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Abstract: Wild waterfowl birds are known to be the main reservoir for a variety of avian
influenza viruses of different subtypes. Some subtypes, such as H2Nx, H8Nx, H12Nx, and H14Nx,
occur relatively rarely in nature. During 10-year long-term surveillance, we isolated five rare
H12N5 and one H12N2 viruses in three different distinct geographic regions of Northern Eurasia
and studied their characteristics. H12N2 from the Far East region was a double reassortant
containing hemagglutinin (HA), non-structural (NS) and nucleoprotein (NP) segments of the American
lineage and others from the classical Eurasian avian-like lineage. H12N5 viruses contain Eurasian
lineage segments. We suggest a phylogeographical scheme for reassortment events associated with
geographical groups of aquatic birds and their migration flyways. The H12N2 virus is of particular
interest as this subtype has been found in common teal in the Russian Far East region, and it has a
strong relation to North American avian influenza virus lineages, clearly showing that viral exchange
of segments between the two continents does occur. Our results emphasize the importance of Avian
Influenza Virus (AIV) surveillance in Northern Eurasia for the annual screening of virus characteristics,
including the genetic constellation of rare virus subtypes, to understand the evolutionary ecology
of AIV.

Keywords: avian influenza; rare subtype; H12Nx; multiple reassortant; wild birds; Northern Eurasia;
American lineage
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1. Introduction

Influenza viruses belong to the family of Orthomyxoviridae and are divided into subtypes according
to their different surface glycoproteins. The 16 main hemagglutinin (HA) subtypes and nine
neuraminidase (NA) subtypes have been isolated from a wide range of wild and domestic bird
species. Additionally, subtypes H17N10 and H18N11 of influenza-like viruses have been detected in
little yellow-shouldered bats [1]. There has been a significant spread of some subtypes—such as HIN1,
H3NS8, and H4N6—among wild waterfowl, which are considered the main reservoir of low-pathogenic
avian influenza (LPAI) viruses. Some subtypes, such as HI3Nx and H16N3, are primarily associated
with seagulls. Other HA subtype viruses (H2, H8, H12, and H14) occur relatively rarely in nature [2].
However, there is a complex pattern of combinations of internal virus genes belonging to various
lines and causing different properties of virus proteins. The process of genome reassortment plays an
important role in this. Some subtypes may evolve and acquire a pathogenic phenotype that causes
serious disease and is associated with epizootics and pandemics (such as H5Nx and H7NXx) [3,4].
Highly pathogenic avian influenza viruses (HPAIVs) originate from low-pathogenic precursors with the
HA subtypes H5 and H7 [3,4]. However, the avian influenza virus subtypes H2, H4, H8, and H14 have
been shown to support a highly pathogenic phenotype after the genetically engineered introduction
of the polybasic cleavage site into the HA [5]. Therefore, the monitoring and investigation of the
pathogenic potential of new and rare subtypes is important for seeking and evaluating the pathogenic
potential of new virus variants. Moreover, the evolutionary dynamics of rare viruses vary among
subtypes, suggesting different drivers of maintenance in the avian reservoir [6,7]. Although influenza
A viruses mostly circulate in wild waterfowl, those that can overcome the interspecies barrier and
infect mammals represent the greatest risk of zoonotic spread to humans, playing an important role in
the generation of panzootic and/or pandemic viruses.

During an annual AIV surveillance program, we analyzed 1652 samples from wild birds migrating
by different flyways (the East Africa-West Asia Flyway, Central Asia Flyway, and East Asia—Australian
Flyway) in different parts of Russia during 2017-2018 and isolated 69 viruses, including six H12Nx
subtypes, that represented new data for these regions [8]. Transcontinental migrations of numerous
wild bird species occur from North Asia and Europe to the Mediterranean, Africa, and Southwest
Asia, and also cross from the Baltic and Caspian Seas to the Black and Mediterranean Seas, and from
Western Siberia and Kazakhstan to Western Europe and North Africa. Historically, the Azov-Black Sea
region is an area of nesting, flight, migratory stops, and wintering for many bird species [9].

Since the H12 subtype is rarely detected in wild birds, in this study, we examined the biological
characteristics and complete genome sequence analysis of five H12N5 and one H12N2 viruses and
conducted a comparison with the available data in terms of the evolutionary ecology of avian influenza
viruses in Northern Eurasia. The data and results presented here further our knowledge of the ecology
of rare AIV subtypes. Additionally, we performed a pathogenic risk assessment of these variants
regarding their potential threat to humans [10,11].

2. Materials and Methods

2.1. Sampling, Virus Isolation, and Cells

Influenza A/H12 viruses were isolated from cloacal swabs collected from wild migratory birds
using 10-day-old embryonated chicken eggs, according to standard protocols (World Organisation
for Animal Health /WHO), in biosafety level 3 facilities in the Federal Research Center of
Fundamental and Translational Medicine (CFTM). Sampling details are presented in Table 1.
Two viruses, A/shoveler/Ubinskoe Lake/43/2017 (H12N5) (A/43) and A/teal/Chany/324/2017 (H12N5)
(A/324), were isolated in the Novosibirsk region, Western Siberia, in September 2017; one virus
(A/teal/Dagestan/1017/2018 (H12N5) (A/1017)) was isolated in the Dagestan Republic in January 2018;
two viruses (A/shoveler/Novosibirsk region/999k/2018 (H12N5) (A/999) and A/mallard/Novosibirsk
region/962k/2018 (H12N5) (A/962)) were isolated in the Novosibirsk region/Western Siberia in September
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2018; and one virus (A/teal/Russia_Primorje/18-1377/2018 (H12N2) (A/1377-Amer)) was isolated in the
Russian Far East in September 2018. The isolated strains are stored at the depository of CFTM. The 50%
egg infectious dose (EID50) and the 50% tissue culture infectious dose (TCID50) for Madin-Darby
Canine Kidney (MDCK) cells were determined for all these viruses, as previously described [12].
Virus titers were calculated by the Kerber method with Ashmarin-Vorobyov modification, as follows:
log19TCIDsp/mL = 1gDn — 6(XLi - 0.5).

2.2. Experimental Infection of Chickens and Mice

All animal experiments were conducted in biosafety level 3 facilities and were approved by
the Ethics Committee of the Federal Research Center of Fundamental and Translational Medicine
(No. 2019-3; data: 11 March 2019).

The intravenous pathogenicity index (IVPI) test for all isolated A/H12 viruses was performed
and calculated according to the OIE standard protocol [13]. For this test, 10 six-week-old specific
pathogen-free white Leghorn chickens were intravenously inoculated per virus, with 0.1 mL of 1:10
diluted infectious allantoic fluid (containing 10°EIDs of the virus). Clinical signs and mortality were
monitored daily for 10 days. No unexpected deaths or clinical signs were observed. The pathogenicity
index was calculated as the mean score per bird per observation. After 10 days, chickens were
re-inoculated with 1 mL of the virus dilution containing 10°EID50 to obtain immune sera. On day 14,
post-inoculation (p.i.) blood samples were collected from two chickens of each group and sera were
harvested for antigenic analysis.

To evaluate the pathogenicity of the viruses in mice, a group of 30 six-week-old BALB/c mice
were lightly anesthetized and intranasally inoculated with 10°%tissue culture infective doses (TCIDsp)
of the virus in 50 pL of cell culture supernatant. A group of negative control mice was inoculated
intranasally with 50 uL phosphate buffered saline (PBS). Animals were weighed and observed daily for
20 days post-infection (p.i.) for weight loss and clinical scores based on characteristics such as ruffled
fur, hunched posture, and shivering. On day 21 p.i., all animals were euthanized, blood samples were
collected, and serum was obtained. Serum samples were tested via a hemagglutination inhibition (HI)
assay for the detection of antibodies against homologous viruses.

2.3. Antigenic Analysis

Antigenic analysis of A/H12 strains was performed by a hemagglutination inhibition (HI) test with
chicken red blood cells using chicken polyclonal antisera obtained as described above. Before testing,
all sera samples were heat-inactivated at 56 °C for 30 min. The HI test was performed according to the
standard protocol (OIE). The highest dilution of the serum that completely inhibited hemagglutination
was taken as HI [14]. Viruses were considered antigenically similar if their HI titer difference was no
more than a two-fold dilution.

