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Abstract: Grape pomace, a by-product derived from winery industries, was used as fermentation
media for the production of added-value products through the cultivation of two Pleurotus species.
Solid-state (SSF), semiliquid (SLF), and submerged (SmF) fermentations were carried out using
grape pomace as substrate. The effect of the different fermentations on the consumption of phenolic
compounds, the production of mycelial mass and enzymes was evaluated using P. ostreatus and
P. pulmonarius. The production of fungal biomass and enzymes was influenced by the fermentation
mode. The maximum biomass values of ~0.5 g/g were obtained for both P. pulmonarius and P. ostreatus
in SmF. Laccase production was induced in SSF and a maximum activity of 26.247 U/g was determined
for P. ostreatus, whereas the highest endoglucanase activity (0.93 U/g) was obtained in the SmF of the
same fungi. Analysis of phenolic compounds showed that both strains were able to degrade up to
79% of total phenolic content, regardless the culture conditions. Grape pomace was also evaluated
as substrate for mushroom production. P. pulmonarius recorded the highest yield and biological
efficiency of 14.4% and 31.4%, respectively. This study showed that mushroom cultivation could
upgrade winery by-products towards the production of valuable food products.

Keywords: bioconversion; fungi; mushroom; winery side-streams; phenolic compounds; laccase;
endoglucanase; fermentation

1. Introduction

Mushroom cultivation has been widely applied in many regions worldwide owing to its their
medicinal and nutritional advantages. The high protein content eliciting all essential amino acids, the
low-fat content, the composition in dietary fiber (chitin, hemicellulose, β-glucans, mannans, xylans,
and galactans), along with the taste and aroma, constitute some of the unique dietary characteristics of
edible mushrooms [1]. Cultivation requirements along with the possibility to utilize agro-industrial
renewable resources complements the emerging demands for mushroom cultivation. Regardless the
hundreds of mushroom species that can be naturally grow, few of them are commercially cultivated to
be consumed by humans, including Pleurotus spp., which is among the most cultivated mushrooms [2].

Pleurotus mushrooms are recognized as a rich source of protein, fiber, carbohydrates, vitamins,
and minerals, as well as for its unique flavor. These medicinal mushrooms are well-known for their
antitumor, antibiotic, antibacterial, hypocholesterolic, immunomodulation, and prebiotic properties [2,3].
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Additionally, their ability to secrete an ample range of enzymes with biotechnological interest has been
identified many years ago. More specifically, Pleurotus spp. present the ability to secrete extracellular
enzymes to degrade lignocellulosic raw materials [4]. Laccase, often know as polyphenol oxidase,
and endoglucanase belong to the group of ligninolytic and cellulolytic enzymes, respectively [5,6].
Numerous studies have demonstrated the potential of laccases and cellulases applications in the food
and beverage sector [7]. In particular, these enzymes have been applied for the removal of phenolics
with the aim to prevent browning, stabilization of fruit juice, wine, and beer, to enhance the structure
of gluten during baking, to improve the leavening of bread, for gel formation using sugar beet, and for
the treatment of olive oil mill effluents [2,5,8–11].

Several studies have demonstrated the potential of agro-industrial by-products utilization for
Pleurotus spp. mushroom cultivation, such as banana stalks, coffee husks, paddy straw, rice straw,
wheat straw, cotton waste, peanut shells, and spent mushroom substrate, among others [1,4,12,13].
Wine production constitutes a paramount agricultural and manufacture sector with the annual global
production to be estimated at 282 million hectoliters in 2018 [14]. The process of wine manufacture,
from the field to the final product, results in the generation of both liquid and solid by-products,
including grape stalks, grape pomace, and wine lees. Grape pomace (or grape marc) accounts for
approximately 20% of the total weight of initial grapes processed for wine production [15]. It constitutes
a lignocellulosic material containing pressed skins, seeds and pulp, including also stems in the case
of red vinification process. An annual global capacity of 10.5–13.1 million tons of grape pomace can
be projected, considering that 6 L of wine entail 1 kg of grape marc [16]. Hence, various strategies
are undertaken to valorize grape pomace as a low-cost material, including ethanol and bioethanol
production [17], anaerobic digestion and vermicomposting [16], the extraction of polyphenols [15],
animal feed, and soil amendment [16]. Grape pomace has been also evaluated in solid state fermentation,
using the fungal strain Aspergillus awamori for the production of enzymes, including xylanase and
endoglucanase [11].

