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Abstract: The loss of antibiotics as a tool to improve feed efficiency in poultry production has increased
the urgency to understand how the microbiota interacts with animals to impact productivity and health.
Modulating and harnessing microbiota-host interactions is a promising way to promote poultry health
and production efficiencies without antibiotics. In poultry, the microbiome is influenced by many host
and external factors including host species, age, gut compartment, diet, and environmental exposure
to microbes. Because so many factors contribute to the microbiota composition, specific knowledge
is needed to predict how the microbiome will respond to interventions. The effects of antibiotics
on microbiomes have been well documented, with different classes of antibiotics having distinctive,
specific outcomes on bacterial functions and membership. Non-antibiotic interventions, such as
probiotics and prebiotics, target specific bacterial taxa or function to enhance beneficial properties of
microbes in the gut. Beneficial bacteria provide a benefit by displacing pathogens and/or producing
metabolites (e.g., short chain fatty acids or tryptophan metabolites) that promote poultry health by
improving mucosal barrier function or immune function. Microbiota modulation has been used as a
tool to reduce pathogen carriage, improve growth, and modulate the immune system. An increased
understanding of how the microbiota interacts with animal hosts will improve microbiome intervention
strategies to mitigate production losses without the need for antibiotics.
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1. Introduction

The US is the largest producer of poultry worldwide, but in response to ever-increasing demands
for high quality, low cost meat, the poultry industry has needed to keep pace by increasing production
volumes, improving genetics and nutrition, and controlling disease [1]. Historically, antimicrobials have
been a key tool used in animal production to both enhance growth and prevent and treat disease.
However, concern for maintaining the efficacy of medically important drugs led to restrictions on the
use of antibiotics in animal food production, limiting the off-label applications and feed efficiency
uses of antibiotics important for human health [2]. As a result, emphasis has shifted to non-antibiotic
methods to support production.

Intestinal health can dictate both nutrient uptake and disease status in animals, and is impacted
by both the gut microbiota and host immune function. As a result, understanding how both
factors influence production parameters is important to develop alternative tools that provide
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predictable outcomes on poultry health and growth. For example, identifying bacterial populations
that are impacted by antimicrobials or feed additives can highlight ways to successfully manipulate
seeding or the establishment of populations beneficial to animal growth. Additionally, strategies that
enhance immune efficiency can be used to selectively inhibit potentially pathogenic populations,
limiting incidences of animal diseases and foodborne illnesses. The age of birds is also a significant
factor influencing gut microbiota composition, and the metabolites produced by different bacterial
populations can impact the development and/or maintenance of immune cells in the intestinal tract.
Understanding these processes can provide unique production strategies that maximize production
and promote animal health in the absence of antibiotics.

In this review, we will examine factors known to influence the poultry microbiota composition,
promising microbiota modulation intervention strategies and bacterial-derived metabolites to improve
poultry health and production. Targeting intestinal health as a way to improve performance is not
new. However, strategies that do not rely on antibiotics require targeted intervention and often
need to be used in combination (vaccination, probiotics, prebiotics, biosecurity) to improve both
feed efficiency and control infections [1]. Microbiome interventions often target specific members
or functions of the microbiota, and understanding the outcomes on microbial populations and the
host are essential in predicting successful intervention. Prediction requires particular understanding
of the microbes that contribute to disease, support proper gut development, interact with the gut
microbiota to improve nutrient absorption, and either support or suppress the avian immune system.
An overview of host and environmental factors that influence the intestinal microbiota, as well as
common microbiota interventions and possible outcomes to poultry health, are summarized in Figure 1.
Preventing colonization of pathogens and controlling microbial succession in developing birds is a
means for maintaining flock health. Key to modulating the microbiota is understanding how early
bacterial colonizers are acquired and develop into a stable, beneficial microbiota.
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Figure 1. Factors influencing the poultry microbiota composition and potential outcomes that influence
animal health. Microbiome factors discussed in the review that influence the composition and/or
functions of the microbiota are indicated with arrows pointing inward. Outward pointing arrows
suggest potential or desired outcomes to the factors.

