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Abstract: Human cytomegalovirus (HCMV) expresses a variety of viral regulatory proteins that
undergo close interaction with host factors including viral-cellular multiprotein complexes. The
HCMV protein kinase pUL97 represents a viral cyclin-dependent kinase ortholog (vCDK) that
determines the efficiency of HCMV replication via phosphorylation of viral and cellular substrates.
A hierarchy of functional importance of individual pUL97-mediated phosphorylation events has
been discussed; however, the most pronounced pUL97-dependent phenotype could be assigned
to viral nuclear egress, as illustrated by deletion of the UL97 gene or pharmacological pUL97
inhibition. Despite earlier data pointing to a cyclin-independent functionality, experimental evidence
increasingly emphasized the role of pUL97-cyclin complexes. Consequently, the knowledge about
pUL97 involvement in host interaction, viral nuclear egress and additional replicative steps led
to the postulation of pUL97 as an antiviral target. Indeed, validation experiments in vitro and
in vivo confirmed the sustainability of this approach. Consequently, current investigations of pUL97
in antiviral treatment go beyond the known pUL97-mediated ganciclovir prodrug activation and
henceforward include pUL97-specific kinase inhibitors. Among a number of interesting small
molecules analyzed in experimental and preclinical stages, maribavir is presently investigated in
clinical studies and, in the near future, might represent a first kinase inhibitor applied in the field of
antiviral therapy.

Keywords: human cytomegalovirus (HCMV); protein kinase pUL97; kinase-host interactions;
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1. The Present Status of Controlling HCMV as a Major Human Pathogen

1.1. Molecular Biology of HCMV and Its Lytic Replication in Permissive Cells

HCMV, the prototypic β-herpesvirus, represents a major human pathogen and is characterized by
a multifaceted mode of virus-host interaction. HCMV seroprevalence in the adult population ranges
between approximately 40% to 90% and reaches even higher levels, of more than 95%, in countries
with a low socio-economic standard [1]. HCMV exerts a strict species specificity and a comparably
slow replication cycle spanning approximately three days in vitro [2,3]. Viral genomic DNA replication
takes place in the nucleus and the double-stranded viral genome is packaged into capsids, which then
undergo nuclear egress and budding through the nuclear membranes [4,5]. In the cytoplasmic virion
assembly complex (cVAC), capsids are assembled with tegument proteins, before fully enveloped
virus particles of approximately 150–200 nm are formed in the trans-Golgi network and released
from the cell by final transition through the cytoplasmic membrane [2,6,7]. In addition to highly
productive lytic infection of major target cells, such as fibroblasts, smooth muscle cells, endothelial
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and epithelial cells [8–12], HCMV causes life-long persistence by latent infection of minor target
cells, such as monocytes/macrophages and CD34+ hematopoietic stem cells, in which latent HCMV
may undergo reactivation resulting from immune insult, allogenic stimulation or differential signals
(reviewed in [13]).

1.2. Pathogenesis of HCMV Infection

Due to the fact that primary and nonprimary infections (i.e., reactivation or reinfection) are mostly
asymptomatic in healthy, immunocompetent individuals, HCMV infection usually remains clinically
unrecognized. In contrast, patients with a compromised immune system, such as transplant recipients
or AIDS patients, severely suffer from HCMV-related diseases, such as interstitial pneumonia, retinitis,
gastroenteritis, esophagitis and organ failure, resulting in an increased mortality and morbidity [14–17].
Importantly, the immature immune system is a high risk factor for congenital cytomegalovirus infection
(cCMV) of embryos and infants; thus, HCMV represents the most frequent cause for pathogen-derived
developmental defects triggering mental retardation, loss of hearing or vision and microcephaly [18–24].
HCMV is one of few viruses that are able to cross the placenta efficiently, i.e., at least 33% of all
primary infections during pregnancy of seronegative mothers, and an additional lower percentage of
nonprimary infections undergo virus transmission resulting in cCMV infection of the unborn [25,26].
Thus, in Germany, approximately 3500 out of 700,000 newborns acquire cCMV per year [19]. Because
of the lack of comprehensive HCMV screening, it is understood that approximately 10% of these are
symptomatic at birth, including cases of stillbirth, and another 10%–15% may acquire symptoms at
a later onset. HCMV can be transmitted by various body fluids, such as saliva, breast milk, vaginal
secretions, semen and leukocytes containing blood and urine [27–31].

