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Abstract: Swine are regarded as promising biomedical models, but the dynamics of their
gastrointestinal microbiome have been much less investigated than that of humans or mice. The aim
of this study was to establish an integrated multi-omics protocol to investigate the fecal microbiome
of healthy swine. To this end, a preparation and analysis protocol including integrated sample
preparation for meta-omics analyses of deep-frozen feces was developed. Subsequent data integration
linked microbiome composition with function, and metabolic activity with protein inventories, i.e.,
16S rRNA data and expressed proteins, and identified proteins with corresponding metabolites.
16S rRNA gene amplicon and metaproteomics analyses revealed a fecal microbiome dominated by
Prevotellaceae, Lactobacillaceae, Lachnospiraceae, Ruminococcaceae and Clostridiaceae. Similar microbiome
compositions in feces and colon, but not ileum samples, were observed, showing that feces can serve
as minimal-invasive proxy for porcine colon microbiomes. Longitudinal dynamics in composition,
e.g., temporal decreased abundance of Lactobacillaceae and Streptococcaceae during the experiment,
were not reflected in microbiome function. Instead, metaproteomics and metabolomics showed a
rather stable functional state, as evident from short-chain fatty acids (SCFA) profiles and associated
metaproteome functions, pointing towards functional redundancy among microbiome constituents.
In conclusion, our pipeline generates congruent data from different omics approaches on the taxonomy
and functionality of the intestinal microbiome of swine.

Keywords: biomedical model swine; gastrointestinal microbiome; integrated multi-omics; 16S rRNA
gene-sequencing; metaproteomics; metabolomics
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1. Introduction

The microbiome of the human intestinal tract is considered one of the main drivers for host
fitness. It is involved in processes such as immune system regulation [1], nutrient utilization [2],
and maintenance of intestine function [3]. Changes in the human microbiome were linked to diseases
such as obesity [4], type-2 diabetes [5], colorectal cancer [6], Crohn’s disease or inflammatory bowel
syndrome [7,8]. Furthermore, an extrinsic short-term disturbance in the intestinal homeostasis, e.g.,
by antibiotic treatment, can cause long term disturbance within the commensal intestinal microbiome in
a porcine model [9]. Dietary changes also shape the composition of the microbiome [10,11]. Comparison
between high-fat/low-fiber (HF) and low-fat/high-fiber (LF) diets revealed a stimulating effect by LF
diet on beneficial bacteria (such as Bifidobacterium spp. and Lactobacillus spp.) and the production of
short-chain fatty acids (SCFAs). HF content was associated with bacterial groups (e.g., Enterobacteriaceae)
with negative impact on human health status, e.g., Escherichia coli and Salmonella enterica.

Addressing the adaptation processes of the human microbiome within the intestinal environment
during an infection paves the way to understanding the metabolic impact caused by bacterial and/or
viral pathogens. To analyze these changes, there is urgent need for an appropriate in vivo model.
Established animal models mainly focus on mice or rats. In particular, mice are widely used as the
infection model for the human situation, but the use of this model is hampered by differences between
humans and mice in physiology as well as in innate and adaptive immune systems. By comparison of
murine and human gastrointestinal anatomy, differences become apparent, for instance the murine
cecum is relatively large compared to that of humans. The colon of mice is rather smooth, not divided
into different sections (ascending, transverse and descending colon) with a thin muscularis mucosae
and without haustrum and taenia coli, in contrast to the human colon [12,13]. It is not only the
differing body sizes and lifespans that trigger these differences, but also the occupancy of different
ecological niches, resulting in evolution in different environments. Thus, interpretation of preclinical
data obtained in mice is difficult [14]. Due to these limitations, alternative model systems to analyze
the importance of the intestinal microbiome are required.

Pigs are becoming a popular alternative model organism for research on human health and
disease [15]. This is explained by the large similarity between swine and humans in organ size,
physiology, genetics, and immune cell populations [15,16]. Recently, a swine model with human
microbiota was developed to better reflect the human gut [17]. Furthermore, pigs have a typical
mammalian composition of the intestinal microbiome dominated by Firmicutes and Bacteroidetes,
resembling that of humans [18,19]. By taking a deeper look on genus level, the intestinal tract of
swine and human share several bacterial groups, such as Prevotella, Faecalibacterium, Coprococcus,
Streptococcus, Megasphaera, Dialister and Subdoligranulum, which were absent or very low abundant
in the murine intestinal tract [19–21]. In contrast to that, the study of Ley and colleagues of the
murine intestinal tract demonstrated that 85% of the observed bacterial genera were not detected in
humans [22]. Dominant and highly prevalent genera of the murine intestinal tract were, for example,
Anaerostipes, Parabacteroides and Eggerthella [23]. Higher abundant in mice, but nevertheless prevalent
in humans were, for example, Lactobacillus, Turicibacter and Alistipes [13].

Within recent years multi-omics approaches have been applied to answer various scientific
questions [24–26]. However, to the best of our knowledge, such an integrated approach has not
been used to analyze the gastrointestinal microbiome of swine. Recently, different studies focusing
on single omics-approaches to elucidate the intestinal microbiota of swine, e.g., by 16S rRNA gene
sequencing [10,18], have been published. Tröscher-Mußotter and colleagues published the first
metaproteome analysis highlighting the differences between sections from the small and large
intestine of swine [27]. Furthermore, they showed that the relative abundance of proteins involved
in energy production and conversion was higher in mucosa than digesta samples. In contrast,
proteins involved in lipid transport and metabolism, and short-chain fatty acid production were
more abundant in the digesta sample. In spite of that, Tröscher-Mußotter et al. suggested that an
integrative approach combining other omics methods would facilitate the understanding of the
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intestinal microbiome [27]. Combination of metaproteomic and metabolomic data allows the prediction
of active metabolic pathways [28]. Moreover, metaproteomics have been employed to elucidate the
influence of biological factors including disease on taxonomy and function of the microbiome [29–31].
Integrating all the available comprehensive multi-omics technologies constitutes a powerful and
promising approach to investigate structure and functionality of gut microbiomes, and provides new
insights into host–microbiome relationships within this complex environment that remain hidden
when targeting only one single type of molecule.