2. Microbial Spatial Diversity

The chicken gastro-intestinal tract (GIT) includes compartments with varied physiological roles
and environments that drive a spatial distribution of microbial populations. The GIT serves as the
home for anywhere between 500–1000 bacterial species, comprising up to 100 trillion cells in total [3,4].
In mature birds, Lactobacillus is the dominant genus in the crop and gizzard, but Bifidobacterium may
also be present (Figure 2) [5]. The duodenum and jejunum are colonized at low densities, in part,
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due to high bile acid concentrations and low pH, but Lactobacilli, Enterococci, and Clostridiaceae are
commonly detected (Figure 2) [5–8]. The ileum is the terminal segment of the small intestine and has
the greatest microbial density and diversity of the small intestine, where Lactobacillus, Enterococcus,
Clostridium, and Turicibacter are found in high abundance among other genera (Figure 2) [7,9–13]. In the
ceca, the bacterial community peaks in complexity and density, with strict anaerobes from the phylum
Firmicutes, composed of the genera Clostridium, Enterococcus, Bacillus, and Ruminococcus, being found
in high abundance (Figure 2) [11,14–16].
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3. Microbiota Succession and Its Role in Disease

Successional patterns and mature community compositions are important for bird health,
with increased microbiota diversity associated with reduced rates of enteric diseases in poultry [17].
For example, exposing chicks to the mature microbiota of adult birds increases the speed of microbial
succession in the gut, resulting in the establishment of a mature microbiota at a younger age [18].
While there are health benefits from increased diversity, the presence of individual microbes is also
associated with specific health outcomes [17]. Lactococcus colonization of the ceca promotes weight
gain in chicks, while the presence of Akkermansia and Prevotella are negatively correlated with weight
gain [15]. Other studies associate specific genera such as Lactobacillus, Ruminococcus, and Clostridium
clusters IV and XIVa with enhanced bird performance [19–21]. As a result, understanding the microbial
succession in a healthy avian gut and how production practices impact this process is important if
alternative intervention strategies for disease are to be examined.

In most vertebrate species, maternal feces serve as a major route for the transmission of beneficial
commensal microbes to offspring [22,23]. However, in commercial poultry production systems,
the linkage between hen and chick is severed as eggs are collected from layer flocks and incubated
and hatched at separate facilities [24]. Because direct vertical transmission from the hen is prevented,
the microbial inoculum for chicks is limited to eggshell, litter, feed, and water [20,25,26]. Eggs are
exposed to Lactobacillus, Psuedomonas, and Bacteroides that are present in the hen reproductive tract [27],
as well as intestinal microbes during passage through the cloaca. Internalization and deposition of
bacteria on the eggshell has been observed [27–30], but to colonize newly hatched chicks, the microbiota
on the eggshell surface must survive the incubation period (21 days for chickens) in a highly oxygenated,
nutrient-poor environment. Consequently, spore-forming bacteria are well adapted to surviving the
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oxygen and desiccation stress of the eggshell [31]. Firmicutes compose over 50% of the bacteria on the
surface of chicken eggs, including members of the genera Clostridia, Ruminococcus, and Lachnospiraceae.
Members of the phyla Fusobacteria, Bacteroidetes, and Proteobacteria compose >10% of the bacteria
on the eggshell, including potential pathogens like Pseudomonas and Salmonella [32].

Post-hatch, the intestinal communities of chicks are highly dynamic, making the immature
microbiota susceptible to interventions that can have lasting effects on immune development and host
energy harvest [33]. Growing chicks have periods marked with developmental changes within the gut
microbiome, characterized by dynamic changes early in succession before the eventual establishment
of a more stable and complex community structure [16,17,33,34]. Around one to three days post-hatch,
rapidly colonizing facultative anaerobes, including Streptococcus and Escherichia, establish in the gut,
driving down the redox potential. Anaerobic bacteria of the Firmicutes phylum, including Ruminococcus
and Lachnospiraceae, eventually displace these rapid colonizers. By day 10, slower-growing anaerobes
like Romboutsia spp. become detectible, signaling a shift toward a more diverse and evenly distributed
microbiota [34]. Age appears to be the greatest driver in determining chicken GIT bacterial composition,
with the passage of time coinciding with increased microbiota complexity [17].

A well-functioning intestinal microbiota provides numerous benefits for the host. A rich,
highly complex gut microbiota competes with potential pathogens for colonization, aiding in the
exclusion of disease-causing organisms such as Clostridium perfringens [35–38]. The gut microbiota also
stimulates the development of the poultry mucosal epithelia and intestinal immune system, providing
the host with another layer of defense against potential pathogens [3,39–41]. Delays in microbiota
succession diminish the benefits of the commensal gut microbes, making chicks especially vulnerable to
enteric diseases like necrotic enteritis [42–44]. Imbalance within the intestinal microbiota populations,
a state known as dysbiosis, is associated with inflammation and impaired digestive and immune
function, often leading to production losses [39].