1.3. Current Options of Prevention and Control

Until today, no vaccine has been approved to control HCMV infections. Despite 60 years of
intensive HCMV research, only a few antiviral drugs have been approved, which mostly interfere
with the viral DNA polymerase pUL54, i.e., nucleoside/nucleotide analogs, such as the gold standard
ganciclovir (GCV), its prodrug valganciclovir (VGCV), cidofovir (CDV) and the pyrophosphate analog
foscarnet (FOS). Unfortunately, these drugs frequently cause severe side-effects, such as myelotoxicity,
anemia and nephrotoxicity, or show poor bioavailability, which drives the selection of drug resistant
virus variants [32–37]. In 2017, letermovir (LMV), the first anti-HCMV drug that targets the viral
terminase complex consisting of pUL56, pUL89 and pUL51 core-subunits, was successfully assessed
in clinical trials. Currently, LMV is approved for HCMV prophylaxis in hematopoietic stem cell
transplantation recipients. LMV also represents a promising candidate for future combination therapies
or even options of cCMV control [38–41]. However, based on the occurrence of LMV-resistant viral
mutants [42] and the present lack of an approved treatment option for infants, the requirement of new
antiviral drugs is still emphasized. This situation underlines the necessity of basic research to refine the
understanding of the manifold and complex HCMV-host interplay and antiviral targeting strategies.

2. HCMV-Encoded Protein Kinase pUL97, a Multifunctional CDK Ortholog (vCDK)

2.1. Characteristics of the HCMV-Encoded Protein Kinase

pUL97 is a tegument protein, which is packaged into virions and is expressed with early-late
kinetics [43]. The 707-amino acid protein exists in three isoforms due to alternative initiation of
translation at residues M1, M74 or M157, resulting in protein varieties of approximately 100 kDa,
80 kDa and 70 kDa, respectively (Table 1, Figure 1) [44]. The full-length kinase possesses two NLS
sequences in the poorly structured N-terminus, which mediate the predominantly nuclear localization
of pUL97 [45,46]. The kinase domain was assigned to the globular C-terminal part, amino acids 337–651,
based on sequence homologies or extended to 337–706, based on biochemical validation [47–50]. An
invariant lysine residue at position 355 is essential for kinase activity, thus leading to the catalytically
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inactive K355M mutant [51–53]. Dimers and oligomers are formed via the self-interaction domain
(amino acids 231–280) of pUL97 [54]. Interestingly, the direct association of pUL97 with human cyclins
has been demonstrated and, hereby, the core region responsible for cyclin T1 binding proved to be
identical with the pUL97 self-interaction domain [55], thus illustrating a functional role of cyclins
in pUL97 dimerization/oligomerization [52,56–58]. Concerning the properties of protein interaction
and substrate phosphorylation of pUL97, a number of viral as well as cellular proteins have been
identified thus far [see references in legend of Figure 1]. The functionality of these substrates spans
various regulatory aspects of viral replication, such as nuclear egress, intrinsic immunity, genome
replication and gene expression (Table 1, Figure 1). Notably, several of the pUL97-specific substrate
proteins also represent substrates of cellular CDK-cyclin complexes and may thus underlie a process
of dual phosphorylation through these two different kinds of protein kinases in HCMV-infected
cells. While sequence conservation between the open reading frame ORF-UL97 and other kinases is
generally low, functional and structural similarities have been identified between pUL97 and CDKs, so
that pUL97 was termed as a multifunctional viral CDK ortholog (vCDK). Importantly, both deletion
of ORF-UL97 or pharmacological inhibition of pUL97 activity resulted in a strong delay of HCMV
replication [52,59–61], likewise explained by the fact that the kinase exerts many regulatory functions
during viral replication (Table 1). On this basis, pUL97 could be validated as an interesting target for
novel antiviral strategies and a panel of small molecule-type inhibitors of pUL97 activity belonging to
different chemical classes has been described during the last years (see below, Sections 3–6).
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Table 1. Characterization of the molecular features and functional properties of the HCMV protein kinase pUL97.

Property General Description Specific Feature Own Findings (MM lab.) Various References

Type of kinase Ser/Thr target site P + 5,
target site LxSP [51,53,56,62–64] [65–69]

Molecular mass, basic features 100/80/70 kDa isoforms due to alternative translational start sites [44,45,54] [43,52,67]

Expression pattern
three isoforms M1, M74, M15
(referring to other herpesviral

protein isoforms)

differences in substrate binding, nuclear
translocation and drug susceptibility [44,70] [71–74]

Similarity and sequence
conservation with other

kinases
low <35% identity with herpesviral kinases, <15%

identity with cellular kinases [45,63] [48–50,75]

Sequence conservation
ORF-UL97 of HCMVs high no variation of translational start sites, NLS

sequences or kinase domains [44] [76,77]

Related to cell kinases cyclin-dependent kinases
(CDKs), viral CDK ortholog

functional overlap with CDKs, specific crosstalk
with CDK9, CDK7 and CDK1, direct interaction

with cyclins
[47,55,56,78–83] [57,84,85]