In the presented study three healthy swine, which served as control group for a 30 day
influenza A virus H1N1 infection, were evaluated as baseline for its potential as a biomedical model.
Inter-individual variance was of special interest as it could hide infection caused shifts in the respiratory
as well as intestinal microbiomes. Our study aimed to (1) establish a standardized, reproducible
multi-omics pipeline, including 16S rRNA gene sequencing, metaproteomics, and metabolomics
analysis, (2) to characterize and monitor the temporal structure and function of the intestinal
microbiome of the uninfected animals. Subsequently, this pipeline was used to elucidate the
interindividual variability of healthy animals together with the time-dependent progression of
the microbiome. Established methodologies and knowledge on the natural development of the swine
intestinal microbiome during the experimental time-frame are crucial for further studies elucidating
the impact of infections, as well as other interventions or events in the pig’s life, on the swine
gastrointestinal microbiome.

2. Materials and Methods

2.1. Animal Study Design

All samples for this study were provided by the Department of Experimental Animal Facilities
and Biorisk Management of the Friedrich-Loeffler-Institut on the Isle of Riems within the H1N1pdm09
animal experiment with the reference number 7221.3-1-035/17 [32]. For this study, three mock-infected
German landrace pigs, which were eight weeks of age at the beginning of the study, were analyzed.
From the third day of their lifes all animals were fed the prestarter diet OlymPig (Agravis, Münster,
Germany), for four weeks, additionally to the mother’s milk. At the age of four weeks, they were
weaned and received a mixture of the OlymPig prestarter and PANTO start (Hamburger Leistungsfutter
GmbH, Hamburg, Germany) diet. Afterwards, the animals were fed the PANTO start diet only (24 days
before the first sampling day). Both diets were wheat, barley and soy based. Feces were collected
from three healthy swine. The sampling scheme is shown in Table 1. Individual fecal samples were
collected during or within less than 30 seconds (s) after defecation over a time period of 30 days to
cover longitudinal shifts (see feces homogenization and splitting procedure in Figure 1). Furthermore,
digesta from intestinal sections (IS) (ileum, proximal and distal colon from three animals) were sampled
during necropsy on day 30. All samples were immediately frozen on dry ice and subsequently stored
at −80 ◦C.

Table 1. Longitudinal sampling scheme and number of samples at each sampling day (d) for meta-omics
analysis. Individual samples were collected from three healthy animals.

Days after Starting Point

0 2 * 4 ** 7 14 * 21 22 23 25 30

Fecal samples (n = 3) 3 2 3 3 2 3 3 3 3 3
Individual number of
analyzed samples after

homogenization

16S rRNA gene analysis 3 2 3 3 2 3 3 3 3 3
Metaproteomics 3 - 2 3 - 3 - - 3 3
Metabolomics 3 2 3 3 2 3 3 3 3 3

* only two samples were available. ** low amount of sample material from one animal.
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3. Results and Discussion 

3.1. Multi-Omics Analyses of Swine Feces 

The established protocol (see above section 2.10.) enables an effective, contamination-free 
homogenization of frozen fecal samples for subsequent integrated analysis of 16S rRNA gene 
sequencing, metaproteomics and metabolomics (Figure 1). Notably, only 300 mg of homogenized 
feces were required for this approach. 

16S rRNA gene analysis. DNA from homogenized feces was extracted using an extraction 
protocol based on bead beating and phenol/chloroform [33], yielding approx. 130 µg DNA/g feces. 
TRIzol-based extraction resulted in much lower DNA yields (Table S1). Illumina Miseq amplicon 
sequencing of the V4 region of the 16S rRNA gene resulted in overall 1040 unique bacterial and 
archaeal ASVs, with rather uniform richness dynamics over time and a remarkably low variability 
between the individual fecal microbiomes (Table 2). 

Figure 1. Integrated multi-omics workflow for 16S rRNA gene sequencing (blue), metaproteomics
(light blue) and metabolomics (grey) out of the same fecal sample. After sampling fecal material was
immediately placed on dry ice and stored at −80 ◦C, followed by CryoPrep-based homogenization,
optimized target-molecule extraction, and analysis, data analysis, integration and visualization.

2.2. Sample Processing

The deep-frozen samples were cut with a sterile scalpel to approximately 1 g pieces and placed
into the middle of a Covaris® Tissue Tube™ TT1. To keep the fecal samples deep-frozen the tissue tube
was then placed into liquid nitrogen for 60 s. The Covaris® CP02 CryoPrep™ instrument (Covaris
Ltd., Brighton, UK) was set to impact level 5 and the loaded tissue tube was treated two times with
liquid nitrogen for 30 s between the homogenization steps. The resulting fecal powder was then used
for the three different omics-analyses described below.