2.4. Susceptibility to Neuraminidase Inhibitors

Neuraminidase activity and oseltamivir (F. Hoffmann-La Roche Ltd., Basel, Switzerland)
susceptibility of the strains A/43, A/324, A/962, A/1377-Amer, A/1017, and A/999 were
determined using a fluorescent neuraminidase inhibition (NAI) assay according to a previously
described method. Briefly, viruses were standardized to an NA activity level 10-fold higher
than that of the background, as measured by the production of a fluorescent product
from 20-(4-methylumbelliferyl)-«-D-N-acetylneuraminic acid substrate (MUNANA; Sigma-Aldrich,
Darmstadt, Germany). Drug susceptibility profiles were determined by the extent of NA inhibition
after incubation with three-fold serial dilutions of NAIs. The 50% inhibitory concentrations (ICsg)
were determined from the dose-response curve. The enzymatic reaction was read with a Varioskan
Flash (Thermo Fisher Scientific, Waltham, MA, USA.) microplate reader with excitation and emission
wavelengths of 360 and 460 nm, respectively. This work involved the use of equipment from the
multiaccess center “Modern Optical Systems” of the Federal Research Center of Fundamental and
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Translational Medicine (Novosibirsk, Russia). All methods were performed in accordance with the
relevant guidelines and regulations.

2.5. Sequencing

RNA was isolated from cultured viral particles using a GeneJET viral DNA/RNA purification
kit (Thermo Fisher Scientific, Waltham, MA, USA) and treated with TURBO DNase (Thermo Fisher
Scientific, Waltham, MA, USA). Up to 200 ng of RNA was used for the DNA libraries, which were
prepared using TruSeq RNA Sample Preparation Kit v2 (Illumina, San-Diege, CA, USA). Sequencing of
the DNA libraries was conducted with a Reagent kit, Version 3 (600-cycle), on a MiSeq genome
sequencer (Illumina) at the Siberian Branch of Russian Academy of Sciences, Genomics Core Facility
(ICBFM SB RAS, Novosibirsk, Russia). Full-length genomes were assembled de novo with CLC
Genomics Workbench version 9 (Qiagen, Hilden, Germany).

The genomes of two strains, A/shoveler/Novosibirsk region/999k/2018 and A/mallard/Novosibirsk
region/962k/2018, were sequenced using next-generation sequencing, as previously reported by the
National Institute of Animal Health, Tsukuba, Japan [15].

Nucleotide sequences of six H12 viruses have been deposited with the Global Initiative on Sharing
All Influenza Data (GISAID) under the following numbers: EPI_ISL_331295 (A/teal/Chany/324/2017),
EPI_ISL_331306 (A/shoveler/Ubinskoe_Lake/43/2017), EPI_ISL_331307 (A/teal/Dagestan/1017/2018),
EPI_ISL_337402 (A/mallard/Novosibirsk region/962k/2018), EPI_ISL_337571 (A/shoveler/Novosibirsk
region/999k/2018) and EPI_ISL_389024 (A/teal/Russia_Primorje/18-1377/2018).

2.6. Genetic Analysis

For phylogenetic analysis, we downloaded sequences of the H12 HA, N2, and N5 NA as well
as internal genes from the GISAID database in May 2019. Sequences of the AlIVs that the Federal
Research Center of Fundamental and Translational Medicine possessed were aligned with the sequences
downloaded from GISAID. After the alignment, sequences were used in the phylogenetic analysis
performed using FastTree [16]. Sequences belonging to the clade involving Russian isolates in the
present study were extracted from the first node, where the bootstrap value reached >95% from the
periphery of the clade, and selected for further phylogeographic analyses.

Maximum likelihood phylogenetic trees were constructed with the abovementioned sequences,
along with downloaded sequences after reducing the numbers by CD-HIT software [17] with a
threshold of 98.5%. Tanglegrams were constructed from the pairs of trees obtained using Dendroscope
3 [18]. The taxa of six Russian isolates in adjacent trees were connected.

The location-annotated maximum clade credibility trees with the abovementioned sequences
were constructed according to the Bayesian stochastic search variable selection by using Bayesian
Evolutionary Analysis by Sampling Tree package version 1.8.4 [19]. Random walk models with a
Bayesian statistical approach [20] and an uncorrelated relaxed clock model were applied for calculating
Bayes factors in the present analysis. Then, the output tree was visualized by the spatial phylogenetic
reconstruction of evolutionary dynamics using data-driven documents (SPreaD3) version 0.9.7 [21] with
Bayes factors of 3.0 or more, which indicates stronger than moderate evidence [22] of viral dissemination.

Additional phylogenetic trees (for the visualization of phylogenetic relationships between Russian
H12Nx and strains of different subtypes isolated worldwide) were built via MEGA 5 using the maximum
likelihood method, utilizing the general time-reversible (GTR) nucleotide substitution model. Bootstrap
support values were generated using 500 rapid bootstrap replicates. Comparative multiple amino acid
sequence alignment and analysis was performed via BioLign 4.0.6.

Detailed phylogenetic trees for each gene segment were generated using the Maximum likelihood
estimation (ML)method and GTR + G substitution model. The robustness of each node was assessed
by bootstrap method (500 replicates).
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3. Results

3.1. Sampling and Virus Isolation

Six influenza A/H12Nx viruses were isolated from wild migratory birds in autumn 2017 and 2018
in the context of annual influenza surveillance. All the viruses were isolated from the birds of the
Anatidae family. Four of them (A/43, A/324, A/962, and A/999) were isolated in Western Siberia, one was
isolated in the Caspian region (A/1017), and one was isolated in the Russian Far East (A/1377-Amer).
Virus subtypes were determined based on the primary sequence of hemagglutinin and neuraminidase
genes. Five viruses belonged to the H12N5 subtype, and one virus belonged to the H12N2 subtype.
Sampling details are presented in Table 1.

Table 1. Sampling details and viruses.

Sampling

Viruses Sampling Date Reg'ion/ Safnple g:tsitnsll\)liie; (Eﬁ;?;siplflzi;se) SX:;;;e Strain Name
Size at Site
A/43 September 17 Western Anas clypeata Shoveler H12N5 A/shoveler/Ubinskoe Lake/43/2017
A/324 September 17 Siberia/590 Anas crecca Common teal HI12N5 A/teal/Chany/324/2017
Caspian
A/1017 January18 region/304 Anas crecca Common teal H12N5 A/teal/Dagestan/1017/2018
A/962 September 18 Western Anas platyrhynchos Mallard HI12N5 A/mallard/Novosibirsk region/962k/2018
A/999 September 18 Siberiafi78 Anas clypeata Shoveler H12N5 Al S?:;if;ég;i‘;ggilgirSk
A/1377-Amer November 18 Far East/280 Anas crecca Common teal H12N2 A/teal/Russia_Primorje/18-1377/2018

3.2. Virological Characteristics

For all isolated A/H12 viruses, the 50% egg infectious dose (EID50) and the 50% tissue culture
infectious dose (TCID50) were determined. All analyzed viruses efficiently replicated in embryonated
chicken eggs (1078-1083EID50/mL) and MDCK cells (10°>°-10>850% TCID50/mL) in similar titers
(Table 2).

To determine the pathogenicity of A/H12 viruses for chickens, we intravenously inoculated
six-week-old chickens with each virus, and IVPIs were calculated. All A/H12 viruses were
low-pathogenic for chickens: all chickens survived and did not show any clinical signs of disease
during the 10-day post-inoculation observation period (intravenous pathogenicity index = 0).

We also determined the pathogenicity of A/H12 viruses for mice. Mice did not show any clinical
symptoms of the disease, such as body weight loss, ruffled fur, a hunched posture, or shivering.
Mice post-infectious sera samples had no detectable levels of anti-HA antibodies on the 21st day p.i.

A fluorometric neuraminidase inhibition assay made it possible to examine the inhibition of
neuraminidase activity by oseltamivir for the studied strains. The results show that all of the H12
strains isolated are sensitive to neuraminidase inhibitors (Table 2).