4. Poultry Species Differences

While poultry microbiotas are similar, differences exist between bird species and breeds.
For example, layer chickens harbor a more complex fecal microbiota compared to broiler chickens,
although this association is likely related to the longevity of layers [45]. For the most part, broilers and
layers are fairly similar in regard to their successional patterns and mature community compositions,
though broilers have Firmicutes as the most dominant phyla post-hatch, while Proteobacteria dominate
the layer microbiota for the first seven days post-hatch, after which point Firmicutes replace the
Proteobacteria as the dominant phyla [46]. Direct comparisons between layers and broilers are
challenging because of the different production practices for each. This can be a challenge when
comparing different chicken breeds as well, although a recent comparison between three different
breeds identified >94% of the bacterial genera to be shared across the microbiotas [46]. The microbiota
composition and successional pattern in turkeys is fairly similar to that of chickens, with succession
and bird development taking longer in the former. In turkeys, Firmicutes increase in abundance with
time, while the proportion of Proteobacteria decrease. Lactobacilli make up a large portion of the turkey
ileum community [14]. While Clostridium, Ruminococcus, and Lactobacillus are prevalent in the GIT
of both chickens and turkeys, the two only share ~16% similarity at the species level, suggesting a
significant degree of host specificity [15]. In ducks, Proteobacteria and Firmicutes dominate the small
intestine (duodenum and ileum) while Bacteroidetes dominate the ceca, differentiating ducks from
both turkeys and chickens [47].

Variability in the GIT microbiota is well documented and factors such as genotype, species,
bedding material, diet, and sex contribute to differences in composition [15,19,48–50]. Even when
these factors are controlled for, individual bird-to-bird variation in the GIT microbiota exists,
potentially arising from the inherent nature of modern poultry production practices [9,20,51,52].
One of the key takeaways from these studies is that the first microbes entering the intestinal tract of
newly-hatched chicks can have a profound impact on how the microbiota, and the bird itself, develops,
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highlighting the importance of early intervention as a way to increase bird health and performance
in the poultry industry, especially under the rapid turnaround times that define modern production
cycles. Understanding what the target microbiota composition is when intervention decisions are
made will improve the outcome predictions for the host.

5. Modulation of the Microbiota

In-feed additives are an important tool used in animal food production to enhance performance and
improve poultry health. Many of these additives modulate the gut microbial community in ways that
result in enhanced immune health, inhibition of pathogenic organisms, and/or enhancement of nutrient
availability and uptake in the gut. Multiple categories of in-feed additives exist, including antimicrobials,
heavy metals, probiotics, prebiotics, cocccidiostats, organic acids, vitamin and mineral oils, enzymes,
and others [53]. Of these, antibiotics are a primary tool used to support the economic sustainability of
intensive livestock operations, both through improving feed efficiency and maintaining animal health
by preventing and/or treating disease.

Concerns over the use of antimicrobials in animal production center on the risk of associated
development and the spread of antimicrobial resistance, particularly where it threatens the efficacy of
therapeutics important for human health. In 2017, the US Food and Drug Administration (FDA) enacted
the Veterinary Feed Directive (VFD), which prohibits the use of medically important antimicrobials
for animal production purposes (growth promotion and feed efficiency) and brings their therapeutic
use under the supervision of licensed veterinarians [2]. This ban does not, however, prohibit the
use of non-medically important antimicrobials in-feed and the continued availability of medically
important drugs for prophylactic use on the herd or flock still presents concern over prudent uses of
these drugs in the US industry. In 2017, of the total drugs sold for use in animal agriculture in the
US, 51% were considered medically important, with tetracyclines and penicillins accounting for 32%
and 6% of the overall drugs sold, respectively [54]. Unlike the swine and beef industries, drug sales
in poultry production are scarcely reported. Some of the antibiotics currently available for use in
chickens in the US include bacitracin, avilamycin, monensin, lasalocid, salinomycin, tetracyclines,
ceftiofur, lincomycin, virginiamycin, erythromycin, gentamicin, spectinomycin, neomycin, novobiocin,
sulfa drugs, and tylosin. Of these drugs, bacitracin and the ionophore class, represented by monensin,
lasalocid, and salinomycin, are not considered relevant to human health.

Antibiotics can be used in-feed throughout the production period or sporadically as therapeutics
and, as a result, have the potential to impact the bird microbiota throughout its lifetime. Examining how
antimicrobials directly impact the gut microbiota in poultry may help to both identify the modes
of action that result in enhanced gain and highlight the relationship between these drugs and bird
health and disease [55]. The use of antimicrobials affects the gut microbiota, immune response,
and performance [40,56–60] to benefit animal health, in part, by modulating the immune system and
modifying the microbiota of the gastrointestinal tract, resulting in a reduction of the total bacterial load
and suppression of pathogens [61]. The direct mode of action for antibiotics on bacterial populations
or growth promotion is not clearly defined and may not be consistent across products or applications.
However, the age of birds has a larger effect on gut maturation than drug use [14], and antimicrobials
have a greater effect on rare species than abundant ones [57]. Overall, the use of antibiotics can induce
significant changes in membership, but typically does not alter the functionality of the microbiota.