2.3. DNA Extraction, 16S rRNA Gene Amplicon Library Preparation, Sequencing, and Bioinformatic Processing

Nucleic-acids were extracted from the fecal powder by a bead beating phenol-chloroform
extraction protocol [33], followed by nucleic acid precipitation with 3 M Na-acetate and isopropanol.
After washing with 70% v/v ethanol the resulting DNA pellets were resuspended in DEPC-treated
MilliQ water for downstream applications. DNA content was quantified via QubitTM dsDNA Broad
Range Assay Kit (InvitrogenTM). DNA was diluted to 5 ng/µL for PCR. Amplicon and Index-PCR
were performed using the V4 primer pair 515F (5′-GTG-YCA-GCM-GCC-GCG-GTA-A-3′)/806R
(5′-GGA-CTA-CNV-GGG-TWT-CTA-AT-3′) [34,35] followed by a PCR clean up between and after both
amplifications with AMPure XP beads. Libraries were quantified via InvitrogenTM QubitTM dsDNA
broad-range assay kit, normalized to a final concentration of 5 pM, denatured with NaOH and sequenced
via Illumina MiSeq with an approximate output from 75,000 to 132,600 reads per sample. The sequences
were submitted to European Nucleotide Archive (ENA), with the project number PRJEB39963, accession
number ERP123542 and the project name “KoInfekt-multi-omics-pipeline-swine”. Resulting 16S rRNA
gene sequences were processed in R [36] using the dada2 pipeline-package version 1.11.1 (R-version
3.6.1). Paired-end reads were truncated to a final length of 240 bp each with a minimal overlap of
50 bp. Quality-filtered 16S rRNA gene sequences (maxN = 0, maxEE = 2, and truncQ = 2) were
clustered to amplicon sequence variants (ASVs), a higher resolution analog of operational taxonomic
units (OTUs) [37]. Chimeras were removed and ASVs were assigned via SILVA 132 database [38].
ASVs classified as chloroplasts or mitochondria were removed afterward. Advanced bioinformatic
processing (e.g., alpha- and beta diversity, Bray-Curtis dissimilarities and non-metric multidimensional
scaling) was performed in R using “vegan”, “ggplot”, “phyloseq”, ”plyr”, “reshape2” packages.
For statistical analysis, PERMANOVA test was performed (p = 0.05), using the package “vegan”.

2.4. Protein Extraction and Preparation for Mass Spectrometry

1 mL TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) was added to 100 mg of the homogenized
fecal sample and mixed 3 × 30 s on a vortex for resuspension. Afterwards, the manufacturer’s protocol
based on Chomczynski, P. [39] was performed, which comprises the following steps: incubation for
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5 minutes (min), addition of 0.2 mL chloroform, incubation for 3 min followed by centrifugation for
15 min at 12,000× g and 4 ◦C. Subsequently, the aqueous phase was removed, 0.3 mL ethanol was
added and the samples were inverted several times, incubated for another 3 min and centrifuged for
5 min at 2000× g and 4 ◦C. The resulting phenol-ethanol supernatant was transferred in new tubes
and 1 mL isopropanol was added. The mixture was incubated for 10 min, centrifuged for 10 min at
12,000× g and 4 ◦C to pellet the proteins. The supernatant was discarded. Afterwards, the pellets
were washed in 0.2 mL of 0.3 M guanidine hydrochloride buffer in 95% (v/v) ethanol, incubated for
20 min, and centrifuged for 5 min at 7500× g and 4 ◦C. The supernatant was discarded. Washing
steps were repeated 3 times. 2 mL ethanol was added to the protein pellets and mixed by vortexing,
followed by incubation for 20 min, and centrifugation for 5 min at 7500× g and 4 ◦C. The supernatant
was discarded and the pellets were air-dried. To solve the pellet 200 µL of 1% (v/v) SDS buffer was
added. To ensure complete resuspension, the pellet was incubated for 3 min at 50 ◦C, and finally
centrifuged for 10 min at 10,000× g and 4 ◦C. The resulting protein extract was transferred to a new
tube. Protein concentration was measured by Pierce BCA Protein Assay [40–43].

A quantity of 30 µg of the protein extract was separated on a 4–20% Criterion TGX precast Gel
(BioRad, Hercules, CA, USA) and stained with Colloidal Coomassie Brilliant Blue G-250 as published
by Neuhoff et al. [44]. Afterwards, each lane was cut in 10 pieces. Each piece was sliced into smaller
blocks for tryptic digestion. To this end, gel blocks were destained using a washing solution containing
200 mM ammonium bicarbonate in 30% (v/v) acetonitrile, incubated in a thermo shaker for 15 min,
at 900 rpm and 37 ◦C. The washing solution was discarded from the tube and the washing step
repeated two times. Following destaining, the gel pieces were shrunk to dryness using a vacuum
centrifuge. 100 µL of a 2 µg/µL trypsin stock solution (Promega, Fitchburg, WI, USA) was added
to the dried gel-pieces and incubated for 15 min at RT. Excess trypsin solution was removed and
samples incubated overnight at 37 ◦C. Subsequently, the gel blocks were covered with Aqua Bidest
and incubated in an ultrasonic bath for 15 min to elute the peptides from the gel blocks. The peptide
containing supernatant was transferred to new pre-lubricated reaction tubes and desalted using ZipTip
purification (C18, Merck Millipore, Billerica, MA, USA) according to the manufacturer’s protocol.
Afterwards, the peptide mixture was eluted in glass vials, vacuum centrifuged to dryness, resuspended
10 µL in 0.1% (v/v) formic acid, and stored at −20 ◦C.

2.5. Mass Spectrometry Analysis

The peptide containing solution was applied to an Easy-nLC II with self- packed RP C18 separation
column (100µm i.d× 200 mm length) [45] for reversed-phase chromatography (Thermo Fisher Scientific,
Waltham, MA, USA). Peptides were eluted by a binary gradient of buffers A (0.1% (v/v)) acetic acid
and B (99,9% (v/v) ACN, 0,1% (v/v) acetic acid) over a time of 100 min at 300 nL/min, after loading
and desalting them on the column. During analysis injection of the peptide mixture was kept
constant. Measurements were performed with an LTQ-Orbitrap-Velos mass spectrometer (Thermo
Fisher Scientific, Bremen, Germany) equipped with a nanoelectrospray ion source coupled on-line to
the chromatographic system. Samples were measured in data-dependent manner with repeated cycles
of overview scans in the Orbitrap (r 30,000) with the lock-mass option enabled, followed by MS/MS
acquisition of the 20 most intensive precursor ions in the linear ion trap. Dynamic exclusion was
enabled [46]. The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE [47] partner repository with the dataset identifier PXD020775.