Table 2. H12Nx virus characteristics.

Viruses log19oTCID5p/mL log19EID5p/mL IVPI Pathogenicity for Mice ~ Oseltamivir Carboxylate IC5o (nM)  Phenotype b
A/43 54+03 83+03 0 np? 1247 RI
A/324 56+03 83+0.2 0 np 7.5 S

A/1017 50+02 79+04 0 np 9.2 S
A/962 54+02 8.0+0.2 0 np 0.4 S
A/999 58+03 78+04 0 np 0.4 S

A/1377 53+02 8.0+0.3 0 np 44 S

Note: 2 np = non-pathogenic; ® the phenotype of susceptibility to neuraminidase inhibitions (NAIs) according to
WHO guidelines: S, susceptibility or normal inhibition (<10-fold increase in IC50 over Ca/09); RI, reduced inhibition
(10- to 100-fold increase in IC50 over Ca/09); Ca/09, vaccine strain A/California/07/2009(H1N1) pdm09 that was
isolated in the pandemic period and demonstrated normal inhibition by oseltamivir. TCID: 50% tissue culture
infectious dose; IVPI: intravenous pathogenicity index.
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3.3. Antigenic Analysis

To determine the antigenic differences between A/H12 viruses, we performed antigenic analysis
using the polyclonal chicken antisera raised against these viruses. All isolates demonstrated
cross-reactivity with all chicken post-infectious antisera (Table 3). Only one isolate A/1377-Amer,
which belonged to the American lineage, showed a four-fold reduction in HI titers for antisera raised
against A/962 and A/999 as compared with homologous viruses, indicating the antigenic diversity

between these viruses.

Table 3. Hemagglutination inhibition (HI) antigenic analysis of influenza A/H12NXx viruses.

. . Antigens
Chicken Post Infectious Sera A/43 A/324 A/1017 & A/962 A/999 A/1377

A/43 160 160 80 160 320 80

A/324 160 160 80 160 640 160

A/1017 160 160 160 320 640 160

A/962 80 80 80 160 160 40

A/999 80 80 80 80 160 40
A/1377-Amer 80 80 80 80 160 160

Note: titers of homologous serum and antigen are marked grey.

3.4. Genetic Analysis

Six H12 Russian isolates were identified as five H12N5 AIVs (isolated in the Novosibirsk region,
Ubinskoe Lake, Chany, and Dagestan) and one H12N2 AIV (isolated in the Primorsky region in the
Russian Far East).

We analyzed each gene phylogenetically and examined proteins for the presence of specific amino
acid substitutions. To visualize the general scheme of reassortment events, we constructed tanglegrams,
and the taxa of six H12Nx isolates in adjacent trees were connected. We found that H12 HA genes of
H12N5 AlVs were classified as the Eurasian lineage, and that of the H12N2 AIV was classified as the

North American lineage (Figure 1).
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Figure 1. Tanglegrams showing relationships between H12Nx viruses.
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Five H12N5 AlVs isolated in Russia shared phylogenetically closely related H12 HA and N5 NA
genes, and gene constellations of two H12N5 AlIVs isolated in the Novosibirsk region (A/999 and A/962)
were similar (Figure 1). The gene constellations of the other three H12N5 AIVs were different due to
the reassortment (Figure 1). The H12 N2 AIV also possessed a distinct gene constellation. For detailed
phylogenetic analysis, we constructed and considered each segment separately.

34.1. HA

HAs of strains from Western Siberia and Dagestan formed the common phylogenetic group of
closely related sequences (Figure 2). This phylogenetic group clustered with HAs of strains mainly
isolated in different parts of Eurasia: Western and Northern Europe, and Eastern Asia (Vietnam,
Thailand, China, and Japan).
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3 — Aflesser flamingo/Kenyai54/2008 A [ H12N2 HA EPIISL 218647
AMallardiNetherlands/15013156/2015 A/ H12NS HA EPIISL 201192
B AtealiDagestani1017/2018 A/ H12N5 HA EFI ISL 331307
%L W AtealiChany/324/2017 A1 HIZNS HAEPIISL 331205
M Aishoveler/Ubinskoe Lake/43/2017 A/ H12N5 HA EPI ISL 331308
B Amallard/Novos birsk regioni862k/2018
W AshovelerMovosibirsk region/399ki2018
ABewick swan/Netherlands/1/2014 A/ H1ZH1 HA EP1ISL 267238
Alduck/Vietnam/G18/2008 A f H12N5 HA EPIISL 89573
Alesser whisting-duck/Thailand/CU-W3941/2010 A 7 H1ZNT HA EPIISL 110105
Ajwid goose/Dangting/C1037/2011 A/ H12N8 HA EPI ISL 140706
Alenvironment/Hunan/S4484/2011 A/ H12N7 HA EPLISL 143956
Aduck/Hokkaido/W262012 A f H12N1 HA EPI ISL 293518
AlduckiFukui/181008/2015 A/ H12NS HA EPI ISL 239416
200 - AEmvIronmentAliang:i08486/2015 A [ H12N2 HA EPIISL 247287 i

Eurasian

Figure 2. Phylogenetic tree of the hemagglutinin (HA) gene of Avian Influenza Viruses. The tree was
constructed using MEGA X software with the Maximum likelihood estimation algorithm (general time
reversible (GTR)+G model) and bootstrap analysis with 500 iterations. Russian H12N2 and H12N5

viruses are indicated using red squares.

The HA of A/1377-Amer was phylogenetically different from the other Russian strains and related
to the HA of the North American genetic lineage. The most similar HA sequences belonged to strains
isolated both from the West Coast of America (California) as well as the East (Delaware Bay).
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34.2. NA

Sequences of the Russian H12N5 NA segments were similar to each other, belonging to the
Eurasian genetic lineage (Figure 3), and were related to the NA of the strains isolated in Europe (the
Netherlands, Poland, Sweden, and Croatia), Eastern Asia (Japan, China, and Korea), Southeastern Asia
(Singapore), and Northeastern Asia (Kamchatka). Phylogenetic analysis, as well as the BLAST of the
N2 segment, showed that the A/1377-Amer (H12N2) strain belongs to the Eurasian genetic lineage and
is closely related to HxN2 strains isolated in the East Asian region, mainly in Japan, China, Korea and
Vietnam (Supplementary Materials, Figure S2).

W AtealDagestan/1017/2018 A/ H12NS NA EP1ISL 331307
o W AtealChany/324/2017 A/ H12N5 NA EP1ISL 331295
“ B AshovelerUbinskoe Lake/d2/2017 A/ HI2N5 NA EPI ISL 331306
W A/mallardMovosibirsk region/862i/2018 A/ H12N5 NA
1m = M AsshovelerMNovosibirsk region/999k2018 A / H1ZNS NA
Avenvironment/Kamchatka18/2016 A/ HSNS NA EPI ISL 256301
- Almute swan/Poland/84/2017 A/ HENS NA EP1ISL 255817
Algadwallitaly'1TVIR133-2/2017 A/ HENS NA EP1ISL 255189
— Alcormorant/Germany-SH/IRB96/2017 A f HSNS NA EPIISL 260059
‘Aeommon redshank/Singapore/F83-2/2015 A/ HONS NA EPIISL 203129
Arduck/Kyoto/261007/2014 A1 HENS NA EP1ISL 237150
Armigratory duck/angxy31577/2013 A/ HIONS NA EP1ISL 181611
Aiblack-taled godwitBangladesh/24734/2015 A / HTNS NA EP1ISL 257087
Alduck/Achi2310022016 A/ HENS NA EPI ISL 239393
AQUcKFUKUU181006/2015 A/ H12N6 NA EP1 ISL 230416
Alduck/Guangdongwy11/2008 A / HSNS NA EPI ISL 152085
Amigratory duckiJiangxii6847/2003 A f H1ONS NA EPIISL 181414