A recent study was conducted using winery and vineyard waste streams for the cultivation of
Ganoderma lucidum and P. ostreatus mushrooms during solid state fermentation, whereas submerged
fermentations were also performed with G. lucidum, L. edodes, and P. ostreatus to assess mycelia growth
and protein content [18]. Ongoing research is focusing to elicit bioprocesses to convert grape marc into
high-value components (e.g., mushrooms, enzymes, and polysaccharides) via the biotechnological
route. Likewise, these compounds can find applications in food processing, and be included again in
the food supply chain. Also, in line with the transition to a circular economy, as imposed by European
legislations, it is of utmost importance to implement agro-industrial waste and by-products streams to
foster sustainable and environmentally benign solutions that will generate diversified end-products
that can re-enter the food industry. Hence, the aim of this study was to valorize grape pomace as
a substrate for the cultivation of two Pleurotus species using diverse fermentation configurations.
The production of mycelial mass, laccase and endoglucanase enzymes were evaluated in different
fermentation modes, as well as the ability of these strains to grow and produce fruiting bodies in
grape pomace.

2. Materials and Methods

2.1. Fungal Strains and Inoculum Preparation

The mushroom strains used in the experiments—Pleurotus ostreatus AMRL 135 and Pleurotus pulmonarius
AMRL 177—were obtained from the fungal culture collection of the Laboratory of Edible Fungi
/Institute of Technology of Agricultural Products (LEF, ITAP located in Lykovryssi, Attiki, Greece).
Potato Dextrose Agar (PDA; Merck, Germany) slants were used to maintain fungal strains at 2 ± 0.1 ◦C.
Before each experiment fungal strains were reproduced in PDA Petri dishes by incubation at 26 ± 1 ◦C
for 7 days.
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Inoculum was prepared in two sequential liquid precultures using initially a synthetic
glucose-based medium (pH 6.1) consisting of glucose, 10 g/L; yeast extract, 1.5 g/L; KH2PO4, 7 g/L;
K2HPO4, 2.5 g/L; MgSO4·7H2O, 1.5 g/L; (NH4)SO4, 1.3 g/L; CaCO3, 0.2 g/L; CaCl2·2H2O, 0.15 g/L;
FeCl3·6H2O, 0.15 g/L, MnSO4·H2O, 0.04 g/L; ZnSO4·7H2O, 0.02 g/L; and thereafter the grape pomace
hydrolysate (as described in Section 2.5.1). Erlenmeyer flasks of 500 mL filled with 150 mL of synthetic
media were sterilized for 20 min at 121 ± 1 ◦C and after cooling, inoculation with two PDA agar disks
(7 mm diameter) was performed. Incubation was carried out at 26 ± 1 ◦C for 10 days using an agitation
rate of 140 rpm (orbital shaker, ZHICHENG ZHWY 211C, China). Then preculture was aseptically
homogenized and used as inoculum (10%, v/v) for the second preculture which contained the same
synthetic medium but with 5 g/L glucose and 0.75 g/L yeast extract. Incubation was followed for 5 days
at 26 ± 1 ◦C and 140 rpm.

2.2. Raw Materials and Fermentation Media

Grape pomace was obtained from the red wine making process of “Agiorgitico” grape variety,
performed in Laboratory of Enology /Institute of Technology of Agricultural Products (LE, ITAP located
in Lykovryssi, Attiki, Greece). Analysis of the chemical profile of grape pomace [19,20] showed that
the main constituents were (expressed in w/w dry basis): crude fibers (22.0%), soluble sugars (20.0%),
total Kjeldahl nitrogen (14.2%), and ash (10.2%). Samples were collected after mechanical pressing,
dried at 80 ± 0.1 ◦C and mechanically grinded to obtain particle sizes< 0.8 mm. Grape pomace was
employed as the growth medium for all fermentation modes (SSF, SmF, and SLF).