Although it is believed that subtherapeutic antimicrobials stabilize the gut microbiota,
improve performance, and prevent various intestinal pathologies [53], the effectiveness of antimicrobials
as growth promoters may be lower than was first proposed over 50 years ago. The use of subtherapeutic
antibiotics may not work to support animal performance through effectively altering any one species or
gut diversity, but may suppress the overall richness of gut populations [57]. Denmark banned the use
of antimicrobial growth promoters without a negative effect on mortality or performance in swine and
poultry [62]. Thus, it may be possible for poultry industries to cost-effectively optimize production,
without using antibiotics as growth promoters [63].
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The effects of different commonly used antibiotics on the cecal microbiota of poultry are
summarized in Table 1.

Table 1. Antibiotics used in poultry production, and their impact on the cecal microbiota.

Antibiotic Species Changes in Relative Abundance of Cecal
Microbiota Reference(s)

Bacitracin zinc Broiler chicken
Decrease in Lactobacillus and Eubacteria

Increase in Clostridiales (Faecalibacterium and
Ruminococcus)

[64]

Avilamycin Broiler chicken Decrease in Lactobacillus and Clostridiales [57,64,65]

Virginiamycin and
monensin Broiler chicken Decrease in Firmicutes

Increase in Gammaproteobacteria (E. coli) [14]

Monensin Broiler chicken
Decrease in Erysipelotrichaceae, Lactobacillaceae,

Enterococcaceae and Insertae Sedis XIV
Depleted Roseburia, Lactobabcillus, and Enterococcus

[14]

Chlortetracycline Broiler chicken Decrease in Gammaproteobacteria (E. coli)
Increase in Bifidiobacterium [60]

Enramycin Broiler chicken
Decrease in Firmicutes, Clostridium XI and

unclassified Peptostreptococcaceae
Increase in Clostridium XIVb and Anaerosporobacter

[57,65]

Tylosin Broiler chicken Decrease in Roseburia
Increase in Escherichia and Hespellia [14]

Antimicrobial use in poultry can have varied effects on microbial populations relevant for
human disease. Enramycin is a lipopeptide that shares a similar cyclic peptide structure and
activity against Gram-positive bacteria with its analog ramoplanin, a drug of importance in treating
humans with multi-drug resistant infections such as methicillin-resistant Staphylococcus aureus and
vancomycin-resistant Enterococcus [66]. Although resistance to ramoplanin may develop in poultry and
spread to humans, the use of enramycin is not prevented in poultry. The extent to which antimicrobial
resistance develops may be determined by multiple factors including the drug’s spectrum of activity,
its use at either therapeutic or subtherapeutic levels, the existence of antimicrobial resistance prior to
use, and the varied potential of specific drugs to promote horizontal gene transfer from commensal to
pathogenic populations. Therapeutic use of tetracycline in layers increases Enterococcus and Escherichia
shedding in the feces [67]. However, subtherapeutic virginiamycin use has been shown to decrease
Salmonella and E. coli in the digestive tract of broilers but increase Lactobacillus and Enterococcus [68].
Early administration of amoxicillin for a period of 24h in Cobb chicks resulted in a lower abundance of
Lactobacillaceae and higher abundance of Enterococcaceae in the jejunum [40].

The use of antimicrobials may impact poultry health through modulation of the immune function.
For example, early administration of amoxicillin for a period of 24 h in Cobb chicks has a significant
effect on the intestinal host-gene expression profile, including downregulation of immune-related genes
and an upregulation of genes linked to cell development and intestinal barrier function, resulting in
a significantly reduced number of macrophages in intestinal mucosal tissue [40]. Administration of
enrofloxacin or amoxicillin in drinking water initially affected expression of pro-inflammatory cytokines
in intestinal tissue, but the effect was temporary and did not persist [69]. Similarly, in-feed bacitracin
methylene disalicylate significantly affected expression of cytokines and host-defense peptide expression
in ileum and cecum of broilers [70]. These studies highlight that, although some antimicrobials may
have few measurable impacts on the microbiota, drug use may significantly impact immune competence,
leading to increased risk for disease development in the animal during early life. In addition, a recent
study examining the use of chlortetracycline and salinomycin in broilers, the latter drug being an
ionophore similar in activity to monensin, showed delayed maturation of the microbiota in response
to drug exposure [71]. This delayed maturation was also paralleled with delayed development of
immunity, a phenomenon that is believed to compromise gut defense function and negatively impact
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bird health. Although growth promotion in response to antimicrobials was observed in this study,
the authors argue this was likely due to suppression of gut bacteria that, in turn, freed up nutrients for
uptake, inhibition of organisms that may contribute to gastrointestinal infections, and/or suppression of
host immune responses that may cause biological damage to the animal [71]. Their ultimate argument
is that alternative tools, such as probiotics, can enhance gut immune function and support early gut
maturation, resulting in gains similar to those achieved through antimicrobial growth promoters
without negatively affecting the host immune development [71].