1w

NA

AguckMongolia/OIE-T45772011 A f HINS NA EPIISL 106924
AduckBangladest/33-0/2013 AJ HNS NA EPIISL 222690
Aduekiolkdcaido/111/2000 A H1NS NA EPIISL 75360
Aimallard(Finland/ 109522008 A/ HANS NA EPLISL 163679
ABewicks swan/Netherlands/ 112007 A [ HING NA EP1ISL 84561
Almallard/Denmark/77-64590-6/2005 A 1 H7NS NA EPIISL 29257
Amallard/Czech Republic/14924-172007 A7 HENS NA EPIISL 63535 Eurasian
— Almaliand/SwedenB3772/2007 A 1 H10NS NA EP1 ISL 189360
7 T AlmaliardiSweden/100102/2008 A / H12N5 NA EP1ISL 144306
L Agreylag gooseliceland/0953/2011 A7 HGNS NA EPIISL 148226

:
Almallard/Netherlands/2/1988 A F H3NS NA EPIISL 73370

Amallard/Sweden3326/2003 A/ H1ZN5 NA EPIISL 189393

EY
o [~ AduckiHokkaido1056/01 A HANS NA EP1ISL 373
@ AlduciiHUNaN/T48r2005 A/ HENS NA EPI ISL 76424
Alduck/Hokiaido/\V132/2004 A/ H12ZNS NA EFI ISL 293511

w OIE-T07/2011 A/ H11NS NA EPIISL 95321
L 100 AChinstrap penguin/Antarctica15459/2015 A/ HSNS NA EPI ISL 224756
3 Alruddy tumstone/New JerseyGAITE-12762016 A/ HIONS NA EFI ISL 279279
AduckiVietnarm/G18/2009 A f H12N5 NA EPISL 89573
Alblack-headed quiVRepublic of Geargia//2012 A  H2ZNS NA EFIISL 189705
Armallard duckiMetheriands/4/2011 A HIZNS NA EFIISL 267409
109 AlAnas plathyriwnehos/Spain/1252/2007 A | HENS NA EP1ISL 63354
AT DR/NL Werkendam/16014159-001/2016 A/ HSNS NA EPI ISL 287564
m Amallard duck/Netherlands/8/2014 A/ HTNS NA EFI ISL 267186
& — Amallard duck/Sweden/13964712012 A/ H15N5 NA EPI ISL 267408
73 Alcommon mure/Oregon/19487-004/2005 A / HINS NA EPI ISL 82479
/ 31982 A/ H1ANG NA EFI ISL 132864
—|Bs r Aehicken/Hubei1 1911983 A  H1ON5 NA EPIISL 89934
100 & AlduckHuBey03/2010 A f HSNS NA EPIISL 130353
Achicken/T 4801190 A / HBNS NA EF ISL 395
a Ablack duckiAUS/045/1980 A | HBNS NA EPIISL 8937 i
Amallard duck/New York/6851/1978 A/ HINS NA EPI ISL 5868 7
L — AJHIZNS NA EPI ISL 218646

10 Amallard duckiALBI6S3/1979 A/ H3NS NA EPIISL 8815
Aruddy tumstone/ Delaware Bay/2795/1987 A HONS NA EP ISL 99498
[ Amalardibena202 1996 A/ HINS NA EPISL 4055

Amallard/Albenal2031992 A/ HBNS NA EPIISL 131370

n Amallard/Maryland/1 13512005 A/ H12NS NA EPIISL 7003
Adhick-billed murre/Ganada/18132011 A/ H12N5 NA EPIISL 146240
Anorthemn shoveler/California/HKVWF 1198/2007 A / H3NS NA EP| 1SL 22637

100 AiAmerican green-winged teallCalfomia/44363-002/2007 A / H1 1NS NA EPIISL 83538
AimaliardiMinnesotarAI06-1003/2006 A / H2NS NA EP ISL 141325
Alred knolNew Jersey/828235/2001 A [ HGNS NA EP1 ISL 142092
AlduckPenuMM17/2007 A [ HANS NA EPI ISL 189977
AimallardMaryEnd 0605 501/2006 A/ HENS NA EPY ISL 216634
Airuddy tunstane/Delaware/AI00-1121/2000 A  HIONS NA EPIISL 142349
AimallardiAlbertai521997 A f H12N5 NA EPIISL 4419 North American
10— Ablue-winged teal TXIAN 310262013 A1 H14N5 NA EPI ISL 161439
Ainorthern shoveler/llinais/ 1205512872012 A f H2N5 NA EPIISL 189546
N 1505486512015 A / H12NS NA EPIISL 245526
Algreen winged tealMexico- Sonora826/2009 A / HGNG NA EP1 1SL 276153
Amaliardinlerior Alaska/8BM1799/2008 A  H1ZNS NA EPIISL 85229
AdpintzilfAlbertat48i2003 A | HONS NA EP1 ISL 8777
" Aherring gulliceland/1359/2011 A HZNS NA EP1ISL 148209
Almallard/Alberta/383/2008 A/ HSNS NA EP1ISL 278187
Alrucidy turnstone/PeruPuVE1/2008 A / HI2NS NA EPI ISL 189986
Ablue-winged tealNorth Dakota’Sg-00733/2008 A/ HING NA EPIISL 141104
AAmeriean ged tealinterior Alaskal1 11 A7 HIONS NA EPIISL 208130
Algreen-winged teal/Ohio/15055495/2015 A/ HENS NA EP1ISL 254836
Aimallard duckiOhio/NGOSIRB/2016 A/ HANS NA EPIISL 294008
Alsharebird/Delaware Bayi512/2016 A f HINS NA EPISL 273590
Almallard duck/Maryland/ 160525592016 A/ H12NS NA EP1 ISL 294059

El
s

Figure 3. Phylogenetic tree of the neuraminidase (NA) gene of AIVs. The tree was constructed using
MEGA X software with the ML algorithm (GTR+G model) and bootstrap analysis with 500 iterations.
Russian H12N5 viruses are indicated using red squares.

3.4.3. NP

The NP segment of the A/1377-Amer strain were found to belong to the North American genetic
lineage and mainly related to the NP of AlIVs isolated in California (Figure 4). The NPs of the other
Russian H12Nx viruses were related to the AIV variants circulating in Eurasia (Eurasian genetic
lineage). Strains of the Eurasian lineage were divided into two NP phylogenetic groups. The first
included A/324 and A/1017 strains, related (according to phylogenetic tree and BLAST analysis) to
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strains primarily from Siberia (Chany Lake), the Black Sea region (Georgia), Europe (Kaliningrad), and
Egypt. Only several strains with related NP were isolated in East Asia (Figure 4).

% — M AtealRussia_Primorje/18-1377/2018 A/ H12N2 NP
%Ewma\larﬂ duck/Calfomia/UCD738/2016 A [ HANS NP EFI ISL 266520
AmallardCaliforniaUCDTE/2015 A | HING NP EPIISL 230063
N AfecesMinnesota/AH0017578/2015 A f HTN3 NP EPI ISL 254781
= ~|7 Alblue-winged teal Guatemala/GIPO49H105-31/2011 A H14N3 NP EFIISL 257150