2.3. SSF, SmF and SLF Conditions

Erlenmeyer flasks containing 4 g of grape pomace (dry basis) were autoclaved for 20 min at
121 ± 1 ◦C. In the case of SmF and SLF, distilled sterilized water was added to achieve final grape
pomace concentrations of 0.04 g/mL and 0.2 g/mL, respectively [21,22]. Substrates were inoculated
with 10 mL of liquid preculture of each strain, followed by incubation at 26 ± 1 ◦C in an orbital shaker
(140 rpm) (MPM M301-OR, Italy) for 20 days. Three replicates were employed for each strain and
each fermentation process tested. Immediately after sample collection, the extraction of phenolic
compounds and analysis of moisture content were performed, whereas the remaining sample was
freeze-dried (Heto LyoLab 3000 freeze-dryer, Heto-Holten Als, Denmark) and stored for further
analysis of glucosamine content and enzymatic activities.

2.4. Cultivation Conditions for Fruiting Bodies Production

Grape pomace was evaluated for fruiting bodies production using both Pleurotus strains.
Grape pomace was initially soaked in water for 12 h, and afterwards the surplus water was drained off

5% wheat bran, 5% soybean flour, and 1% CaCO3 were added as supplements. Glass containers of
600 mL volume were filled with the substrate and autoclaved for 20 min at 121 ± 1 ◦C. The moisture
content of the medium after sterilization was 55% and pH was 6.5. Inoculation was carried out by
adding liquid preculture into the central vertical axis of the jar, followed by incubation in growth
chambers at 26 ± 1 ◦C until complete colonization of the substrate. Subsequently, fructification was
induced by adjusting the environmental conditions. More specifically, light intensity was set at 200 lux
(12 h/day, fluorescent lamps), air exchange rates were regulated to maintain CO2 level< 1200 ppm,
relative air humidity was adjusted at 90%, and temperature was set at 18 ± 1 ◦C [4].

The mature fruiting bodies were harvested daily, counted and weighted. Additionally,
the parameters earliness, which is the days elapsed between the day of inoculation and the day
of the first harvest; biological efficiency (BE), which is the percentage yield of fresh mushrooms
harvested per g of dry substrate; total yield, which is the percentage yield of fresh mushrooms
harvested per g of substrate; and the average fresh weight of fruiting bodies, were evaluated [4].
Results represent the average value of eight replicates.
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2.5. Analytical Methods

2.5.1. Hydrolysis of Grape Pomace and Biomass Production

Acid hydrolysis of grape pomace was carried out to obtain a fermentation media, which was used
for inoculum preparation (as described in Section 2.1) and for fungal biomass production. The biomass
obtained through SmF using the hydrolysate, was correlated with its glucosamine content (Section 2.5.2.
Specifically, a known amount of grape pomace (dry basis) was mixed with ethanol (95%), in a proportion
1:5 (w/v), and heated up to 100 ◦C for 5 min. Subsequently, the solution was left to cool at room
temperature, filtered with Whatman paper (Whatman No. 3), and extracted two more times following
the same procedure. The last extraction was carried out with absolute ethanol, and the sediment was
left to dry for 12 h [23,24]. Sample was then mixed with H2SO4 (72%) (dry solids:acid 1:12.5, w/v),
and the mixture was left for 3 h at 20 ◦C. After that, distilled water was added to achieve a solution of
1 M H2SO4, and acid hydrolysis was performed for 2.5 h at 100 ◦C. The final hydrolysate was obtained
after filtration and neutralization using 1 M KOH [20,24,25].