2.6. Database Assembly and Data Analysis

For protein identification, a specific database for the gastrointestinal microbiome of swine
was constructed, based on phylogenetic data obtained from 16S rRNA gene sequencing (described
above). To this end, all available protein entries of the identified families were downloaded from
Uniprot (version 19.11.18). To remove full-length sequence redundancy, the fasta toolkit (fastatk,
version 3.0.1, https://gitlab.com/s.fuchs/fastatk) was used. The final database contained 29,366,730

https://gitlab.com/s.fuchs/fastatk
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non-redundant sequence entries. For protein identification raw files were searched against the specific
database using the Mascot Daemon version 2.6.0 (Matrix Science Ltd., London, UK) with the following
search parameters: enzyme: trypsin; variable modifications, methionine oxidation (+15.99 Da);
maximal missed cleavages: 2; peptide charge: 2+, 3+ and 4+; peptide tolerance 10 ppm; MS/MS
tolerance 0.5 Da. To validate the data, all dat files were applied to Scaffold software version 4.8.7
(Proteome Software Inc., Portland, OR, USA) with the LFDR scoring system and standard protein
grouping. Furthermore, X!Tandem was used with a variable modification of methionine (+15.99 Da).
Afterwards, a protein threshold of 95% and 1 peptide per protein were applied to the data. Proteins
were considered as identified if they were present in at least two out of the two or three biological
replicates. If identical peptides occur in different proteins and these proteins could not be discriminated
by the MS/MS analysis they were assigned to one protein group.

2.7. Taxonomic, Functional and Statistical Analysis of Protein Groups

Taxonomic and functional protein analysis was performed using the metaproteome annotation
pipeline Prophane (www.prophane.de). For taxonomic analysis, Prophane used diamond blast
combined with the NCBI nr protein database (version 08.08.2018) with an e-value of 0.01,
query-coverage of 0.9, and max-target-seqs of 1. For the comparison of protein and 16S rRNA
derivated taxonomic classification data, NCBI taxonomy was manually transcribed to SILVA taxonomy.
Functional annotation was performed using the hmmscan algorithm combined with TIGRFAMs
(version 16.09.2014) and eggNOG database (version 4.5.1) applying an e-value of 0.01. For statistical
analysis, data was z transformed and a one-sample ANOVA test was performed (p-value 0.05) using
MeV [48].

2.8. Extraction of Metabolites

100 mg of frozen feces powder was transferred in a FastPrep™ tube (containing lysing matrix E
(MP Biomedicals™, Eschwege, Germany) and 2 mL 80% methanol and 400 µL internal standard was
added. Powder was disrupted two times for 40 s with 5.5 m/s followed by centrifugation (12,400× g,
10 min, 4 ◦C). The supernatant was transferred into a new tube on ice and the FastPrep™ treatment
was repeated once with ice-cold water and 500 µL dichloromethane and once with 2 mL ice-cold
water. All supernatants were combined, vortexed, and stored for 10 min on ice. After centrifugation,
the water/methanol containing phase was lyophilized. The lyophilized samples were resuspended in
1 mL water and split into two samples for subsequent GC-MS and 1H-NMR analysis.

2.9. Analysis of Metabolites Using GC-MS and 1H-NMR

For GC-MS analysis, the lyophilized extracts were derivatized and measured as previously
described in Schultz et al., 2017 [49]. Details on GC-MS parameters are described in Dörries et al.,
2014 [50]. Metabolites were absolutely quantified using calibration curves from standards or relative
amounts were calculated using ribitol as internal standard with ChromaTOF® V4.508.0 software.
Metabolite identification was done by using standard compounds. For 1H-NMR analysis, the samples
were resuspended in 500 µL PBS, vortexed, and metabolites in the supernatant were measured with a
Bruker® Avance II 600 NMR spectrometer according to Schultz et al., 2017 [49]. In total, 70 different
metabolites per fecal sample and time point (Figure S1) were detected by standard compounds.

2.10. Swine Feces Processing Pipeline Suitable for Multi-Omics Analyses

We compiled several individual steps from the above described methods into a feces processing
pipeline suitable for multi-omics analyses (Figure 1). We highlight several of the important steps
and considerations. The fecal samples were snap-frozen on dry ice immediately after collection
and kept frozen at −80 ◦C until homogenization and extraction to prevent metabolite and protein
degradation. Especially for metabolites, but also for metaproteome analysis, an immediate quenching

www.prophane.de
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of protein biosynthesis and metabolism as well as constant storage at −80 ◦C is of utmost
importance [51–53]. Moreover, swine feces appear to be a highly heterogeneous sample matrix,
e.g., due to incorporated indigestible fibers, which can affect the local composition of the microbiome.
Therefore, proper feces homogenization prior to extraction of DNA, proteins and metabolites is
crucial for generating representative data sets of microbiome composition and functionality. Different
methods for homogenization were tested including (i) grinding of frozen samples with mortar and
pestle, (ii) suspending samples in water, (iii) grinding thawed samples via bead mill, as well as (iv)
pulverization of frozen samples via CryoPrep (data not shown). Due to the practicability of the tested
homogenization methods, the best results were achieved employing the CryoPrep protocol as described
in previous studies with different sample materials [54].