Ablue-winged tealTexasiAl11-3223/2011 A/ H3N8 NP EPIISL 220175
. AlAmerican wigeon/California/ HS010/2015 A/ H12N5 NP EP ISL 268502
Amallard/Maryland 060 S480/2006 A | H12N8 NP EPI ISL 216631
Al

mallard/Alberta/224/2006 A/ H12NS NP EPIISL 84623

! AFH12N5 NP EPIISL 180872
[ Abs wnged teslMissoun| 10526632011 A/ HI2NA NP EP1ISL 166523
w0 Alue-winged e A1 HIZN5 NP EPIISL 273618
Amallard/interior Alaskz/9BM10393R0/2009 A/ H12N8 NP EPI ISL 141810
Amalard/AlbertaS21997 A/ HI2NS NP EPIISL 4419
el UekFulai 1810082015 A H12M5 NP EP1ISL 230416
Afnorthern pirtailiAlaskal44162-122006 A / H12N5 NP EPIISL 25459
[ PuAmencan black duckiNew BrunsickkO092G201D A/ HIZNG NP EP1ISL 127000
Afmallard/North DakotarSg-00703/2008 A / H12N4 NP EFIISL 141138
AimallarciMaryland/060S444/2005 A | H12NB NP EPI ISL 216628
Alruddy tumstone/Delaware Bay 2842006 A/ H12M4 NP EPIISL 327498
Ablue-winged teal/Guatemala/CIPO40H104-99i2011 A | H12N5 NP EPIISL 257124
Amencan AT HI2N5 NP EPIISL 245526 North American
Amallard duck/Chio/160S0921/2016 A/ H1ZN4 NP EP1ISL 284010
AlAmerican green-winged tealMissourif| D0S4622/2010 A £ H12N4 NP EPIISL 134003
AAmErican green-winged tealWisconsin1 105356012011 A/ H1ZNZ NP EPIISL 158435
iy ATHI2NS NP EPISL 142087
AlmallardiOhio/407/1967 AJ H12N5 NP EP1ISL 8514
AduckiAbErtalBO/1976 A/ H12NS NP EPIISL 132862
Algreen-winged teaUALB1991S91 A/ H12N5 NF EPY 1SL 8811
5612006 A/ H12N5 NP EPIISL 81833
Ablue-winged tealManiand/06MD 46212006 A f H12N2 NP EPIISL 180815
Arucdy tumstone/New Jersey/579/2000 A/ 12N HF EP1ISL 68439
Asanderling/New Jersey!4T1580/2001 A/ H12NT NP EPIISL 142385
Almallard/Maryland/07OS1544/2007 A/ H12N8 NP EPIISL 216387
Athick-billed murre/Canadal/1813(201 1 A7 H12N5 NP EFIISL 148240
Alnuddy tumstone/PerwPuv2/2008 A [ H12N5 NP EPIISL 189987
o A/ H12N5 NP EFIISL 6488
Aruddy tumstone/Dy /2003 A | HI2NA NP EPIISL 142104
Aruddy turnstone/New Jersey/672/2000 A1 H12N4 NP EPIISL 68439
Alruddy tumstone/Delaware/Sg-00540/2008 A7 H1ZNA NP EPI ISL 142455
0 Amallarciaryland/090S1171/2000 A/ H12N6 NP EPIISL 216786
1! AH12NS NP EPIISL 89388
AduckiVietnam/G18/2008 A / H12N5 NP EP! ISL 89573 7
Agreen winged tealJapan/9KS0B43/2008 A / H12N3 NP EPIISL 167219
L ArduckHokkaidoW132/2004 A/ H12N5 NP EPTISL 203511
AAmerican wigeon'Calfomia/8352/2008 A f H12N5 NP EFIISL 94205
A HIZHE NP EPIISL 189308
0/2005 A/ H1ZNE NP EPI ISL 84560
52 | Atmallard/Sweden{162002 A/ H1ZN9 NP EPI ISL 150020
o ATHI2NG NP EPIISL 189394
L mallard duckMNetheriandsi4i2011 A | H1ZNS NP EP ISL 267408
Aiwhaoper /232/2005 A/ H12N3 NP EPI ISL 65850
Adruddy sheldy AJHI2N3 NP EPIISL 85847
BEE B AftealChany/32472017 A/ H12NS NP EPIISL 331295

4 | - AlgadwallChany/883/2018 A H3NB NF EF ISL 333615
Aduck/Egyp/SS19/2017 A f HGNS NP EPIISL 268021
o Almute swan/Kaliningrad132/2017 A/ HSNS NP EP1ISL 274858
[ Almallard duck/Georgia/3/2016 A / HANG NP EPIISL 328973
W W AltealDagestan/1017/:2018 A/ HI2NS NP EPI ISL 331307
Ateal/Chany/135/2016 A/ H3N8 NP EPI ISL 250232
Ahrenzria 02836pcs1/2010 A/ HIZNS NP EPI 1SL 89534
Almallard/Sweden/86/2003 A/ H12N5 NP EPI ISL 73302
Alesser whisting-duckThailand/CU-W3841/2010 A/ H12N1 NP EPIISL 110108 | EUFasian
AlenvironmentHunan/S4484/2011 A | H1ZNT NP EPIISL 143956
119102015 A/ H12N5 NP EPISL 291191

AKnaki Campbell duck/KarachiNARC-23963/2010 A1 H4NG NP EPIISL 132840
10 W AlshoveleriUbinskos Lake/43/2017 A1 H12N5 NP EPIISL 331306
Alcommon 1eaUChany/8891/2018 A/ H3NG NP EPIISL 333612
NEnviranment/Jiangxi/08488i2015 A | H12M2 NP EPIISL 247267
ABewick swan/Netherlands/1/2014 A [ H12N1 NP EPIISL 267238
100 — B AlmallardNovosibirsk region/962k/2018 A H1ZNS NP
S W shoveler/Novosibirsk region/30%k/2018 A/ H12NS NP
AgadwallGnany 31572016 A HINI NP EFIISL 260236
I— AJshaveler/Chanyi82K/2014 A | H3NE NP EP1 1SL 240672
Alduck/Saga/A110052012 A f H11N2 NP EPI ISL 237183
Arwid goose/Dongting/C1037/2011 Af H1ZNG NP EPIISL 140706
Awid DirdWUhanWWHHNERI2014 A f HINY NP EPIISL 205126
AiduckiMengolia/ 16712015 A f HINS NP EPIISL 208118
Aduck/Nigata1 §1014/2016 A/ H1TNG NP EP1ISL 239369
Amallard/KoreaH1056-212017 A f HIN7 NP EFIISL 308226
AduckiAichii231009:2015 A £ H12N5 NP EP1ISL 239417
AUCKGaNZNOWGZS2015 A HANG NP EF 1SL 252632

]

Figure 4. Phylogenetic tree of the nucleoprotein (NP) gene of AIVs. The tree was constructed using
MEGA X software with the ML algorithm (GTR+G model) and bootstrap analysis with 500 iterations.
Russian H12N2 and H12N5 viruses are indicated using red squares.

The second phylogenetic group, including the A/43, A/962, and A/999 strains, was mainly
distributed in the Asian region (China, Japan, and Mongolia), although strains with similar NPs were
also found in Europe (the Netherlands) and in the Arabian Sea region (Karachi, Pakistan) (Figure 4).

3.4.4. NS

According to the phylogenetic analysis of the NS gene, all strains used to construct the phylogenetic
dendrogram were divided into two main significantly distant groups of sequences (alleles A and
B) [23]. North American and Eurasian genetic lineages were distinguished in each of these alleles.
The NS genes of studied Russian H12N5 and H12N2 strains were genetically different: two strains

(A/1017 and A/43) of six belonged to the allele B, and others (A/1377-Amer, A/324, A/962, and A/999)
belonged to allele A (Figure 5).
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Npitai duck/Albertar306/1983 A / H12N5 NS EFISL 5808 i 7
L AduckWisconsini80/170 A f H1216 NS EPIISL 86368

Amallard duckinlberari4211983 AL HIZNT NS EPIISL 1802

Aruddy fumstone DelawareSg- 005402008 A/ H1ZNA NS EPY 5L 142455

Amallord/Narylandi080S480/2008 A f H12N8 NS EPIISL 218631
2 I Aruddy fumstonelDelaware Bay/384/2007 A/ H1ZN1 NS EP1ISL 327518

WmalladMinnesotal355T8B12000 A f HIZNG NS EFIISL 141263

Alsanderfing/New Jersey/471580/2001 A fH12N7 NS EPIISL 142355
AlducklLouisiana/189D/1987 A H125 NS EP ISL 68844
N S - Alblve-winged teal Guatemala/CIP4SH104.997201 1 A/ H12N5 NS EPI ISL 267124
T AAmerican black duck/New Brunswicki00998/2010 A / H12NB NS EPISL 137866
Aruddy tumstone/Delaware/AIG3-376/2003 A / H12N4 NS EPIISL 142104

1 — Alruddy tumstone/DEAIE02100 A HI2H4 NS EPIISL 8423 )
Amallard/Maryland/060S2334/2006 A [ H12N5 NS EFI ISL 180872 North American
| Aruddy tumstonellew Jersey/AI00-2122/2000 A/ H12N5 NS EP1ISL 142071

