 9 g·L−1

sarcosine [14]). This may be due to (a) higher activity of DpkA compared with ANMT, (b) better
provision of the precursors pyruvate and glyoxalate than of anthranilate, and/or (c) the requirement
of SAM for ANMT as compared to MMA for DpkA. Indeed, purified DpkA has a much higher
activity (about 40 U·mg−1) [70] than purified ANMT (about 0.04 U·mg−1) [16]. Moreover, while
ARO09(pEKEx3-trpEFBR) produced 3 g·L−1 anthranilate (Figure 3), the precursor strains used for
production of N-methylalanine and sarcosine produced up to 45 g·L−1 pyruvate [71] and about 5 g·L−1

glycolate [72], respectively. Third, reductive methylamination using DpkA requires addition of MMA
as methyl donor to the medium. This is beneficial since MMA has a low price, is readily available,
is tolerated well by C. glutamicum [34], and because stoichiometric excess of MMA can be used to drive
reductive N-methylation by mass action law.

Compared to NMA production by an engineered E. coli strain expressing the N-methyltransferase
of R. graveloens [15], the NMA production by engineered C. glutamicum using the same enzyme
described here resulted in about 12 times higher titers in shaking flask cultivation (370 mg·L−1

as compared to 29 mg·L−1). This may be due to the fact that, in this study, C. glutamicum was
metabolically engineered for improved supply of the direct NMA precursor anthranilate as, e.g., strain
ARO09(pEKEx3-trpEFBR) produced about 3 g·L−1 anthranilate. Moreover, while the E. coli relied on
native SAM regeneration [15], in C. glutamicum the endogenous gene for SAM regeneration sahH was
overexpressed to increase SAM regeneration, and NMA production was improved 1.36-fold (compare
0.34± 0.02 g·L−1 for NMA105 with 0.25± 0.02 g·L−1 for NMA104 in Figure 5). Two bottlenecks observed
with the C. glutamicum strain engineered here may be overcome by future metabolic engineering:
incomplete conversion of shikimate to anthranilate and incomplete N-methylation of anthranilate by
SAM-dependent ANMT. To improve conversion of shikimate to anthranilate from about half to full
conversion (compare about 1.4 g·L−1 of shikimate and 2.6 g·L−1 anthranilate produced by NMA105
in bioreactor cultivation; Figure 6), expression of the operon aroCKB encoding chorismate synthase,
shikimate kinase, and 3-dehydroquinate synthase may be boosted, e.g., by changing the endogenous
promoter for the strong promoter Ptuf and using shikimate kinase from Methanocaldococcus jannaschii
as shown previously [36]. In addition, various studies have shown that deletion of the chorismate
mutase will increase the carbon flux towards tryptophan biosynthesis [36,40,73].

SAM-dependent N-methylation of anthranilate by ANMT from R. graveloens represents the
second bottleneck. ANMT from R. graveolens shows high affinity for its substrates (KM of 7.1 µM for
anthranilate and KM of 3.3 µM for SAM), and inhibition by its product NMA has not been described [16].
On the other hand, the inherently low activity of ANMT as compared, e.g., to DpkA (see above)
may limit conversion of anthranilate to NMA. Importantly, regeneration of the methyl donor SAM
(Figure 1A) is critical in all SAM-dependent methylation reactions. This is even more important for
ANMT from R. graveolens because it is inhibited by SAH with a KI value of 37.2 µM [74]. As shown
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here and elsewhere [41], overexpression of one gene of the SAM regeneration system (Figure 1A),
S-adenosylhomocysteine (SAH) hydrolase gene sahH, partly overcame SAM limitation since conversion
of anthranilate to NMA was improved 1.36-fold (Figure 5). This may be due to reduced inhibition of
ANMT from R. graveolens by SAH (see above) and/or better SAM regeneration. Irrespective of sahH
overexpression, not more than about 14 mol% of anthranilate was N-methylated to NMA (Figure 5).
As shown for OMA production [41], overexpression of SAM synthetase gene metK in addition to sahH
improved SAM regeneration, whereas deletion of cystathionin-γ-synthase gene metB and of mcbR
and cg3031 that code for transcriptional regulators involved in regulation of methionine biosynthesis
were not beneficial. Addition of methionine even reduced the production [41]. These changes and
abolishing pathways competing for SAM and its precursor by deletion of homoserine kinase gene thrB
along with overexpression of metK and vgb, coding for methionine adenosyltransferase and Vitreoscilla
hemoglobin, led to a C. glutamicum strain secreting about 0.2 g·L−1 SAM within 48 h [75]. In addition
to improving SAM regeneration (as shown here by sahH overexpression), it may be beneficial for NMA
production to increase SAM biosynthesis and, therefore, the intracellular concentration of SAM. Thus,
possibly, NMA production may be improved by overexpression of SAM biosynthesis genes such as
metK, or by de-repression of SAM biosynthesis, e.g., via deletion of mcbR, or by deletion of genes for
enzymes competing with use of SAM or of SAM biosynthetic precursors such as thrB.

NMA may inhibit anthranilate biosynthesis since NMA was not produced in addition to
anthranilate, while the combined titer of NMA and anthranilate remained similar when comparing
strains NMA103, NMA104, and NMA105 (Figure 5). Enzymes that are inhibited by NMA have not been
described to date. However, product inhibition of anthranilate synthase by anthranilate is known, e.g.,
in Streptomyces [76], which belongs to the actinobacteria as C. glutamicum, and in Salmonella typhimurium
with a KI of 0.06 mM anthranilate [77]. Here, we used the E. coli enzyme TrpE, which is known to be
inhibited by tryptophan, which binds at a site distant from the active center (allosteric regulation) [78].
In the mutant TrpES40F, Trp binding is lost as well as allosteric inhibition by Trp [78]. Product inhibition
by anthranilate is expected to involve binding to the active center. Since NMA differs from anthranilate
just by the N-methyl group, it is conceivable that NMA inhibits in a similar way as anthranilate.
This may explain that upon NMA production the anthranilate titer decreased (Figure 5).

NMA also affected growth of C. glutamicum (34 mM or 5 g·L−1 reduced the growth rate to
half-maximal; Figure 2), but to a lesser extent than OMA, for which a complete growth inhibition
was observed at 2 g·L−1 OMA [41]. Inhibition of growth by OMA was overcome by application of a
tributyrin-based extraction method [41]. This approach likely cannot be transferred directly to the NMA
process since OMA contains a methylated carboxy group, whereas the amino group is methylated in
NMA. Adaptive laboratory evolution (ALE) is an efficient method to select more tolerant strains and
has been applied to C. glutamicum to select strains with improved tolerance to methanol [79–81] or
lignocellulose-derived inhibitors [82].

Taken together, this study characterized NMA production by metabolically engineered
C. glutamicum, and a first bioreactor process leading to a final titer of 0.5 g·L−1 NMA with a volumetric
productivity of 0.01 g·L−1

·h−1 and a yield of 4.8 mg·g−1 glucose was achieved. This strain provides the
basis to develop an industrially competitive NMA process and shows potential to enable access to a
fermentative route to pharmaceutically relevant secondary metabolites such as the acridone alkaloids.

Supplementary Materials: The following figures are available online at http://www.mdpi.com/2076-2607/8/6/866/
s1, Figure S1: Carbon flux analysis of anthranilate producing C. glutamicum ARO strains, Figure S2: Carbon flux
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sequence (5′-3′) of the plant gene anmt.
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