3. Results and Discussion

3.1. Multi-Omics Analyses of Swine Feces

The established protocol (see above Section 2.10) enables an effective, contamination-free
homogenization of frozen fecal samples for subsequent integrated analysis of 16S rRNA gene sequencing,
metaproteomics and metabolomics (Figure 1). Notably, only 300 mg of homogenized feces were
required for this approach.

16S rRNA gene analysis. DNA from homogenized feces was extracted using an extraction
protocol based on bead beating and phenol/chloroform [33], yielding approx. 130 µg DNA/g feces.
TRIzol-based extraction resulted in much lower DNA yields (Table S1). Illumina Miseq amplicon
sequencing of the V4 region of the 16S rRNA gene resulted in overall 1040 unique bacterial and archaeal
ASVs, with rather uniform richness dynamics over time and a remarkably low variability between the
individual fecal microbiomes (Table 2).

Notably, although richness and diversity were found to be highest on day 25, these parameters
stayed relatively constant during the study period. The protocol resulted in an observed average
richness of the samples of 820 ASVs (±105 ASVs, CV = 0.13) an average Shannon index of 5.17 (±0.15,
CV = 0.028) and an average Evenness of 0.77 (±0.011, CV = 0.015). These values were similar or
higher as compared to other findings from swine fecal microbiomes [19]. Applying rectal swabs in
a longitudinal experiment over 174 days, Wang and colleagues [55] detected up to 500 phylotypes.
A fluctuation in richness was observed that depended on dietary changes. A meta-study of microbiomes
from porcine GI tract and fecal samples identified 558 core OTUs [20]. This indicates a comparable
microbiome diversity obtained with the presented multi-omics sample processing approach.

Metaproteomics: Initially, different extraction protocols, including a chloroform-based protocol for
sewage sludge [56], an urea/thiourea-based protocol for microbial biofilms [46], a protocol combining
heating and bead-beating [57], and a TRIzol-based protocol, were tested for efficiency (Table S2).
The TRIzol-based protocol appeared to be most promising yielding approximately 8 mg protein per
g feces on average and resulting in a mean of 4189 (±401) protein groups (PGs) identified in 2 of 2
or 3 biological replicates for each individual sample consisting of 100 mg feces (Table 3). The large
majority of the identified PGs were of bacterial origin (average 91%), followed by eukaryotic PGs
(Table S3). The number of identified PGs is significantly higher than in other comparable studies on
fecal samples (e.g., [11,25,27]) although the processed amount of biomass was lower. This might be
explained by the use of 10 fractions instead of 1 or 3 fractions from one gel band after 1D SDS PAGE
for mass spectrometry analysis. Tröscher-Mußotter and colleagues [27] identified a mean of 1780 PGs
(±153) from 5 g of colon digesta. The study of Heinritz and colleagues [11] resulted in 500 to 740 PG
identifications from 300 mg of swine feces. In an integrated multi-omics study of Heintz-Buschart
and colleagues [25], focusing on the intestinal microbiome of humans with type 1 diabetes, a mean of
2573 (±1645) PGs has been identified from 200 mg stool samples.
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Table 2. Microbiome alpha-diversity parameters. Average, standard deviation and coefficient of variance (CV) of richness (number of ASVs), Shannon, and Simpson
index of the fecal microbiota sampled from healthy piglets along the experiment.

Days after Sampling

0 2 4 * 7 14 * 21 22 23 25 30

No. of ASVs ± sd;
CV

831 ± 97;
0.12

716 ± 112;
0.16

773 ± 36;
0.05

816 ± 169;
0.21

859 ± 161;
0.19 841 ± 88; 0.1 828 ± 80; 0.1 857 ± 161;

0.19
901 ± 99;

0.11
780 ± 47;

0.06
Shannon ± sd;

CV
5.19 ± 0.10;

0.02
5.00 ± 0.12;

0.02
5.10 ± 0.13;

0.02
5.30 ± 0.26;

0.05
5.26 ± 0.23;

0.04
5.14 ± 0.17;

0.03
5.13 ± 0.13;

0.03
5.23 ± 0.13;

0.03
5.40 ± 0.14;

0.03
5.02 ± 0.05;

0.01
Simpson ± sd;

CV
0.99 ± 0.001;

0.001
0.98 ± 0.003;

0.004
0.99 ± 0.002;

0.002
0.99 ± 0.003;

0.003
0.99 ± 0.003;

0.003
0.98 ± 0.003;

0.03
0.98 ± 0.003;

0.003
0.98 ± 0.003;

0.003
0.99 ± 0.001;

0.001
0.98 ± 0.002;

0.002
Evenness ± sd;

CV
0.77 ± 0.006;

0.007
0.76 ± 0.001;

0.001
0.77 ± 0.021;

0.027
0.79 ± 0.015;

0.019
0.78 ± 0.013;

0.016
0.76 ± 0.013;

0.017
0.76 ± 0.009;

0.012
0.78 ± 0.016;

0.021
0.79 ± 0.011;

0.013
0.75 ± 0.012;

0.016

* samples from only two individuals were available.
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Table 3. Protein groups identified from porcine feces including total and unique (per biological replicate)
numbers of PGs from individual swine feces samples at the corresponding sampling days as well as
numbers of PG identified in at least 2 of 3 biological replicates.

Days after Sampling

0 4 * 7 21 25 30

Pig 1 5228 6215 5038 4224 4886
unique 1091 2653 1279 960 1108
Pig 2 5342 6920 3672 5274 5450 6101

unique 1231 3303 1059 1458 2068 2217
Pig 3 6271 5686 4837 5022 5204 5298

unique 2052 2069 1539 1601 1842 1289
In 2 of 3 4797 3617 3882 4380 3970 4491

* only two biological replicates available.