Coregulation of viral
replication by pUL97 and

cellular kinases

several novel cellular kinases,
including CDKs, identified to be
involved in HCMV replication

virus-supporting functions in signaling pathways
and nuclear capsid egress [55,56,86,87] [88–93]

Substrate proteins viral, cellular pUL44, pUL69, pp65, Rb, p32/gC1qR, nuclear
lamins, EF-1δ, RNAP II, IFI16, SAMHD1

[53,79,87,94–98]
(references therein)

[57,75,84,99–106] (see also
refs. in Figure 1)

Involvement in intrinsic
immunity evasion

stimulation of viral
counterdefense of immunity

interaction with cellular restriction factors IFI16
and SAMHD1 [96,107] [108]

Auto-phosphorylation

pronounced
auto-phosphorylation activity,
several N-terminal Ser and Thr

residues

autophosphorylation most probably required for
kinase activity/autoactivation [44,54,56,94,109] [65,66,110]

Nucleoside phosphorylation ganciclovir, valganciclovir,
penciclovir, acyclovir, etc.

prodrug-activating monophosphorylation as an
essential step in antiviral therapy [51,111] [59,112–115]

Incorporation into virions component of virion tegument virion-derived pUL97 possesses highly detectable
kinase activity [45,95] [43,116,117]

Intracellular localization mainly nuclear two nuclear localization signals, NLS-1 (6–35),
NLS-2 (164–213), classical importin-α pathway [45,46,63,97,118] [60]

Inhibitors of pUL97 small molecules (<500 Da,
various chemical classes)

indolocarbazoles, benzimidazoles, quinazolines,
others

[53] (references therein)
[44,64,119] [114,120,121]

Phenotype of pUL97
inhibition or UL97 deletion

strongly reduced viral
replication efficiency

(100–1000-fold)

delayed replication kinetics; impaired genomic
replication; impaired viral nuclear egress [44,51,53,94,109,122,123] [59,61,104,124]
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The interaction between HCMV pUL97 and human cyclins of the types B1, T1 and H has been
described in our earlier reports [47,55,82]. The three cyclins obviously possess different affinities in
terms of strength of pUL97 binding detected by coimmunoprecipitation (CoIP)- and mass spectrometry
(MS)-based analyses. In case of cyclin B1, a requirement of catalytic activity of pUL97 for cyclin
binding was identified, whereas in case of cyclin H, pUL97 interaction was found dependent on the
environment of HCMV replication [82]. Recently published data indicate a substrate-bridging function
of cyclin(s) for the binding of pUL97 to its substrate pp65, as determined with a pp65 mutant lacking a
putative cyclin-docking motif [83].

Previous investigations led to the postulate of a substantial relevance of pUL97-cyclin interactions,
as characterized by the following findings: (i) The HCMV kinase pUL97 acts as a structural CDK
ortholog originally based on our bioinformatic modeling and biochemical analyses. (ii) Our initial
report on pUL97-cyclin T1 interaction could be extended to additional types such as cyclins B1
and H [47,55,56,82]. (iii) The interaction pUL97-cyclins B1/T1/H was confirmed by several methods
including highly sensitive mass spectrometry-based proteomics. (iv) Specifically, the interaction
pUL97-cyclin B1 was found to be phosphorylation-dependent for both proteins. In addition, cyclin B1
(but not H) was phosphorylated by pUL97 in vitro [56]. (v) Using a protein assembly-based CoIP assay,
the formation of binary and ternary complexes involving pUL97, cyclin H and CDK7 was identified,
thus suggesting a cyclin bridging concept [125]. A central finding was that regions responsible for
cyclin T1 interaction of pUL97 and pUL97-pUL97 self-interaction showed an overlap in N-terminal
amino acids 231-280 (Figure 1; [54,55]). These data strongly suggest that cyclin binding is involved
in pUL97-pUL97 self-interaction and very recent findings specified this activity for cyclin types T1
and H (but not B1), thus confirming the bridging function of cyclins T1/H in pUL97 dimerization or
hetero-oligomerization. This self-interaction property is known to be a factor required for developing
full catalytic activity of the pUL97 kinase [see references in Table 1]. The amino acid region 231–280
of pUL97 is considered as a minimal binding region for cyclin T1, which may be complemented
by the additional binding of globular domain interfaces of pUL97 in the further C-terminal region,
contributing to cyclin binding in a type-specific manner (cyclin T1, amino acids 361–532; cyclin B1,
363–647; cyclin H, 328–532; Figure 1; [56,82]).