Then hydrolysate was supplemented with 4 g/L glucose, 0.75 g/L yeast extract and the other
supplements, as mentioned in Section 2.1, and biomass was produced through fermentation of each
strain at 26 ± 1 ◦C for 6 days under agitation (140 rpm). Biomass was separated from fermentation
samples through filtration (Whatman No 1) and washed three times with distilled water. The clear
broth filtrate was collected and stored at −20 ± 1 ◦C until further analysis of sugar consumption,
whereas fungal biomass was transferred in preweighed McCartney bottles and dried at 60 ± 1 ◦C until
a constant weight was achieved. Sugar concentration was determined in broth filtrate of the preculture
using the 3,5-dinitro-2-hydroxy-benzoic acid (DNS) method for reducing sugars [26] and phenol and
the sulfuric acid method for the total sugars [27].

2.5.2. Determination of Glucosamine Content

A glucosamine standard curve was obtained using increasing concentrations of N-acetyl-D-
glucosamine (Sigma-Aldrich). Subsequently, the biomass of each Pleurotus strain, which was obtained
through SmF in grape pomace hydrolysate, was hydrolyzed and glucosamine content was determined.
The correlation of known amounts of biomass with glucosamine content resulted in the linear regression
equations shown in Table 1.

Table 1. Linear regression equations of glucosamine (mg) and mycelial biomass (g) of Pleurotus strains
grown on grape pomace hydrolysate.

Pleurotus spp. Biomass g (y)/glucosamine mg (x) R2

P. ostreatus y = 0.0529x − 0.0735 0.99
P. pulmonarius y = 0.0579x − 0.0715 0.99

2.5.3. Indirect Estimation of Biomass in Fermentations

The glucosamine present in the fungal cell wall was used to monitor fungal biomass in all
fermentations. The method of chitin hydrolysis into N-acetylglucosamine and the determination of
glucosamine content have been previously described [28]. The same protocol was followed using
unfermented medium as blank. Results were expressed as g fungal biomass per g of dry substrate.

2.5.4. Crude enzyme extraction and determination of enzyme activities

Approximately 2 g of lyophilized colonized substrate was mixed with 20 mL sodium acetate buffer
(0.05 M, pH = 5.0) and agitated (100 rpm) for 1 h at room temperature. The crude extracts were recovered
by filtration (Whatman No2, England) followed by centrifugation (10,000× g, 15 min, 4 ± 0.1 ◦C)
(Hettich Micro22R, Hettich, Germany). Clear supernatants were stored at−20± 1 ◦C for further analysis
of endoglucanase and laccase activities according to the method described by Philippoussis et al. [29].
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One unit of endoglucanase was defined as the amount of enzyme producing 1 µmol of reducing sugar
(glucose equivalent) in one minute, under the conditions assayed. The standard curve was obtained
with glucose for CMC. Laccase was determined using syringaldazine as substrate. One unit of laccase
was defined as the amount of enzyme required to produce a change in absorbance of 0.001 per minute,
under the conditions assayed. At least triplicates were used for the determination of each enzymatic
activity which were expressed as U/g of dry substrate.

2.5.5. Determination of Phenolic Compounds

Phenolic compounds were determined using the Folin–Ciocalteu method as described by
Puoci et al. [30]. Briefly, to extract the phenolic compounds, 5 g of fresh colonized substrate was mixed
with 20 mL of methanol and sonicated for 1 h, followed by filtration. The filtrate was collected and
the same extraction process (30 min sonication) was repeated twice. Filtrates were combined and
subsequently the solvent was vacuum evaporated at 40 ± 1 ◦C. The extracted phenolic compounds
were resuspended in 15 mL of methanol and stored at −20 ± 1 ◦C until further analysis. For the
photometric method, 10.8 mL of distilled water were mixed with 0.2 mL extracted sample, 8 mL of
Na2CO3 solution (7.5%, w/v) and 1 mL of Folin–Ciocalteu reagent. The samples were left to settle
for 2 h allowing the color to develop and the absorbance was measured at 760 nm. Unfermented
substrate of each fermentation was utilized to evaluate the initial total phenolic content (TPC), which
was expressed as g of gallic acid equivalents per g of dry substrate, using a standard curve.

2.6. Statistical Analysis

The statistical differences for biomass, enzymes production and phenolic compounds reduction
were estimated by analysis of variance (ANOVA). Whenever ANOVA indicated a significant difference
between variables at a significance level of 5% (p < 0.05) the Tukey’s HSD (honest significant difference)
test was carried out using the Excel software.