Other Novel Feed Additives

Other novel feed additives are also being investigated for their growth enhancing and microbial
modulation properties, including clay, heavy metals, and organic acids such as butyrate [72,73].
An investigation into the addition of biochar, bentonite, or zeolite in the feed of laying hens on the
carriage of pathogens in the gut microbiota showed that, although no effects were observed in overall
community richness and diversity, there was a reduction in the abundance of Proteobacteria in response
to bentonite use, specifically Campylobacter and Helicobacter [74]. Another recent study examined the
use of selenium nanoparticles to inhibit pathogen colonization and discovered that an intermediate
concentration (0.9 mg/kg) increased the abundance of Lactobacillus and Faecalibacterium, both considered
beneficial to gut health, as well as Turicibacter and Staphylococcus, both potentially pathogenic bacteria,
in the cecal contents of broilers [75].

6. Prebiotics and Probiotics

6.1. Probiotics

The intestinal microbiota is vital to gut development, mucosal immunity, and the digestion
of feed and nutrient absorption by the host [13]. Thus, understanding the attributes of a highly
productive microbiota may aid in the development of alternatives to growth promoting antibiotics [64].
Probiotics and prebiotics are tools being explored to help reduce the dependency on antimicrobials
in production [13]. Probiotics are viable bacteria that provide health benefits after ingestion,
including enhancing the function of the intestinal barrier of the host, excluding potential pathogens,
and maintaining homeostasis in the GIT [76]. Probiotics may benefit the host directly without
microbiota-wide changes [76]. In male broilers, in-feed administration of Bacillus subtilis CGMCC 1.1086
resulted in higher weight gain and improved feed conversion ratio (FCR) [77]. Another study involved
feeding the probiotic Lactobacillus planatarum, resulting in enhanced immunity, including increased
thymus size along with increased serum IgG and secretory IgA [71]. Two strains commonly used as
probiotics in poultry are Lactobacillus and Enterococcus spp. because both are found naturally in high
concentrations within the bird GIT [72,78]. Lactobacillus spp. have been associated with increased body
weight, enhanced goblet cell counts, and decreased E. coli colonization in the digestive tract among
other positive health outcomes for poultry flocks [79–81]. Dietary supplementation of Enterococcus spp.
increased feed conversion ratio (FCR) and broiler growth [82].

To identify novel probiotic species, a comparison of cecal microbiota differences between the best
and poorest performing birds was done using the performance measures of: FCR, utilization of energy
from the feed measured as apparent metabolizable energy, average daily gain, and feed intake [83].
The study identified potential members of Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae
significantly correlated with good FCR performance and some Lactobacillus spp. that correlated with
poor performance [83]. Similar associations with poor animal performance and Lactobacillus spp. were
reported in another study [84]. Incidentally, both studies identified Clostridium lactatifermentans as a
potential probiotic for future development.
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6.2. Prebiotics

Prebiotics are feed additives that suppress pathogen loads while maintaining productivity by
directly feeding beneficial populations within the microbiota [85]. Commonly used prebiotics in poultry
include dietary fibers such as fructooligosaccharides (FOS) and xylooligosaccharides (XOS), both of
which have been reviewed more in depth in other publications [78,86]. The exact mechanisms through
which prebiotics function vary depending on the type of dietary fiber and many of these mechanisms
have yet to be fully elucidated. Several studies involving FOS supplementation saw increases in
the Lactobacillus and Bifidobacterium populations in the ileum and cecum of broilers accompanying
decreased levels of C. perfringens and E. coli while those involving XOS supplementation identified
increased Lactobacillus and Clostridium cluster XIVa levels in the colon and ceca of broilers [78,87–90].
Many of the microbial community modulatory effects and subsequent health benefits of FOS and XOS
can be attributed to their fermentation by beneficial commensals, such as Bifidobacterium, into short
chain fatty acids (SCFAs) [91,92]. The benefits of these SCFAs will be explored in greater detail later in
this article.

7. BA-Modification and Modulation

While the exact mechanisms through which antimicrobials function to increase weight gain and
other performance metrics in livestock species have yet to be fully elucidated, antibiotics may
inhibit bile acid (BA)-modifying populations in the gut, leading to the enhancement of lipid
absorption and overall energy harvest by the host [58,93,94]. This observation provides researchers
with a potential target population for the development of interventions that mimic the effects
of antimicrobial growth promoters without the associated drawbacks of antimicrobial resistance
development and dissemination.