81— Alnucoy tumstone/PerwPUVS2/2008 A | HIZNS NS EFIISL 189987
I— Auddy tumstone DelawarefAI03-118/12008 A HIZNE NS EP1ISL 142112

AmalardiCalfomia5242008 A H12N5 NS EPI ISL 94238
t Amaliard duck/CalfomalUCDS672016 A H1ZN5 NS EPI ISL 266532

Amallard duckiOhio/ 1608002172016 A/ H12N4 NS EP11SL 204010
AlAmerican green-winged teal\Wisconsinft 105250012011 A/ H12N2 NS EPIISL 158435
- Anorthem pintailinterior Alaska’9B11409R0/2008 A HIZNS NS EFIISL 141738
T Al duckiaryand 1 GOS25592010 A | HI2N6 NS EP1ISL 204068

{ Amaliard/Alberta/328/2017 A/ HING NS EPIISL 327278

W AttealRussia_Primoref8-1377/2018 A/ H1ZN2 NS
Amallard/Alberta/360/2017 A/ H1 N8 NS EPIISL 328310
Alcommon eiderMaine/505:2011 A H12N5 NS EPIISL 148239

Atwild goose/Dengting/C1037/2011 A/ HIZNB NS EP1ISL 140706
— Awhooper swan/Mongoha232/2006 A | H12N3 NS EPI ISL 65850
71| [ ABewick swanNetherands/1/2014 A / H12N1 NS EPIISL 267238
AjduckPrimorie/3681/02 A [ H12N2 NS EPIISL 10382
ANmallard/Netherlands/20/2006 A f H12N8 NS EPIISL 84560
E— AJduck/Chibal1/2010 A f H12N5 NS EPI ISL 238017

Ed

Allele A

L Aorthem pintail/Alaska/3262011 A/ H1ZNS NS EP1ISL 257228
NduckiAichil231009/2015 A | HI2HE NS EP1ISL 230417
[— Avlesser whisting-duckiThailand/CL-W3S46/2010 A/ H12N1 NS EP1ISL 110107
/. ] 3 AJHI2NE NS EPIISL 189400
Amaliard duck/Netherlands/3/2008 A f HGN2 NS EPI ISL 243305
 AGUCK/Shiga/32/07 A/ HANG NS EPIISL 299169
Almallard/Chany/250U/2014 A f HSN3 NS EFIISL 240673
AEuropean herring gullNetherlands/ 112015 A 1 H11NG NS EPIISL 267268
08 CDLQ023-0 A7HANG NS EPIISL 198167
Alduck/Sichuan/04.08 CDLQO3B-PI2015(HAN3) A/ HAN3 NS EPIISL 199169
| AMduckMongolia€21/2015 A/ HING NS EPIISL 209130
AduckMongoka/SEE2015 A { H2N3 NS EPIISL 209132
Armaliard duckiGeorgia/T/2015 A/ HEN1 NS EPI ISL 326971
Aduck/Hungaryi1147/2019 A f HGNG NS EPIISL 362148
AgadwaliChany/8932018 A/ HING NS EPIISL 333615,
B AtealChany/32412017 AJ HIZNS NS EPIISL 331295
| W AmallardNovosibirsk region/862x/2018 A [ H12N5 NS
ol W Aishoveler Novosibirsk region©90/2018 A 1 H12N5 NS
Alred-necked stirt/Western Australia/5745(1982 A/ H12N9 NS EPIISL 27378
Aduck/Victoria/30a/1981 A1 HI12N7 NS EPI [SL 84882
5, AimallardNorth Dakota/Sg-00702/2008 A / H12N4 NS EPIISL 141138
{‘ AlAmerican green-winged tealWisconsin/t 10534252011 A/ H12N5 NS EPI ISL 158485
AlduckHokkaido/W26/2012 A1 H12N1 NS EPIISL 263518
[— mallardinterior Alaska/98IM10393R072009 A f H12N8 NS EPIISL 141810
Anarthem pirtaifinterior Alaska/BELI1 995R1/2008 A / H12NS NS EFIISL 85210
Alblue-winged tealMaryland/0GMD4622006 A/ HI2N2 NS EPIISL 180816
AduckFukui'181006/2015 A H12N8 NS EPI ISL 239418 WNorth Amerlcan
AimallardMinnesota/Sg-00055/2007 A/ H12N5 NS EPI ISL 75710
3 | Aimallard/Maryland/070S 154412007 A/ HIZNG NS EP1ISL 216367
Algreen-winged tealALB/1031891 A/ H1ZN5 NS EP1ISL 8911
Ahnorthern pintailAlaska/44500-020/2009 A/ H12NS NS EPIISL 139430
AduckiAlbertalB0/1976 A [ HIZNS NS EFIISL 1326862
Amallard/Sweden/88/2003 A | H12N6 NS EPIISL 73302 7
AlduckHokkaido/VW132/2004 A1 H12NS NS EP! ISL 293511
Amallard duck/Netherlands/83/2008 A / H12N5 NS EFIISL 329024
Algreen winged lealllapan/0KS0643/2000 A | H12N3 HS EPIISL 187218
AMallard/Netherlands/15011910/2015 A / H1ZH5 NS EPIISL 291191
Amallard/Sweden/16/2002 A f H12N9 NS EFIISL 150020
AmallardiSweden/500682006 A / H12N5 NS EP1 ISL 189308
AEnvironmentLiangi08488/2015 A [ H12N2 NS EFIISL 247287
52 {p) Aimallard/Czech Republic/15902-25K/2009 A H1 1NG NS EPISL 137566
Amallard/Czech Republic/15962-4T2010 A f HBNG NS EPI ISL 137567
Almallard/Sweden/01589/2009 A f H11N9 NS EPIISL 188419
Amallard/Sweden/99377/2009 A HEN4 NS EPIISL 109339
[ ; Wl AtealDagestan'1017/2018 A/ H1ZN5 NS EPIISL 331307
E W AishoveleriUbinskoe Lake/43/2017 A f H12N8 NS EPIISL 331308

Eurasian

Allele B

Eurasian

o |- Alduck/Bangladesh/33676/2017 A HANG NS EPIISL 329573
7glr AvduckiMongokia/B672015 A f H1ON2 NS EPIISL 207031
92| AduckMongolia/ 1012015 A/ HANB NS EP1ISL 209112

Figure 5. Phylogenetic tree of the non-structural (NS) gene of AIVs. The tree was constructed using
MEGA X software with the ML algorithm (GTR+G model) and bootstrap analysis with 500 iterations.
Russian H12N2 and H12N5 viruses are indicated using red squares.

Allele B strains were similar in the NS sequences, belonging to the Eurasian genetic lineage, and
were related to strains both from the Asian part of Eurasia (Bangladesh, Mongolia, and Japan) and
from the European part (Czech Republic, Sweden, and the Netherlands).

NS allele A of Russian strains belonged to both genetic lineages. The NS gene of the A/1377-Amer
strain belonged to the North American lineage, while the NS genes of A/324, A/962, and A/999 were

similar to each other and belonged to the Eurasian lineage (related NSs were found in both European
and Asian parts of Eurasia) (Figure 5).

3.4.5. PA

The sequences of the Polymerase Acidic Protein (PA) segment of all studied Russian H12Nx
strains belonged to the Eurasian genetic lineage (Figure 6). At the same time, they were different among
themselves. In particular, A/43 was similar to the strains isolated in Siberia, Georgia, and Bangladesh.
The PA segments of other strains belonged to another phylogenetic group and were similar to the PA
segments of AIV variants, mainly those isolated in Japan. Moreover, strain A/1377-Amer contained
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PA segments that were more phylogenetically related to Japanese strains than strains from Siberia

and Dagestan.
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Figure 6. Phylogenetic tree of the PA gene of AIVs. The tree was constructed using MEGA X software
with the ML algorithm (GTR+G model) and bootstrap analysis with 500 iterations. Russian H12N2 and
H12N5 viruses are indicated using red squares.