3. Results and Discussion

3.1. Biomass Production

Biomass production was indirectly estimated through the determination of glucosamine content.
The equations of Table 1 were used to convert glucosamine to biomass. This method has been widely
applied to determine biomass production during fermentations of several mushrooms, including
Lentinula edodes, Pleurotus spp., Ganoderma spp., and Morchella spp. [12,28,29]. The glucosamine
content of Pleurotus spp. strains was ranged from 18.5 to 20.3 mg/g of dry biomass, which was
significantly higher than previous studies (3.6 mg/g) for P. ostreatus grown on groundnut shells [31].
Generally, glucosamine content of mycelial mass depends on medium, fungal species and culture
conditions [28,29].

Table 2 illustrates that the highest biomass concentrations of 0.50 g/g and 0.54 g/g were obtained
in SmF for P. ostreatus and P. pulmonarius, respectively, at the 20th day of the fermentation. The results
indicated that grape pomace supports the growth of Pleurotus spp., with P. pulmonarius producing
higher biomass concentrations in all fermentations than P. ostreatus. To the best of our knowledge,
there are no literature cited results reporting biomass production of mushrooms using grape pomace,
whereas it has been indicated in other agro-industrial substrates. Economou et al. [12] mentioned
the highest biomass production of around 0.13-0.14 g/g for P. ostreatus and P. pulmonarius using spent
mushroom substrate in SSF. Other mushrooms, such as L. edodes presented similar to this study biomass
production (up to 0.46 g/g) during SSF on bean stalks [29].
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Table 2. Biomass production (g/g of dry substrate) during solid-state (SSF), submerged (SmF) and
semiliquid (SLF) fermentations of P. ostreatus and P. pulmonarius using grape pomace as substrate.

Time (Days)
P. ostreatus P. pulmonarius

SSF SmF SLF SSF SmF SLF

9 0.31 ± 0.01 a 0.38 ± 0.01 a 0.36 ± 0.01 a 0.34 ± 0.01 a 0.44 ± 0.01 a 0.40 ± 0.01 a

15 0.32 ± 0.02 a 0.40 ± 0.01 a 0.36 ± 0.01 a 0.37 ± 0.01 b 0.46 ± 0.00 b 0.40 ± 0.01 a

20 0.42 ± 0.01 b 0.50 ± 0.02 b 0.43 ± 0.01 b 0.40 ± 0.01 c 0.54 ± 0.01 c 0.45 ± 0.02 b

a,b,c Different letters indicate significant differences for each parameter within the same column (p < 0.05).

3.2. Consumption of Phenolic Compounds

TPC of colonized grape pomace was evaluated during the fermentations and the results are shown
in Figure 1. In all fermentation modes, both Pleurotus strains were able to consume significant amount
(p < 0.05) of the phenolic compounds as compared with the initial TPC in unfermented grape pomace,
which was 0.47 ± 0.04% (w/w). Particularly, the highest TPC reduction of 79% was determined in SLF
of P. pulmonarius, followed by 74% in SSF, whereas the lowest TPC reduction of 68% was noticed in
SmF. The same behavior was observed for P. ostreatus, which presented the highest TPC reduction
in SSF and SLF (72% and 70%, respectively) and the lowest one in SmF (68%). It is noteworthy to
mention that biomass was steadily increased with decreasing TPC. Specifically, biomass production in
each fermentation was correlated with the respective values of TPC and negative relations with high
regression coefficient (R2 ranged from 0.63 to 0.98) were revealed.
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Figure 1. Total phenolic content (TPC) of the colonized substrate during solid-state (SSF, �), submerged
(SmF, N) and semiliquid (SLF, �) fermentations of P. ostreatus and P. pulmonarius using grape pomace
as substrate.