In order to address the question of which spectrum of different types of human cyclins may
associate with the viral pUL97 kinase, two specific experimental approaches have recently been
performed. Firstly, a recombinant HCMV expressing a Flag-tagged version of pUL97 (namely the
largest, fully functional isoform M1 of pUL97 encoded by HCMV AD169-UL97(Mx4)-Flag; [44]) was
used for Flag-specific coimmunoprecipitation settings. The CoIP samples were then applied in a
mass spectrometry-based (MS) proteomic assessment of pUL97-associated viral (Table S1) and cellular
proteins (Table S2). HCMV AD169, expressing untagged pUL97, was used as a CoIP/MS specificity
control. The identified viral proteins included several known interactors and/or substrates of pUL97
and showed a substantial overlap with those detected in our similar approach performed earlier, as
based on the CoIP of pUL97-cyclin complexes using cyclin-specific antibodies [82]. Cellular proteins
identified by this approach contained cyclins, CDKs and additional host proteins confirming earlier
findings of pUL97-specific protein complexes. Notably, cyclins T1 and B1 were again safely detected, as
those types of cyclins had been found by a variety of methodological approaches before (summarized
in Table 2). Secondly, a panel of cyclin-specific antibodies were employed in a broader setting of
CoIP analysis to learn more about the overall spectrum of pUL97-cyclin interaction. Representative
members of the functional groups of cyclin types have been chosen, i.e., B-like, C-like and Y-like cyclins
(Table 2, Supplementary Materials Figure S1). To this end, the cyclin-specific CoIP of pUL97 was
then performed, again on the basis of total lysates prepared from HCMV-infected primary fibroblasts,
followed by a quantitative assessment based on densitometric measurements (in duplicates, using two
series of stained CoIP/Wb filters). The results, on the one hand, confirmed our earlier postulate that
pUL97 strongly interacts with cyclin types B1, T1 and H (the latter primarily with pUL97 expressed
in HCMV-infected cells, but very poorly with pUL97 transiently expressed in transfection-based
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settings; [56,82]). On the other hand, even more types of human cyclins could be additionally detected,
either with moderate/weak (cyclins E, F and Y) or strong (cyclins B2 and K) properties of pUL97
interaction (Figure S1, Table S3 and Table 2). This topic of cyclin specificity of pUL97 and its functional
relevance for HCMV replication will be further investigated by the use of recombinant HCMVs
expressing mutant versions of pUL97 carrying cyclin-binding defects.
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Figure 1. Schematic illustration of the modular structure and the so far identified binding regions within
pUL97 [56]. The kinase domain is located between amino acids 337 and 706, as based on biochemical
validation (or 337 and 651, as based on sequence homologies). K355 is an invariant lysine residue required
for kinase activity. Expression of three pUL97 isoforms is determined by alternative translational
initiation sites at M1, M74 and M157. Two nuclear localization signals (NLS1 and NLS2) are contained in
the N-terminal unstructured portion of pUL97. Self-interaction/oligomerization of pUL97 is determined
by amino acid region 231–280. This region overlaps with a minimal binding region for cyclin T1. Recent
modeling approaches based on the in silico prediction of binding interfaces suggested extended binding
interfaces for cyclins T1, B1 and H. Moreover, pUL97 is involved in the multiple regulatory steps during
HCMV replication through the phosphorylation of viral and cellular substrates (see horizontal bars),
as reported by several independent groups [44–46,54,55,57,75,79–84,94–101,122,126–132]. Substrates
include the viral DNA polymerase cofactor pUL44, viral RNA transport factor pUL69, major tegument
protein pp65, nuclear egress core protein heterodimer pUL50–pUL53, cellular multi-ligand binding
protein p32/gC1qR, tumor suppressor/checkpoint protein Rb, nuclear lamins A/C, RNA polymerase II,
translation factor EF-1δ, interferon-inducible proteins IFI16 and SAMHD1, as well as the therapeutically
applied nucleoside analog ganciclovir (GCV; [47,56,82] and references therein). Interaction regions
for GCV and the ATP-competitive pUL97 inhibitor maribavir (MBV) were defined by the location of
resistance mutations detected so far (GCV: 405, 460, 466, 520, 590, 591, 592, 594, 595, 596, 597, 598, 599,
600, 601, 603, 607; MBV: 337, 353, 397, 409, 411). Note that this Figure represents a refined update, as
adapted from an earlier version published elsewhere [56]; here, this also includes the hitherto mapped
regions of resistance mutations against GCV and MBV, which possess high relevance for the discussion
of an advanced antiviral drug targeting.
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Table 2. Summarized findings of pUL97-cyclin interaction derived from complementary experimental
settings *.

A HCMV-Infected Cells B Recombinant Expression

Cyclin Types Cyclin IP MS|Wb pUL97 IP MS|Wb Colocalization
in IF Transfection

Yeast
Two-Hybrid

System

Phosphorylation
by pUL97 in

IVKA

B-like

Cyclin A + ± - - .. .. .. ..
Cyclin B1 + + + - + + .. +
Cyclin B2 - + - - - .. .. ..
Cyclin D1 - - - - - - .. ..
Cyclin E ± ± - - .. .. .. ..
Cyclin F .. ± - - .. .. .. ..