3.4.6. PB1

Polymerase Basic Protein 1 (PB1) segments of all Russian H12Nx AIVs belonged to the Eurasian
genetic lineage, and were subdivided into four phylogenetic clusters (Figure 7).
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Figure 7. Phylogenetic tree of the PB1 gene of AIVs. The tree was constructed using MEGA X software
with the ML algorithm (GTR+G model) and bootstrap analysis with 500 iterations. Russian H12N2 and
H12N5 viruses are indicated using red squares.

PB1 segments of the A/962 and A/999 strains belonged to the subgroup (Hungary, Netherlands,
Kamchatka, Mongolia, and China) maximally distant from other strains. The PB1 segment of
A/1377-Amer belonged to the phylogenetic subgroup, which included strains from the Far East region
of the Russian Federation, Japan, and China. The A/324 PB1 segment was also part of a separate
phylogenetic subgroup and was similar to PB1 segments of the strains from the Asian part of Eurasia
(Japan, Siberia, Mongolia, and Bangladesh). A/1017 and A/43 formed a phylogenetic group with
strains from both the European part of Eurasia (Georgia) and the Asian part (Siberia, Mongolia, and
Bangladesh) (Figure 7).

3.4.7. PB2

According to the Polymerase Basic Protein 2 (PB2) segment phylogenetic analysis, Russian H12Nx
strains were differentiated into three subgroups that belonged to the Eurasian genetic lineage (Figure 8).
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Figure 8. Phylogenetic tree of the PB2 gene of AIVs. The tree was constructed using MEGA X software
with the ML algorithm (GTR+G model) and bootstrap analysis with 500 iterations. Russian H12N2 and
H12N5 viruses are indicated using red squares.

The Far Eastern strain, A/1377-Amer, was the most genetically distant from the other strains and
was included in the phylogenetic subgroup with strains mainly from Japan. In addition, a PB2-related
strain was isolated in 2014 in Alaska. The strains A/962 and A/999 were similar to each other and
belonged to the phylogenetic subgroup formed by strains that were isolated in different regions of
Eurasia: Europe (the Netherlands), North Asia (Siberia), East Asia (Japan, China, and Mongolia), and
South Asia (Bangladesh). A/1017, A/324, and A/43 were similar to each other (first two were more
closely related). These strains formed the common phylogenetic subgroup with strains from Siberia
(northern Asia), the Netherlands (Western Europe), Croatia (central Europe), Kamchatka (northeast
Eurasia), and Korea (eastern Asia).

3.4.8. MP

Matrix Protein (MP) segments of all Russian H12Nx AIVs belong to Eurasian genetic lineage, and
subdivided into several phylogenetic subgroups (Figure 9).
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Figure 9. Phylogenetic tree of the MP gene of AIVs. The tree was constructed using MEGA X software
with the ML algorithm (GTR+G model) and bootstrap analysis with 500 iterations. Russian H12N2 and
H12NS5 viruses are indicated using red squares.

The MP of strain from the Russian Far East (A/1377-Amer) belonged to the phylogenetic subgroup
formed by strains that were isolated Japan and China. MP of A/324 belongs to the separate phylogenetic
subgroup of MP from the Asian part of Eurasia (Japan, Mongolia, Korea and China). The MP of other
Russian H12N5 strains forms a phylogenetic subgroup of viruses mainly isolated in the Asian part of
Eurasia (European part of Eurasia represented only by MP from Georgia). Thus, influenza viruses
with an MP segment similar to the MP of Russian H12Nx strains predominantly circulate in Asia, but

their penetration into Europe is possible (for example, through Dagestan and Georgia).

Additionally, we constructed five eight-segment-merged maps based on phylogeographic analyses
for each segment (Supplementary Materials, Figure S54). The results also showed that A/1377-Amer
takes its HA, NP and NS segments from the American lineage (closest relatives isolated in 20162017
in California, Delaware, Alberta), while the five other segments likely originate from viruses in the
Far-East Region (closest relatives isolated in Japan, 2016 to 2017). The geographical distribution of
the NS segments (A or B allele) suggests that the closest viruses of the B allele were isolated since
2010 across Eurasia (Sweden to Bangladesh), while the closest viruses to the A allele correspond to
recent HxNy isolates in neighboring areas (Chany, Hungary, Georgia, Mongolia since mainly 2015).
The genetic connection of the AIVs isolated from the Novosibirsk region to the AIVs across the
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Eurasian continent could be explained through the overlap in multiple migration flyways, including
the Black Sea-Mediterranean Flyway, East Africa—Western Asia Flyway, Central Asia Flyway, and East
Asia—Australia Flyway in the Novosibirsk region (Supplementary Materials, Figure S3).

Genetic analysis of the HA amino acid sequences of the investigated H12Nx strains showed
the presence of monobasic cleavage sites: VPQVQDR*GL for A/324, A/43 and A/1017 strains;
VPQVQNR*GL for A/962 and A/999; VPQVQSR*GL for A/1377-Amer. Monobasic cleavage sites are
characteristic of LPAI (low-pathogenic avian influenza) viruses [24].

Around the receptor-binding site (RBS), HAs of investigated strains contain amino acid residues
characteristic of the H12 subtypes [25] Y98, W153, T155, H183, 190E, 194L, and 195Y in the RBS; R224,
G225, Q226, Q227, G228, and R229 in the left edge of the RBS; and G134, T135, 5136, K137, and A138 in
the right edge of the RBS (the H3 amino acid numbering used).

The viruses are characterized by their avian receptor-binding specificity (via the presence of Q
and G at positions 226 and 228 of HA, H3 numbering) [26] according to Bui and co-authors [27].

Amino acid substitutions that were previously described in the literature as significant were found
in internal genes (PA, PB1, and PB2). PA gene segments of all strains in the study had 5149 and A515
amino acids; PB1 had L598; and PB2 had V553, E391, and E627, suggesting the difference of replication
activity of the virus in different models. In total, according to the amino acid analysis of all Russian
H12Nx strains, they contain mutations that, according to published data, can affect the biological
properties of viruses. Part of the amino acid substitutions detected in Russian strains can increase the
virulence of the virus, while others can reduce virulence. Taken together, and in combination with the
main marker, the monobasic HA cleavage site, this results in the low-pathogenicity of the investigated
strains (LPAI) that was confirmed in experiments on model animals (Table 4). Additionally we showed
amino acid differences between investigated strains (Supplementary Materials, Table S1, Figure S1).

Table 4. Amino acid substitutions of Russian H12N2 and H12N5 strains associated with replication,
pathogenicity, and transmission.

Gene Amino Acid Site Strain Effect Subtype Showed to Be Affected Reference
A/1377, A/324, A/962, P149S—limited lethality
PA 1495 A/999, A/1017, A/43 in mice H5N1 (28]
A/1377, A/324, A/962, T515A—polymerase
PA 5154 A/999, A/1017, A/43 activity decreasing H5N1 (29
A/1377, A/324, A/962, P598L—replication
PBl 598L A/999, A/1017, A/43 decreasing in MDCK HINI, H5N1 (301
PB1-F2 665 A/962, A/999 N665—replication H5N1 [31]
increasing
PB2 553V A/324 1553V—polymerase H5N1 [28]
activity decreasmg
Q391E—virulence
decreasing in ferrets;
A/1377, A/324, A/962, Lo
PB2 391E, 627E AJ999, A/1017, A/43 K627E—re'phc..a\tlon H5N1 [32,33]
decreasing in
mammalian cells
A/1377, A/324, A/962, N701D—lethality )
PB2 701D A/999, A/1017 increasing in mice H5N1 [34]
L89V, G309D, T339K,
R477G, 1495V, K627E,
PR2 89V, 309D, 339K, 477G, A/1377, A/324, A/962, A676T—polymerase H5N1 [35]

495V, 627E, 676T !

A/999, A/1017, A/43

activity increasing in
mouse cells

4. Discussion

! Except for the A/43 strain.

Wild birds are known to be the main reservoir for a wide variety of virus lineages and subtypes.
Information about the H12 subtype virus is limited due to its rare isolation in nature [6]. In the 1990s,
there was a hypothesis that ducks very weakly support the H12 subtype [7], and even that this subtype
had disappeared and that this “old subtype” may be endangered by influenza reservoirs in nature [36].