Sanchez et al. [32] reported lower phenolic removal by P. ostreatus and P. pulmonarius (18.4% and
9.2%, respectively) cultivated in grape pomace. Gaitán-Hernández et al. [33] demonstrated a TPC
reduction of 71.4% by L. edodes in viticulture residues. The phenolic removal has been also investigated
in other phenolic-rich substrates. Many studies have been focused on the utilization of olive oil mill
wastewater as fermentation medium by L. edodes, P. ostreatus, and P. pulmonarius reporting a final
phenolic removal up to 76% [34,35]. The highest phenolic removal of ~80% has been determined
during SSF of P. ostreatus in coffee pulp [36].

3.3. Laccase Production

Laccase activity was influenced by the fungal species and the fermentation mode, as depicted
in Figures 2 and 3. The highest values of 26,247.0 U/g (15th day) and 15,273.0 U/g (20th day) were
determined in SSF for P. ostreatus and P. pulmonarius, respectively. The lowest enzyme activities were
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observed in SLF, indicating that this fermentation mode cannot support the efficient laccase production
for both Pleurotus species. P. ostreatus presented low laccase activity also in SmF, with the highest
value of 4447.0 U/g produced at 15th day of the fermentation (Figure 2). Laccase production from
P. pulmonarius illustrated different pattern in SmF, as compared to P. ostreatus. In this case, the highest
laccase activity of 12,174.0 U/g was determined at the 9th fermentation day (Figure 3). It was also
noticed that laccase production and TPC reduction were positively correlated in SSF, which is attributed
to the fact that laccase is involved in degradation of the phenolic compounds. This finding is in
agreement with previous studies evaluating phenolic compounds consumption by other mushrooms
using olive oil mill wastewater as substrate [34,35].
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Results showed that SSF was the best fermentation mode for laccase production. Many researchers
have indicated that low laccase production was observed when the moisture content of the substrate
was increased, due to the lowest oxygen transfer [36,37]. This can be explained by the fact that laccases
act on phenols by using oxygen as the electron acceptor [35]. Thus, the highest laccase production
observed in this study during SSF could be attributed to better oxygen transfer as compared to the other
fermentation modes. Moreover, Stajić et al. [38] reported that laccase production is highly dependent
on Pleurotus spp. and fermentation mode (SSF or SmF). Particularly, P. eryngii presented the highest
laccase activity in SmF using mandarin peels, whereas P. ostreatus cultivation resulted in the lowest
enzyme activity under these conditions. P. ostreatus and P. pulmonarius showed the highest laccase
activity in SSF of grapevine sawdust in comparison to the other substrates [38]. Sadh et al. [1] reported
that SSF processes are often advantageous over other fermentation modes owing to higher enzyme
production and higher yields, low operational cost and lower risk of contamination.

In this study, P. ostreatus was able to produce higher quantities of laccase than P. pulmonarius in
grape pomace. However, the substrate is an important parameter that affects enzyme production.
For instance, Economou et al. [12] demonstrated higher laccase production from P. pulmonarius
(44,363.2 U/g) in comparison with P. ostreatus (12,751.7 U/g) during SSF using spent mushroom
substrate. The production of oxidative enzymes from Pleurotus strains have been extensively studied on
various substrates, such as wheat bran, coffee pulp, olive oil mill wastewater, mandarin peels and spent
mushroom substrate [12,37,39–42]. Similar laccase production (20,000.00 U/g) has been mentioned
for P. pulmonarius during SSF on wheat straw [37]. However, there are few studies investigating the
production of laccase on winery substrates. Elisashvili et al. [22] studied the SmF of P. ostreatus in grape
pomace, which resulted in low laccase production of 750 U/L. Enhancement of laccase production by
Pleurotus species has been achieved by the supplementation of the medium with Cu2+ and Mn2+ [43,44].