Metabolomics: The homogenous fecal powder was applied to a FastPrep cell disruption followed
by water/methanol/dichloromethane metabolite extraction. Different amounts of extraction volume
and lysing matrices were tested. The best results were obtained using lysing matrix E and a total
extraction volume of 6.5 mL water/methanol/dichloromethane (data not shown). In total, 70 different
metabolites per fecal sample and time point (Figure S1) were detected, which is in good accordance
with other studies focusing on feces analysis by GC-MS and NMR analysis [51,58,59]. We focused on
primary metabolites, i.e., amino acids and related degradation intermediates, carbon core metabolites,
fatty acids, and SCFA (Table 4). These metabolites, mainly SCFA, were also analyzed in other studies
focusing on swine fecal metabolome [60–62].

Table 4. Classification of detected metabolites into main metabolic pathways.

Pathway Number of Detected Metabolites

carbon core metabolism 13
amino acids 18

amino acid degradation 6
fatty acids 6

short-chain fatty acids 6
various 21∑

70

Compared to other meta-omics studies, in which the amount of samples ranged from 150 mg to
5 g [11,25,27,63,64], our protocol is based on a rather small amount of sample material, i.e., a minimum
of 40, 80, and 100 mg for 16S rRNA gene sequencing, metaproteomics, and metabolomics, respectively,
enabling integrated multi-omics analyses of low biomass samples.

3.2. Taxonomic Composition of the Intestinal Microbiome

Determination of microbiome composition was performed at 16S rRNA gene level,
representing prokaryotes, both active and dormant, and at metaproteome level, indicative of active
prokaryotes. In general, 16S rRNA gene and metaproteome profiles were similar and revealed a typical
mammalian fecal microbiome consisting primarily of Firmicutes and Bacteroidetes (Figure 2) [19,65].
Furthermore, all three biological replicates at each timepoint were comparable with similar temporal
dynamics. We identified the family Prevotellaceae as predominant (approx. 20% of 16S rRNA genes
and up to ≈30–35% in metaproteome), which was also described by Heinritz and colleagues [11].
Besides Prevotellaceae the families Lactobacillaceae, Lachnospiraceae, Veillonellaceae, and Clostridiaceae
showed similar variation over time based on 16S rRNA gene sequencing and metaproteomic data.
Confirming a previous finding [66], we observed a time-dependent decrease of Lactobacillaceae.
On metaproteome level, the increasing abundances in Prevotellaceae at d7, as well as in Spirochaetaceae
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and Streptococcaceae on d21 were directly correlated with the decrease in Lactobacillaceae. When the
Lactobacillaceae recovered, the previously mentioned families started to decrease. Generally, the observed
longitudinal dynamics in the taxonomic composition of microbiomes of 16S rRNA genes and protein
groups were reflected in the nonmetric multidimensional scaling (NMDS) analyses (Figure 3A,B,
Table S4). Here, the positions of the intermediate time points (d7-d25) formed clusters in close proximity
to each other, and separated from the early (d0 and d2) timepoints (Figure 3A) and from the early
(d0 and d4) and late (d30) timepoints (Figure 3B). Temporal dynamics of the active microbiome over a
30-day experiment were expected in the eight weeks old piglets [55], however this intermediate shift in
microbiome composition was not anticipated. Interestingly, we detected Methanobacteriaceae primarily
at 16S rRNA gene level, but with much lower abundance in the metaproteome. This discrepancy
might have been caused by primer bias and/or low identification rate for archaeal proteins in the
metaproteome analysis. Furthermore, the observed variation can be explained on a biological level,
regarding the different copy numbers of 16S rRNA genes in different species [67]. The large difference
in the relative abundance of Ruminococcaceae between 16S rRNA and the taxonomic metaproteome
analysis can be explained by the LCA algorithm used for the taxonomic assignment of the PGs,
since many PGs of Clostridiales cannot be reliably classified on family level as Ruminococcaceae,
thus these PGs remain classified as ‘various’. Nevertheless, the described taxonomic similarities
between 16S rRNA gene and metaproteome level underline the reliability of the presented approach.
Nevertheless, the described taxonomic similarities between 16S rRNA gene and metaproteome level,
e.g., the appearance of Streptococcaceae at day 21, and the time dependent variation of Lactobacillaceae
and Spirochaetaceae abundance underline the reliability of the presented approach.

1 
 

 

 

Figure 2. Dynamic development of the fecal microbiota from three healthy swine over 30 days.
Comparison of the relative abundances based on 16S rRNA gene and metaproteome data on phylum
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level (small barplots, left) and family level. For better illustration, only families above 1% of the relative
amount were shown. SILVA taxonomy was used for this comparison.
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Figure 3. Nonmetric multidimensional scaling (NMDS) plots, based on Bray–Curtis dissimilarities,
of the 16S rRNA gene profile (A), metaproteome taxonomy (B), and function (C) and the metabolome
(D). NMDS plots revealed similar tendencies on taxonomic level (A,B) as well as on functional level
(C,D).

High Similarity of the Fecal and Colonal Microbiota

Using 16S rRNA gene amplicon sequencing, we tested if the microbiome composition of feces
can serve as a reliable minimal-invasive proxy for the intestinal microbiome composition. Looft and
colleagues indicated limited transferability of fecal microbiomes compared to microbiomes of the
intestinal tract, due to the low number of reference studies [68].