C-like

Cyclin H + + - - + - - -
Cyclin K .. + - - .. .. .. ..

Cyclin L2a .. - - - .. .. .. ..
Cyclin T1 + + + + + + + -

Y-like Cyclin Y .. ± - - .. .. .. ..

* Data on pUL97-cyclin interaction were derived from the experimental settings of either mass spectrometry-based
proteomics (MS) or Western blot detection (Wb), both performed by the use of coimmunoprecipitates derived
from cyclin-specific immunoprecipitation (cyclin IP) or pUL97 immunoprecipitation (pUL97 IP). Colocalization
patterns between pUL97 and individual cyclins, in particular nuclear punctate patterns of accumulation in viral
replication centers, were determined by indirect immunofluorescence (IF) double-staining and confocal imaging.
Recombinant expression of pUL97 and/or cyclins was performed by transient transfected of 293T cells (transfection),
yeast cells (yeast two-hybrid assay) or bacterial expression systems, the latter for analyzing the phosphorylation
of recombinant cyclins by transfection-derived pUL97 in the in vitro kinase assay (IVKA). In panel A, the criteria
of categorization were set as follows: +, strong pUL97-cyclin interaction (MS: WSC ≥ 4; Wb: % IP values > 20%
IP control and ≥ 15-fold above Flag neg. control); ±, weak interaction (MS: WSC = 3; Wb: % IP values > 20% IP
control or ≥15-fold above Flag neg. control); -, no detectable interaction; .., not determined. Note that the combined
experimental data provide strongest evidence for cyclins B1, H and T1 to represent the major cyclin types interacting
with pUL97, as highlighted by bolt print.

2.2. Phosphorylation of a Panel of Regulatory Viral Proteins and Host Factors through pUL97

Notably, pUL97 phosphorylates several viral and cellular proteins (see horizontal bars in Figure 1
for those binding regions within pUL97 that have been mapped thus far), including the viral DNA
polymerase cofactor pUL44 [122], viral RNA transport factor pUL69 [79], major tegument protein
pp65 [95], nuclear egress core proteins pUL50-pUL53 [99,127], cellular multiligand binding protein
p32/gC1qR [98,122], tumor suppressor protein Rb [75], nuclear lamins A/C [57,84,94,98,129], RNAP
II [100], translation factor EF-1δ [63,101,130], interferon-inducible, intrinsic immune restriction factors
IFI16 [96] and SAMHD1 [105] (Figure 2; Table 3; compare with Tables S1–S3).

It should be emphasized that the pUL97 substrate proteins belong to several functionally different
groups (Table 3), thus underlining the multifunctional nature of this singly expressed viral protein
kinase. Viral proteins interacting with and being phosphorylated by pUL97 span the regulatory
areas of viral nuclear egress (pUL50-pUL53 core NEC), genome replication (pUL44), tegumentation
and immune-regulatory functions (pp65), viral RNA transport (pUL69) and the pUL97-pUL97
autophosphorylation/autoregulation associated with the formation of dimers and oligomers. As far
as cellular substrates are concerned, the following regulatory areas are addressed: nuclear egress
(lamins A/C, p32/gC1qR), cell cycle control (Rb, cyclins), intrinsic immune regulation (IFI16, SAMHD1)
and transcription/translation (RNAP II, EF-1δ). The entity of this spectrum of pUL97-driven processes
in virus-infected cells illustrates the functional importance of pUL97 for a high efficiency of viral
replication, as demonstrated by the defects of recombinant viruses carrying UL97 deletions/mutations
(up to factor 100–1000). Interestingly, the dimension of a replication defect resulting from drug-inhibited
pUL97 was demonstrated to be more drastic in non-cycling compared to cycling cells [133], probably
referring to the crosstalk and functional complementation between active cellular CDK-cyclin complexes
and the vCDK. Moreover, the complex patterns of protein-protein interactions (PPI) undergone by
pUL97 have recently been revealed by the use of highly sensitive mass spectrometry-based proteomic
and phosphoproteomic approaches [56,66,82,98]. These findings make the occurrence of higher-order,
pUL97-associated PPI complexes seem highly likely.
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Table 3. Characteristics of viral and cellular substrate proteins of the HCMV vCDK pUL97 as well as pUL97-associated cyclins.