Bile acids are synthesized in the liver from cholesterol compounds, conjugated with taurine to
increase their solubility, and secreted from the gallbladder into the duodenum upon feeding [95–97].
Once in the intestine, BAs emulsify poorly soluble lipids and vitamins, enhancing their absorption
by the host [98]. However, modifications to the BA pool by microbes that encode bile salt hydrolase
(BSH) reduces BA solubilization ability and, subsequently, nutrient absorption [99]. BA deconjugation
also results in high levels of its excretion in the feces, increasing energy expenditure on the part of the
animal to synthesize more BA, translating into reduced growth rate (Figure 3A) [100,101].

Different classes of antibiotics have the common effect of disrupting and reducing the BA-modifying
microbes in the intestinal tract of poultry and other livestock species [58,94,102]. In these studies,
decreases in BSH-encoding organisms, like Lactobacillus salivarius, led to increases in bird performance.
Identifying BSH inhibitors, such as riboflavin and zinc, may be of use for in-feed supplementation to
prevent the deconjugation of taurine from BAs and increase lipid absorption in the diet. However,
more needs to be done to identify BSH inhibitors, determine their mechanisms of action, and assess
the impacts these inhibitors have on both the host and the microbiota [103]. The use of BSH-encoding
organisms, such as Lactobacilli and Enterococci, as probiotics should be questioned because they may
negatively impact dietary lipid absorption and bird performance [59].
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Figure 3. Microbial functions have many effects within the intestinal tract. (A) Bile acids (BA) emulsify
lipids and vitamins, improving absorption by the host. Bile salt hydrolases produced by members
of the microbiota deconjugate BAs, reducing their solubility and increase their excretion in the feces.
Loss of BAs inhibits nutrient absorption and reduces BA recycling. (B) Short chain fatty acids (SCFA)
are bacterial fermentation products that can be an energy source for colonocytes and impact immune
cell development. Butyrate and propionate have been shown to inhibit nuclear histone deacetylases
(HDAC) in macrophage and CD4 cells, prompting the generation of regulatory T cells (Treg). These Treg
cells modulate the immune system, maintaining self-tolerance; suppression of allergy-, asthma- and
pathogen-induced immunopathology; etc. Each unique arrow (back, gray, or dashed) from each SCFA,
shows the respective downstream effects of each SCFA. (C) Tryptophan can be degraded by microbes
into a variety of intermediates including indole and serotonin. These molecules are endogenous
ligands for the aryl hydrocarbon receptor (AHR) that is present on multiple adaptive and innate
immune cells. When AHR is signaled in interepithelial type 3 innate lymphoid cells, these cells produce
IL-22. This cytoprotective cytokine supports the acts to strengthen epithelial barrier functions by
inducing the secretion of antimicrobial peptides from epithelial cells, production of mucins (MUC-2),
and proliferation of intestinal goblet cells.

8. Bacterial Metabolite Interactions with Host

The metabolome is a combination of molecules de novo produced or modified by microbes and
the host. As a diverse microbial ecosystem, the intestinal microbiome produces many bioactive
metabolites that act locally at the microbial-host interface to promote homeostasis and development of
intestinal tissues [104], as well as acting extra-intestinally in organs such as the brain or spleen [105,106].
In poultry, strategies that affect the composition of the intestinal microbiota (antibiotics, probiotics,
and prebiotics) may impact the functional metabolome [107,108], and ultimately affect gut health
and performance. A complex, mutualistic interplay between the intestinal microbiome, epithelium,
and immune cells is vital for gastrointestinal homeostasis [109]. Although an understanding of how
microbial metabolites shape the intestinal immune development is incomplete, several classes of
molecules, including bacterial-derived short chain fatty acids (SCFAs) and tryptophan metabolites,
are well characterized as modulators of host immune development and intestinal homeostasis. Most of
these data were obtained from rodent models or human clinical samples with different intestinal
pathologies. How SCFAs or tryptophan metabolites affect immune development in poultry is mostly
unknown, but represents an exciting new field of study to impact immune development in an era
where fewer therapeutic options are available to treat mucosal infectious diseases in poultry.
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9. Bacterial-Derived SCFAs and Host Immune Development

Microbial-derived SCFAs are a diverse group of molecules one to six carbons in length that benefit
the host by providing energy to the intestinal epithelium, produce tolerance to microbial-associated
microbial patterns (MAMPs) in intestinal mucosa [110], and are protective against intestinal
immunopathology such as inflammatory bowel disease (IBD) [111,112]. Acetate (C2), proprionate
(C3), and butyrate (C4) are produced in the highest quantities and are the best studied [113,114],
but additional SCFAs including lactate, succinate, valerate, and others may also benefit gut health.