We compared microbiomes from feces with the corresponding microbiomes from distal and
proximal colon lumen, and from ileum (Figure 4, Table S5). While we saw a high accordance of the
two colonal microbiomes with the fecal microbiome (without significant differences), the microbiome
from ileal samples differed strongly (e.g., ileum vs. proximal colon p = 0.006). Furthermore, richness
data indicate a high significant difference between the merged fecal- and colonal richness and the one
from ileum (p = 0.001). The large intestine is primarily dominated by Prevotellaceae, Ruminococcaceae,
Lachnospiraceae, and Lactobacillaceae, whereas the most abundant families in the ileum are Clostridiaceae,
Erysipelotrichaceae and Peptostreptococcaceae. This is likely due to the higher transition rates in the ileum.
In the study of Deusch and colleagues [69] the fecal microbiome was also compared to intestinal
microbiomes (ileum and colon) of livestock. Similar to our results, the colonal and fecal microbiomes
showed a more similar composition than with the ileal microbiomes. The opportunity of taking feces
as proxy for the large intestine could pave the way for (simple) predictions of the intestinal status
with “minimal-invasive“ sampling techniques, thus enabling follow-up of the same individuals over a
longer period of time without the need for additional animals that have to be sacrificed during the
experimental trial.
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Figure 4. Fecal community of swine 1, 2, and 3 (merged) composition and comparison between the
intestinal samples on family level. Color code from light blue to dark blue indicates an increasing
relative abundance.

3.3. Functional Analysis of the Microbiome

Functional assignment of the identified PGs (see Materials and Methods) revealed a similar
distribution for all metaproteomes at the qualitative level during the entire course of the experiment
(Figure 5). More than 65% of the identified PGs were assigned to specific biological functions,
which is in good accordance to the ratio of described functional annotations of the employed
eggNOG database [70]. A proportion ranging from 25% to 30% of the PGs were involved in protein
biosynthesis (“translation, ribosomal structure and biogenesis”) with the most prominent ribosomal
proteins L and S originating from the bacterial families Prevotellaceae, Clostridiaceae, Lactobacillaceae,
Lachnospiraceae, Ruminococcaceae, and Selenomonadaceae. Other abundant PGs belonged to the category
“carbohydrate transport and metabolism” (3–7%), among them many proteins involved in glycolysis
and gluconeogenesis, and “energy production and conversion” (3–5%), including proteins linked to
the ATP synthase and NADH dehydrogenase complex. Moreover, proteins belonging to the functional
category “post-translational modification, protein turnover, chaperones” (3–4%), “cell motility” (2–4%)
and “amino acid transport and metabolism” (2–3%) were frequently identified (Figure 5, Figure S2).
A detailed list of all and frequently found PGs, their taxonomical origin and functional assignment
are provided in Tables S6–S8, respectively. In contrast to the time-related dynamics in the taxonomic
composition of the microbiome, we observed overlaps of the NMDS clusters based on functional
protein annotations (Figure 3C). In conclusion, our data suggest that albeit the taxonomic composition
of the microbiome alters along the time course of the experiment, its functional potential remains rather
stable compared to the taxonomy (Figure 5, Figure S2), indicating a functional redundancy among
microbiome members, as proposed by others (e.g., [11]).
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Figure 5. Voronoi Treemap illustrating functions (based on eggNOG categories) of the identified PGs
from swine feces collected over 30 days. Field size represents the average over all samples minimal
relative abundance over time of the corresponding category. The grey color represents the minimum
expression of a functional category; dark blue fields indicate at maximum an increase of 3% in the
relative abundance of the PGs at the sampling days compared to the minimum.

To identify important metabolites and to complement the metaproteomics dataset,
metabolome analyses were performed. Microbial metabolites are known to affect host
metabolism [71,72] and immune system [73–76] and can thus play a significant role in the health status
of the host. Using 1H-NMR and GC-MS 70 different metabolites were identified (Table 4). These cover
a broad spectrum of metabolic intermediates, production of which seemed to be triggered by the
complex host-microbiota interplay. Among the frequently identified compounds were: metabolites
of the central carbon metabolism (e.g., glucose, succinate or malate), amino acids (e.g., lysine and
valine, aspartate, glutamate, glycine and tyrosine), as well as palmitate and 3-hydroxybutyrate. Lysine
and valine were described as preferred substrates for gut bacteria [77]. In addition, large quantities
of ornithine, methionine and arginine were found, which could be catabolized in polyamines [78].
Polyamines are involved in enhancing the integrity of the intestinal barrier and are responsible for
maintaining, rapid turnover and proliferation of intestinal epithelial cells. Apart from this, polyamines
stimulate the production of intercellular junction proteins, which regulate the epithelial barrier function
cells [79]. Interestingly, Löser and colleagues [80] have demonstrated an important role of intestinal
polyamine pools during the postnatal development of the gastrointestinal tract.

Metabolite concentrations determined from feces can be regarded as rough estimation but they do
not reflect the exact metabolite levels present in the colon [81]. Due to the dynamic nature of metabolites
and the fact that their production is affected by internal and external factors (e.g., enzyme activity,
storage or analysis method) [82], metabolome analysis revealed larger differences between the
individual animals and sampling days compared to the consistent profile of functional metaproteome
(Figure 3C,D). Visual overlay of metaproteomics and metabolomics data provided a detailed overview
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of the metabolic activities in the microbiome (Figure S3). Remarkably, nearly all metabolites could be
matched to pathways that were postulated to be active based on our metaproteomic data using the
online tool IPath3 [83].