3.4. Endoglucanase Production

Endoglucanase activity was induced in SmF as the highest values of 0.93 U/g and 0.56 U/g were
obtained at 20th day for P. ostreatus (Figure 4) and P. pulmonarius (Figure 5), respectively. Lower
endoglunase activity was determined in SLF (~0.2 U/g) and SSF (0.05–0.07 U/g) for both strains.
Biomass production and endoglucanase activity presented a positive correlation in SmF, which was
indicated with a high regression coefficient for P. ostreatus (R2 = 1) and P. pulmonarius (R2 = 0.93).
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The results of this study are supported by the findings of Elisashvili et al. [22,45], which indicated
that the production of hydrolytic enzymes, such as endoglucanase, was enhanced in SmF as compared
to SSF. Few studies have been reported endoglucanase production by Pleurotus species in grape pomace
(8 U/mL) [45] and viticulture residues (0.28 U/g) [46]. Philippoussis et al. [29] reported endoglucanase
activity of 0.97 U/g in wheat straw and 1.71 U/g in bean stalks for L. edodes and G. adsperum, respectively.
An important parameter that affects cellulase activity is the heating pretreatment of the substrate.
Karpe et al. [47] demonstrated that autoclaved winery by-products contained higher quantity of free
sugars than non-autoclaved, which may inhibit cellulase production in some fungal strains.

3.5. Evaluation of Grape Pomace for Fruiting Bodies Production

SSF of P. ostreatus and P. pulmonarius were carried out in controlled environmental conditions,
in order to evaluate their fruiting body production efficiency using grape pomace as substrate.
The results of Table 3 revealed differences regarding fruiting body formation by the two Pleurotus
species. Grape pomace favored the production of P. pulmonarius mushrooms presenting three
flushes. Noteworthy, grape pomace supported less flushes (only one) in the case of P. ostreatus.
The cultivation of P. pulmonarius exhibited higher yield and BE with shorter earliness period than
P. ostreatus. The superiority of P. pulmonarius over P. ostreatus has been also highlighted in cotton
waste [48]. Sánchez et al. [32] found slightly higher BE (37–40%) when P. ostreatus and P. pulmonarius
were cultivated in grape pomace. However, BE enhanced using viticulture residues (58–78%).

Table 3. Mushrooms yields and biological efficiency (BE) of P. ostreatus and P. pulmonarius using grape
pomace as substrate.

Pleurotus spp. Flushes Earliness
(Days)

Mushroom
Number

Average Fresh
Weight (g)

Total Yield
(%) BE (%)

P. ostreatus 1 42 162 ± 3.7 25.9 ± 2.3 7.4 16.2

P. pulmonarius
1 35 176 ± 9.5 24.0 ± 1.8

14.4 31.42 45 43 ± 3.1 14.4 ± 1.4
3 55 12 ± 2.6 11.9 ± 1.5
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Generally, Pleurotus mushrooms present high BE in straw-based substrates rather than phenolic-rich
substrates. Specifically, P. ostreatus cultivation on straw substrate supplemented with 30% olive cake
showed a BE of 79.9% [49]. Contrarily, a substrate consisting of 90% olive cake had lower BE (26%) [49].
However, the mushrooms produced from the olive cake had higher protein content (35%) than
mushrooms produced from wheat straw substrate (26.6%) [49]. This indicates that regardless the low
yield achieved with phenolic-rich substrates, the nutritional value of produced mushrooms may be
enhanced. Thus, further studies focusing on the optimization of substrates composition could lead to
the efficient utilization of winery by-products to produce mushrooms with high nutritional value.

4. Conclusions

The bioconversion of grape pomace for the production of enzymes and fruiting bodies from
Pleurotus spp. was investigated. This is the first study reporting the effect of different fermentation
modes on biomass and enzyme production by Pleurotus species. Significant amounts of the initial
phenolic content of grape pomace was consumed by P. ostreatus and P. pulmonarius, which was positively
correlated with the biomass production. Higher laccase and endoglucanase activities were achieved by
P. ostreatus. Specifically, laccase activity was induced in SSF, whereas endoglucanase was reached its
maximum activity in SmF. Conclusively, enzyme production was affected by the fermentation mode
and Pleurotus species. Satisfactory mushroom yield and biological efficiency were observed in the case
of P. pulmonarius, proving that grape pomace is an alternative substrate for mushroom cultivation.
Any further research could be focus on the optimization of the heating pretreatments of grape pomace
aiming to higher enzyme activities and mushroom yields [47].
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