A comprehensive list of SCFA-producing bacteria in vivo is currently incomplete, but is an
ongoing field of research [115,116] that is complicated by multiple different bacteria that are requisite
to produce SCFA precursors. In humans, for example, acetate dependency on butyrate production by
Faecalibacterium prausnitzii was demonstrated in vitro and in vivo [117,118]. Lactate, a less abundant
SCFA produced by many bacteria in the human intestinal tract, may act as a substrate for production of
proprionate and butyrate by Coprococcus catus [119] or just butyrate by Anaerostipes caccae or Eubacterium
hallii [120]. Some individual bacterial species isolated from the chicken ceca are capable of producing
butyrate [121,122], but less is known about the identity of other SCFA-producing bacteria or their
required precursors in poultry [123].

Many SCFA-producing bacteria are mucosal associated and generate high concentrations of SCFAs
in close proximity to host intestinal epithelium [124]. As an energy source, the SCFAs proprionate
and butyrate can enter host cells via active transporters such as sodium-coupled monocarboxylate
transporter 1 [125,126]. Not all absorbed SCFAs reach systemic circulation, and instead act locally in
the intestinal tract or liver. Butyrate, the major energy source for colonocytes, is locally metabolized
after being transported to the epithelial cells [127,128]. In mammals, butyrate that escapes beyond the
intestinal tract is metabolized in the liver [129,130]. The majority of acetate and propionate are not
metabolized by the intestinal mucosa and enter the liver, where propionate is metabolized, but acetate
enters into peripheral circulation [129].

Host cells respond to SCFAs as both extracellular and intracellular signaling molecules.
Intestinal epithelial and immune cells such as dendritic cells and macrophages express SCFA
receptors and, as extracellular ligands, SCFAs are agonists for different G-protein-coupled receptors
such as free fatty acid receptor 2 (FFAR2, also known as GPR43) and free fatty acid receptor 3
(FFAR3 or GPR41) [131–133] and the hydroxycarboxylic acid receptor 2 (HCAR2 or GPR109A) [134].
These receptors differentially bind and transduce signals from different SCFAs.

Production of specific SCFAs supports the development of immunological tolerance by affecting
the expansion or differentiation and development of regulatory T cells (Tregs) in the intestinal lamina
propria [111]. Separated by a single cell layer of epithelium, Tregs block effector T cells and resident
antigen presenting cells in the intestinal tract to become activated by the high concentration of
MAMPs found in the intestinal lumen. As a result, mammalian Tregs promote intestinal homeostasis.
In mammals, these cells are characterized by surface expression of CD4, and high amounts of CD25
(IL-2 receptor chain alpha), transcription factor Forkhead box P3 (FOXP3), as well as the production of
the tolerogenic cytokine IL-10 (Figure 3B) [135,136]. It is unclear whether microbial-produced SCFAs
affect the differentiation or expansion of Tregs in poultry, mainly because FOXP3 is not currently
annotated in the genomes of either turkeys or chickens. Recent RNA-Seq analysis suggests that some
birds (Parus humilis, Falco peregrinus, and F. cherrug) express FOXP3, but the gene is missing from poultry
genomes due to a sequencing artifact [137]. At this time, there are no data to support the hypothesis
that bacterial SCFAs affect Treg expansion or differentiation in poultry, but butyrate in poultry appears
to share additional functions characterized in humans. For example, butyrate treatment of the human
colonic epithelial cell line HT-29 strongly induced expression of human beta defensins-1 and -2 [138].
Ex-vivo treatment of chicken cecal tissue with butyrate increased expression of host defense peptides
(HDP) beta-defensins and cathelicidin B1 [139]. Chickens fed butyrate significantly reduced cecal
colonization by Salmonella [139,140], which may be due to increased cecal HDP expression. These data
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suggest that butyrate in poultry has an immunomodulatory property to confer resistance to some
infectious diseases and may affect Treg expansion and differentiation.

Differentiation of naïve CD4+ T cells to Tregs depends on inhibition of histone deacetylase (HDAC)
in both dendritic cells and T cells [111,141]. In humans and mice, propionate and butyrate inhibit
HDCA by acting as intracellular signaling molecules and broadly affect transcriptional regulation
by inhibiting HDAC, and promote activation of histone acetyltransferases [128,142]. Butyrate is the
most-potent HDAC inhibitor, targeting classes I and III [143], whereas propionate is a less potent
and defined HDAC inhibitor. Butyrate administered orally to chickens induced hyperacetylation of
histones, suggesting it functions as an HDAC [144]. While acetate and propionate, but not butyrate,
stimulate expansion of existing Tregs in the colon of mice, proprionate and butyrate, but not acetate,
enhancing the differentiation of naïve CD4+ T cell to Tregs. Although germ-free mice have colonic
Tregs, their abundance is markedly reduced due to the absence of acetate and proprionate, but can be
rescued by dietary supplementation with acetate or propionate [112]. Separately, butyrate enhanced
differentiation of Tregs in humans by creating an anti-inflammatory phenotype in macrophages and
dendritic cells through GP109A signaling [145]. Based on the existing research in humans and mice,
it is possible that identifying prebiotics that favor growth of SCFA precursor-producing bacteria,
or probiotics that produce SCFAs in the poultry gut may be valuable tools to promote alternative
strategies to support gut health and resistance to some infectious diseases.