Protein Origin Designation Function Remarks References

Viral pUL50 core nuclear egress protein (NEC) forms the NEC groove, multiple PPIs,
phosphorylated by viral and cellular kinases [62,99,126,127,134,135]

Viral pUL53 core nuclear egress protein (NEC) forms NEC hook, possibly docking to
capsids, phosphorylated by viral kinase [99,136,137]

Viral pUL44 DNA polymerase pUL54 processivity
factor phosphorylation might regulate activity [104,122]

Viral pp65 major tegument protein massively phosphorylated and
virion-associated with pUL97 [44,60,95]

Viral pUL69 RNA transport regulator phosphorylation regulates activity [78,79,138,139]

Viral pUL97 CDK-like serine/threonine protein
kinase, multifunctional dimers/oligomers, autophosphorylation [50,53,54,65,110,114,132]

Cellular p32/gC1qR multiligand binding protein,
multifunctional NEC bridging factor [94,98,140]

Cellular lamins A/C structural and regulatory components
of the nuclear envelope

lamin phosphorylation is a rate-limiting step
of viral nuclear egress [57,84,94,97,129,141]

Cellular Rb retinoblastoma protein, cell cycle
check-point regulator

multiply phosphorylated by CDKs and
pUL97 [48,57,85,103,106]

Cellular IFI16 and SAMHD1 intrinsic immune restriction factors of
virus infections

interferon-induced,
phosphorylation-controlled [96,105,107,108,142]

Cellular RNAP II main cellular mRNA transcriptase activity-regulated by C-terminal
phosphorylation (CTD) [59,61,90,100]

Cellular EF-1 translation elongation factor 1 delta activity-regulated by phosphorylation [53,101]

Cellular cyclins regulatory subunits of CDKs types B1, H, T1 were found pUL97-associated
(possibly also B2, K, others) [55,56,58,84,92]
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Figure 2. The cytomegalovirus-encoded CDK-like protein kinase pUL97 interacts with cyclins and
phosphorylates a number of viral (encircled in orange) and cellular (encircled in green) substrate proteins.

2.3. HCMV pUL97 and Related Herpesviral vCDKs

Most pUL97-related herpesviral kinases function as viral CDK orthologs (vCDKs). They were also
termed conserved herpesviral protein kinases (CHPKs), as encoded by a gene conserved throughout
the family Herpesviridae (e.g., prototype pUL97 and homologous kinases). Despite conservation of the
UL97 gene locus, substantial variation of the primary coding sequence has been identified between
herpesviruses. In addition to CHPKs, a second protein kinase is encoded by an additional non-conserved
gene restricted to the subfamily α-Herpesvirinae (e.g., prototype pUS3 kinase of herpes simplex virus).
CDK activity has been shown to be involved in multiple steps during HCMV infection [143]. vCDKs
phosphorylate typical CDK substrates such as Rb and lamins A/C and show CDK activity in a yeast
complementation assay [57,75,84,129]. The Saccharomyces cerevisiae mutant lacking activity of its sole
CDK, cdc28, shows growth arrest in the early S/late G1 phase, which is overcome by CDK1 (human),
pUL97 (HCMV), pU69 (HHV-6 and -7) and BGLF4 (EBV) expression [57]. In addition, pUL97 and
CDK share substrate proteins, such as pUL69, RNAP II and EF-1δ [78,79,101,130]. Of note, pUL97
and CDKs phosphorylate Rb at the same residues (S780, S807, T821), leading to the inactivation of
the cell cycle-inhibitory and tumor suppressor functions of Rb [75,144,145] (Table 4). In addition, the
suppression of CDKs 1, 2, 5 and 9 by indirubin-derivatives increases the HCMV-inhibitory effect of
maribavir (MBV), a potent pUL97 inhibitor [58]. Thus, pUL97 and CDKs possess at least partially
overlapping functions.
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Table 4. Comparison of distinct molecular characteristics shared between vCDK pUL97 and human CDKs.

Kinase Characteristics pUL97 CDK1 CDK7 CDK9

Amino acids (aa) 707 297 345 372

Aa sequence identity to pUL97 100% 4.5% 4.2% 8.6%

Cyclin binding partner
[56,146,147]

cyclin B1
cyclin H
cyclin T1

cyclin A1/A2
cyclin B1/B2/B3

cyclin D1/D3
cyclin F
cyclin K

(activating)

cyclin H
cyclin A2

cyclin B1/B2
cyclin E

(activating)

cyclin T1/T2
cyclin H
cyclin K

(activating)

Region in the kinase required
for cyclin binding [55,148,149]

cyclin T1:
231ESQDSAVASGPGRIPQPLSG
SSGEESATAVEADSTSHDDVH

CTCSNDQII280 and in
silico-predicted binding

interfaces for cyclins B1, H and
T1 spanning aa 328–647

cyclin B1: a positively charged
region in the N-lobe (containing

K6, K9, K34, R36, R75,
excluding the PSTAIRE helix)

cyclin A2: 45PSTAIRE51

cyclin H: 56NRTALRE62 cyclin T1/T2, K: 60PITALRE66

Cyclin phosphorylation
[56,82,146,150–153] cyclin B1 cyclin B1 S126 by CDK1 S128 by