A comprehensive study was conducted by Wille et al. (2018) to summarize data about the
evolution and ecology of H12 AIVs using long-term surveillance from 2002 to 2009 [6]. Considering our



Microorganisms 2019, 7, 643 16 of 20

results, we agree with the statement about “the H12 enigma” [6] because we have not found the
frequent isolation of H12 over 10 years of active monitoring of waterfowl in Russia. In our study,
during surveillance, we identified only six viruses in the Northern part of Eurasia, in Russia. A subtype
combination of five strains was H12N5, which was the most common for H12 viruses, as was shown
in previous studies. One virus was H12N2, and there are only three sequences available for this
combination (GISAID). The isolation rate of the H12 subtype was 0.36% in 1652 samples collected in
2017-2018, while the total AIV isolation rate was 4.18%. We found that one studied H12 virus is an
inter-continental reassortant: three of the genome segments belong to North American viruses and the
other five belong to Eurasian viruses, confirming the hypothesis that this rare subtype circulates in the
general genetic pool of viruses and is involved in the process of reassortment. In total, the sequences of
only 349 avian H12Nx strains isolated in three continental regions are represented in GISAID: a total of
274 in North America, 33 in Asia, and 31 in Europe. Additionally, six H12 strains are known to have
been isolated from the environment. The majority of characterized H12 viruses were isolated in North
America and contained segments of American lineages, while Eurasian H12 viruses usually contain
Eurasian avian-like segments. Some viruses have been found in South America, but the complete
genomes are mostly unknown.

In spite of the distant sites at which our five H12N5 Eurasian viruses were isolated, their HAs
form a tight cluster of highly homologous sequences. The most closely related sequences corresponded
to H12Nx viruses that were isolated across Eurasia, from Netherlands to Vietnam and Japan since 2010.
This might suggest that the Eurasian H12 segment is relatively homogeneous in sequence (with slow
or neutral evolution) and that its circulation area spreads across the whole Eurasian region (despite the
relatively low isolation rate from ducks). A similar conclusion could be applied to the American H12
segment, since the closest sequences of the H12 segment of A/1377 are found in viruses isolated in
California and Delaware in 2015-2016.

Furthermore, the NAs of the five HI2N5 viruses isolated in west Siberia and the Caspian form
a very tight cluster. The closest relative sequences belong to HxN5 viruses that were isolated across
Eurasia (from Kamchatka to Germany and Italy) since 2013. The tight clustering of both the H12
sequences and the N5 sequences may perhaps suggest that the fitness of the virus relies on some
preferred association/combination of the two viral glycoproteins. As for the other six viral genomic
segments, it should be emphasized that the two isolates A/962 and A/999 (both isolated in the west
Siberia region) share the same genomic constellation and could be the same virus pool in sample site.

The central question raised by Wille et al. (2018) [6] was as follows: are ducks the major reservoir
of the H12 subtype, or do we need to discover other important host species?

Currently, the database of 349 avian H12 strains includes 200 isolated from ducks and 115
isolated from shorebirds, mostly from sandpipers. In our study, we mainly focused on duck reservoir
surveillance and confirmed the statement about the relatively low rate of H12 isolation from ducks.
Our previous studies did not report the isolation of H12 viruses from more than 25000 wild birds
during a 10-year surveillance program [8,37] in a very wide territory from the Caspian Sea to Pacific
Ocean. Our present data are consistent with the data provided by Muzyka et al. who collected 6281
samples from wild birds representing 27 families in the Azov, Black Sea region and also isolated only
one H12N8 virus (in a period from 2001 to 2012) [38].

All our viruses were isolated from dabbling ducks of three species (Anas crecca, A. clypeata, A.
platyrhynchos) which are the most numerous species of dabbling ducks and Anseriformes in Northern
Eurasia, covering the region from Europe to Kamchatka and Japan. Combined with the published
data, this suggests that diving ducks do not seem to be the primary reservoir of the H12 subtype in
Northern Eurasia. There seems to be no strong host-correlation with the H12Nx subtype, as shown for
H13 and H16 gull-like viruses [39,40] or HON2 viruses associated with Galliformes, based mainly on
studies with chickens and turkeys [41]. No strong species effect was shown to be associated with virus
diversity, similar to the results described previously for North American AIV [42].



Microorganisms 2019, 7, 643 17 of 20

All birds from which viruses are isolated are long-distance migratory birds. All of the H12 isolation
sites in this study can combine significant populations of waterfowl from different places within the
migration routes of their territories ([43], Supplementary Materials). The reassortant A/1377-Amer
isolation site is located in the Far East, Primorye, which is the part of the Far Eastern and East Siberian
territorial groupings of birds connected with the East Asian—Australasian Flyway [44], while the
isolation points of A/324, A/962, A/999, and A/43 viruses are located in the south of Western Siberia
at the intersection of three flyways: Central Asian Flyway, Asian-East African Flyway, and Black
Sea—Mediterranean Flyway [43,45].

The western part of the Caspian Sea where the A/1017 virus was isolated is located in the area of
the intersection of two flyways: the Asian—East African Flyway and Black Sea-Mediterranean Flyway
(Supplementary Materials, [45]). Therefore, taking into account the location of the H12 virus isolation
points in Siberia and the Caspian Sea, we can use our maps and phylogenetic tree analysis to suggest
associations between the studied segments and other phylogenetically similar gene pools of viruses
which were isolated in Egypt, the Caucasus (Georgia), Southern and Central Europe, the Balkans,
Mongolia, and China. Our findings indicate a mixing in the Siberia region of various genetic variants
of the AIV circulating in Eurasia. One possible explanation for this is the spreading of different LPAI
viruses to Siberia acting as an “LPAI virus hub” through different routes, followed by mixing with
possible reassortment events [8].

Fortunately, in the studied strains, we did not observe segments strongly associated with highly
pathogenic avian influenza viruses nor human or mammal viruses that could lead to a high risk of active
transmission (such as HSNx and H7Nx). However, according to the phylogenetic analysis, we identified
genomic segments of Russian H12Nx related to the segments that belonged to some HPAI strains.
For example, in the PB2 segment, the A/962 and A/999 strains are similar to the H5N8 A/great crested
grebe/Uvs Nuur Lake/341/2016_A/H5NS strain, as well as to the H7N1 A/duck/Bangladesh/24705/2015
subtype strain. Moreover, the PB2 and PB1 of strains A/962 and A/999 are phylogenetically related to
PB2 and PB1 of H5N8 and H5N5 HPAI (highly pathogenic avian influenza) strains. The sequences of
the PB2 segment of the A/324, A/1017, and A/43 strains belong to the same phylogenetic group as the
PB2 of the HPAI H5N5. According to the phylogenetic analysis, the NP genes of A/324 and A/1017
strains are closely related to HPAI H5NS. Therefore, the example of Russian H12Nx strains shows that
a possible exchange of genome segments occurred between low-pathogenic and highly pathogenic
variants of the influenza virus. In addition, HPAI and LPAI circulate jointly or intersect in places where
birds congregate, which makes it possible for HPAI to spread by the same birds and routes (migratory
pathways) through which LPAI spreads. It has been shown that H12Nx viruses have a specific gene
pool with frequent reassortment events. We confirmed this fact in our research.

This information is important for the annual screening of the characteristics of current viruses,
especially those relatively rare subtypes that probably have a minor reservoir and still need to be
studied in the future.

5. Conclusions

During surveillance, we isolated AIV subtypes with low prevalence (five H12N5 and one H12N2
viruses) in three different distinct geographic regions of Northern Eurasia (Russia). H12N2 from
the Far East region was a double reassortant containing HA, NS, and NP segments of the American
lineage and others from the classical Eurasian avian-like lineage. H12N5 viruses contained all Eurasian
lineage segments.

We have suggested a phylogeographical scheme of reassortment events associated with
geographical groups of aquatic birds and their migration flyways. The H12N5 strain is of particular
interest, as this virus has been found in common teal in the Russian Far East region, and its three
segments are strongly related to the North American AIV lineages and clearly demonstrates that viral
exchange between the two continents does occur.
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