SCFAs, central metabolites that are exclusively synthesized by different microbiome members,
are known to affect the health status of the host (reviewed in, e.g., Koh et al. [72]). They have been
implicated in host cell proliferation, epithelial cell integrity, histone (de-)acetylation, and G-protein
coupled receptor 43 (GPR43) activation (reviewed in, e.g., Venegas et al. [84]). Our metabolome
analysis revealed acetate as the most abundant SCFA, which has been also observed in various other
studies (e.g., [11,23,78]). Furthermore, butyrate and propionate were detected in high concentrations
(Figure 6). The detected amounts of SCFAs were comparable to a study by Heinritz and colleagues,
that investigated the effects of different diets on the microbiome composition and metabolite production
in 12-week-old pigs [11]. There were several studies [85–88] that measured higher SCFA concentrations
in gastrointestinal tract samples from pigs. However, it is important to note that some of these
studies [85,87,88] used digesta samples from different gastrointestinal sections instead of fecal samples
for SCFA measurement. It was recently shown that fecal samples have lower concentrations of SCFAs,
due to the fact that 95 % of the produced SCFAs were absorbed during the flow of contents through the
gastrointestinal tract. Therefore, feces were known to have lower concentrations of SCFAs than the
digesta of intestinal sections [89].Microorganisms 2020, 8, x FOR PEER REVIEW 15 of 21 
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Figure 6. Total amount of all SCFAs (A) and concentrations of acetate, propionate, butyrate, valerate,
isobutyrate, and isovalerate (B) of swine fecal samples from 1H-NMR analysis over 30 days. Y-axes:
SCFA concentration in mmol/kg feces; X-axes: sampling day.

In good accordance to the metabolome data, our metaproteomics study identified several
key-enzymes of the SCFA production pathways, i.e., acetyl-CoA acetyltransferase, acetyl-CoA
carboxylase, methylmalonyl-CoA mutase, butyrate kinase, and acetate kinase. These enzymes
were expressed by different members of the orders Clostridiales, Bacteroidales, Selenomonadales,
Veillonellales, and Acidaminococcales. Especially the orders Clostridiales (e.g., Lachnospiraceae and
Ruminococcaceae) and Bacteroidales (e.g., Bacteroidaceae and Prevotellaceae) were known as main SCFA
producers in the gut [20,72]. Albeit the amounts of acetate, propionate, butyrate and valerate reached a
slight maximum at day 22 before decreasing, rather stable SCFA concentrations were observed during
30 days (Figure 6). Notably, we detected an increased abundance of the families Streptococcaceae and
Spirochaetaceae while acetate and propionate were measured in higher concentrations.
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4. Conclusions

In conclusion, we developed an integrated multi-omics protocol for the analysis of porcine feces,
which enabled a contact-free, high-throughput homogenization of the heterogenous fecal sample,
while keeping it frozen. The homogeneous fecal powder was easily divided for the use of specialized
extraction protocols for the individual omics techniques. Furthermore, we found that the taxonomic
composition of feces and colon rather congruent. Therefore, we suggest that feces could be used as
minimal-invasive proxy for the colon in future analyses of the gastrointestinal tract.

Applying this protocol in a typical biomedical experiment revealed congruent dynamics
in microbiome structure and function but also large conformity between the different pigs.
Taxonomic analysis showed a dynamic microbiome composition, which is not surprising given the
successional dynamics of eight-week-old piglets over 30 days. Consequently, these high microbiome
dynamics have to be considered in the design of biomedical experiments using swine.

Functional analysis via metaproteomics revealed low variability between the individual animals
and at the sampling days. Through this observation, infection-related changes in the microbiome
could be detected in further experiments. Integration of metaproteomic and metabolomic data resulted
in large coverage of the metabolic pathways. Because main functional assignments and metabolites,
such as SCFAs, were more or less stable, we suggest, that these findings point towards functional
redundancy during the natural development of the individual intestinal microbiota. To verify this
hypothesis, we will analyze the influence of time and infection on the functional potential of the
gastrointestinal microbiome of swine in further infection studies.

Our study and the resulting multi-omics sample processing pipeline can pave the way for a
more detailed analysis in the context of future porcine infection experiments with swine pathogenic
microorganisms, e.g., influenza A virus or Streptococcus suis, as well as any other event that alters the
gastrointestinal microbiome (e.g., after weaning or dietary changes). Further improvements could be
beneficial for the presented approach, such as the use of additional replicates, to enable more robust
statistical analyses. Furthermore, the use of metagenomics or transcriptomics instead of 16S rRNA
genes to create ecosystem-specific databases for the analysis of the metaproteome would likely increase
the number of identified protein groups, and might also reduce inconsistencies in the taxonomic
classification between nucleic acid and protein group based profiles.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/12/1887/s1.
Figure S1: Heatmap displaying fold-change (mean amount day x/mean amount over 30 days) of detected
metabolites in pig feces by GC-MS and 1H-NMR spectroscopy. Dark blue color indicates an increased fold change
of 2.5, while white color represents a decrease in the fold change to 0.3. Figure S2: Assignment of identified PGs
from swine feces to functional categories based on eggnog (n = 3 for sampling day 0, 7, 21, 25 and 30, n = 2 for
sampling day 4). For the functional analysis of the metaproteome all identified PGs were considered, including
unclassified PGs and PGs with unknown function. Figure S3: Integration of metaproteome and metabolite profiles
of swine feces. Blue lines highlight the identified proteins of corresponding pathways. Detected metabolites were
grouped in the categories SCFAs (teal), fatty acids (dark green), carbon core metabolism (purple), amino acids
(orange), amino acid degradation (yellow), various (black), and depicted as spots. Table S1: Amount of isolated
DNA from swine feces using different extraction protocols. Table S2: Average protein concentration from swine
feces after employing different protein extraction protocols. Table S3: Total number of identified protein groups
from swine feces at the corresponding sampling days. Table S4: nmds data 16S metaprot metabolome. Table S5:
data heatmap intestinals. Table S6: frequent families. Table S7: frequent proteins. Table S8: prophane output all
protein groups.
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