CDK1
cyclin H by CDK7/CDK8-cyclin

C (inhibitory) n.d.*

T-loop phosphorylation
[56,154–161] no, (possibly S483) T161 by CAK (activating) S164 and T170 by CDK1/CDK2

(activating)

T186 by CaMK1D or CDK9
(S175 by CAK, not essential

for activity)

Autophosphorylation
[110,155,156] yes no (yes) outside the T-loop yes within the T-loop

Rb phosphorylation
[66,75,82,145,162,163]

S780, S807, S811, T821, T823,
T826 S249, T252, T373, S807, S811 no C-terminus (793–834)

p53 phosphorylation [164–166] n.d. S315 S33 (MAT1-dependent) S33, S315, S392

Lamin A/C phosphorylation
[84,141,167,168] S22 (inhibitory) S22, S392 (inhibitory) no no

CTD RNAP II
phosphorylation [100,169,170] S2, S5 (activating) no S2, S5, S7 (activating) S2, S5, S7 (activating)

SAMHD1 phosphorylation
[171–173] yes T592 n.d. n.d.

HCMV pUL69
phosphorylation [78,79] yes yes yes yes

HCMV pUL50
phosphorylation [127] yes yes n.d. n.d.

* n.d., not determined.
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3. Validation of vCDK pUL97 as an Antiviral Target and Various pUL97 Inhibitors Explored as
Experimental Antiviral Drugs

3.1. Role of the pUL97 Kinase in Anti-HCMV Standard Therapy

The HCMV-encoded CDK ortholog pUL97 has significance in the therapy of HCMV infections,
as it is responsible for the phosphorylation-mediated activation of GCV/VGCV, still representing the
therapy gold standard and, similarly, additional nucleosides such as acyclovir (ACV), penciclovir (PCV)
and others [69,113,174]. Hereby, the specific role of pUL97 is that nucleoside analogs have to be initially
monophosphorylated in a step catalyzed by pUL97 kinase [68]. Thereafter, the active triphosphate
metabolites have to be generated in a series of steps of further phosphorylation catalyzed by human
guanylate kinase, dGMP kinase, phosphoglycerate kinase and potentially other host kinases [25]. In the
triphosphate form, these analogs represent the active antiviral determinants, then acting as a substrate
of the HCMV DNA polymerase, ultimately inhibiting the elongation of viral genome synthesis.

3.2. Target Validation and pUL97 Inhibitors

Genetic mutation studies showed that pUL97 plays a rate-limiting regulatory role for the
replication efficiency of HCMV and virus titers were reduced by orders of magnitude when the
coding sequence was disrupted [59,61]. Moreover, pharmacological inhibition of pUL97 activity
by small molecules derived from various chemical classes blocked viral replication in a manner
corresponding to the pUL97 null phenotype and thus proved to be a potent antiviral targeting
strategy [175]. Since then, the pharmacologic inhibition of pUL97 activity together with genetic
techniques have helped to characterize the mechanisms of pUL97 supporting the viral replication
and virus–host kinase interactions [52,53,56,176]. A number of inhibitors of pUL97 kinase activity
have been identified that exert potent antiviral activity against HCMV [64,119,175,177]. These include
indolocarbazoles [51,109,120], quinazolines [64,123,178] and benzimidazole analogs [175] (Figure 3). A
number of detailed investigations, both on cell culture-based in vitro and preclinical in vivo animal
models, underlined the high value of this antiviral approach (reviewed in [25,53,132,179]). Thus far,
however, with the exception of maribavir, none of these compounds has progressed to clinical studies.
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4. Clinical Investigation of the First Prototype of a Kinase Inhibitor in Antiviral
Treatment: Maribavir

MBV is a benzimidazole riboside, structurally related to the terminase inhibitors BDCRB and
GW275175X [25]. This molecule exerts outstanding inhibitory activity against the pUL97 kinase and
shows very low levels of side/off-target effects [180]. MBV exhibits favorable pharmacokinetic properties,
is well tolerated and holds promise as a new drug for the treatment of HCMV infections [181–183].
Thus, MBV represents a novel developmental drug that might become the first prototype of a kinase
inhibitor in antiviral treatment. In the first phase III clinical study, maribavir-treated patients failed
to meet the clinical endpoint objectives [184]. Currently further phase III trials are enrolling patients
to compare the efficacy of MBV with GCV, and this clinical development is currently continuing
(NCT02931539, NCT02927067). One limitation might be based on the fact that the inhibition of pUL97
kinase activity by MBV interferes with the activation of GCV, thus resulting in drug antagonism, which
most probably reduces their antiviral efficacies in a combination therapy [124,185,186]. Mutations
conferring MBV resistance are distinct from those conferring GCV resistance, with sites of mutations
partly located outside the conserved kinase domains [114,132,187]. In rare cases, kinase domain
mutations arise in the laboratory that are essentially kinase null mutations and can confer resistance to
MBV or GCV [179]. Notably, however, MBV exerts activity against typical GCV-resistant strains and
might therefore create new options in the treatment of drug-resistant HCMV infections [175,188,189].
Interestingly, the three different isoforms of the kinase also show altered susceptibility of the virus to
MBV [44]. An additional type of an intermediate-level MBV-resistance has been identified for viral
variants carrying mutations, not in the UL97 but rather in the UL27 gene [190,191]. To date, it is
not clear whether resistance mutations in UL27 would arise in clinical settings, since in animals the
deletion of ORF-UL27 resulted in a modest half-log reduction in viral in vitro replication capacity, with
no apparent effect on replication in vivo [192].

5. The Relevance of Targeting a Herpesviral Kinase Activity in Antiviral Strategies

The HCMV-encoded kinase pUL97 combines two different aspects of medical importance, namely
serving as promoter of prodrug activation through the activating monophosphorylation of GCV, VGCV
and related nucleoside analogs and as a validated target of antiviral kinase inhibitors. The currently
ongoing clinical investigations of MBV are approaching an exciting interim phase and it will be highly
relevant to see whether this drug candidate achieves primary endpoints. MBV might not only represent
a novel drug for the treatment and prevention of HCMV disease but it would likewise be a very
promising novel prototype of a kinase inhibitor that might—compared to the numerous currently
approved kinase inhibitors in antitumoral treatments—for the first time enter the field of antiviral
therapy. Notably, the applicability of a further mode of action of antiviral drugs would directly broaden
the options of overcoming previous problems with antiviral drug resistance. The pharmacological
interference with viral kinase activity/protein phosphorylation by MBV, in addition to the targeting of
viral genome replication/polymerase activity (GCV) and viral terminase activity/genome processing
(LMV), would open a third mechanistic option of HCMV treatment. Thus, resistant mutants arising
from GCV and LMV treatment would very probably remain susceptible to MBV treatment, so that
variable regimens might become available, possibly including combination therapies. It should be
mentioned, however, that GCV and MBV combination would underlie an antagonistic principle, due to
the two counteractive roles of pUL97 in such a case (prodrug converting GCV phosphorylation through
active pUL97 versus an inhibition of pUL97 activity by MBV). Nevertheless, other combinations
between MBV and LMV, GCV and LMV or the involvement of additional approved anti-herpesviral
drugs, such as CDV, ACV etc., might lead to a substantial improvement of medication regimens. In this
sense, anti-HCMV therapy might also greatly benefit from the experiences made in the field of human
immunodeficiency virus/AIDS during the past decades, as mostly gathered by the steady development
of novel antiretroviral combination therapies.
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6. Future Perspectives of Novel Mechanistic Options of pUL97-Specific Drug Targeting

It should also be stressed that the drug targeting of a viral kinase such as pUL97 may not
exclusively be limited to classical ATP-competitive types of kinase inhibitors including MBV. This
strategy entails also untypical, thus far therapeutically untapped possibilities of kinase targeting,
i.e., non-ATP-competitive modes of targeting [193–195]. It is quite conceivable that additional research
work may reveal prototypes of non-ATP-competitive substrate inhibitors of pUL97 that could be
directed to blocking the phosphorylation of individual pUL97 substrates, without inactivating the
functionality of the pUL97 kinase domain. Such types of kinase inhibitory small molecules can
either function through a shielding mechanism directed at one or several defined phosphorylation
sites of a pUL97 substrate (phosphosite inhibitors) or it might cause a steric hindrance of pUL97
substrate recognition (allosteric assembly blockers of kinase-specific protein complexes, including an
interference with pUL97-cyclin association [56,196,197]). Even the involvement of covalent binders
appears within the realms of possibility. Recently, remarkable progress has been reported in the field
of generating small molecules acting as covalent kinase binders with selectivity to the tumor-relevant
mutant G12C of the human KRAS tyrosine kinase [198]. The kinase inhibitor AMG510 has recently been
successfully investigated in clinical stage I/II [199]. Combined, the increase in understanding of the
individual molecular features and the overall functionality of pUL97, together with the development
of a number of highly interesting and innovative small molecule-type kinase inhibitors, nourishes the
long-held optimism about translational success with pUL97 inhibitors in the near future. Thus, one of
the experimentally and pharmacologically approved inhibitors, such as maribavir or, alternatively,
cancer-approved CDK inhibitors, represent the first candidates of kinase inhibitor to be clinically
applied in antiviral therapy.
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