10. Bacterial-Derived Tryptophan Metabolites and Host Immune Development

Tryptophan is an essential amino acid and must be supplied through the diet to meet the
host’s nutritional needs. Bacteria in the intestinal tract can degrade dietary tryptophan to a variety
of intermediates including indole [146], serotonin, or kynurenine, of which some are endogenous
ligands for the aryl hydrocarbon receptor (AHR) [147]. The AHR is a transcription factor ubiquitously
expressed in mammalian cells and was originally characterized as a cellular response to toxic xenobiotics
such as halogenated polycyclic aromatic hydrocarbons [148]. In mammals, signaling of AHR with
bacterial-derived endogenous ligands is vital to promote intestinal homeostasis [149] and immune
development (Figure 3C) [150]. In mice, signaling via AHR in intraepithelial type 3 innate lymphoid
cells (ILC3s) [151] maintains production of the cytoprotective cytokine IL-22 [152,153], and protects
against some forms of intestinal pathology [147] by inducing the secretion of antimicrobial peptides
from epithelial cells, production of mucins (MUC-2), and proliferation of intestinal goblet cells [154].
Mice deficient in AHR demonstrate multiple immunological deficits, including reduced resistance to
infection with the bacteria Listeria monocytogenes or Citrobacter rodentium, as well as an exaggerated
immunopathological response to dextran sodium sulfate (DSS)-induced colitis [106,147,152,153,155,156].
The role ILC3s play in promoting intestinal homeostasis in poultry is unknown because they are
not yet characterized in chickens or turkeys. However, oral treatment with endogenous AHR
ligand 3,3′-diindolylmethane was efficacious to reduce parasite-induced intestinal inflammation in
chickens [157], indicating an AHR-induced cytoprotective mechanism which is likely to also exist
in poultry.

Only a few commensal intestinal bacteria (Peptostreptococcus russellii [158] and Lactobacillus
spp. [147,159]) are known to produce endogenous AHR ligands. In the human intestinal microbiome,
Clostridium sporogenes decarboxylates tryptophan leading to the production of the neurotransmitter
tryptamine [160], as well as the production of indoleacetic acid and indolepropionic acid, which
are known to affect intestinal permeability and host immunity [159,161,162]. Bacteria capable of
producing tryptophan metabolites in poultry are mostly unknown. An avian pathogenic E. coli isolate
possessed the tryptophanase tnaA [163], but functionality was not demonstrated. Tryptophanase,
which deaminates tryptophan to form indole, is expressed by the commensals E. coli and Lactobacillus
spp. [146,164]. As mentioned previously, these genera are abundant in the poultry GIT microbiota. It is
possible that these, or other bacteria are involved in production of indole, a key precursor of several
endogenous AHR ligands that affect immune development. We recently demonstrated that feeding
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bacitracin to turkeys affected the concentration of indole metabolites in cecal contents, some of which
may activate AHR [108]. The use of specific prebiotics and probiotics to affect tryptophan metabolism
may be vital tools to promote gut health, disease resistance, and immune development to enhance
poultry health.

11. Current Limitations of Microbiota Studies

Of the studies discussed here, the majority profiled the microbiota using 16S rRNA gene amplicon
sequencing. Although this method is cost effective for mapping large-scale shifts in the microbiome,
many studies now highlight that key responses to in-feed additive use occur at the species level.
Because 16S rRNA gene amplicon sequencing resolves to the family or genera level, its application to
identify at a species level resolution is limited. Metagenomic sequencing, although able to resolve
the microbiome to the species or strain level, is still largely cost prohibitive and the dependency on
short read sequencing to obtain coverage in complex samples provides challenges for assemblies.
As technologies continue to evolve and become more affordable, it is likely that sequencing of the
metagenome will help to better discriminate the rare species and strains that are most affected by
in-feed additives and provide information that will aid in both our understanding and the effective
manipulation of microbial gut communities.

12. Conclusions

The microbiota can be viewed as a collection of microbial species or taxa present, as well as their
collective functions. These communities provide benefits for poultry production, such as stimulation
of the immune system, pathogen displacement, and improving nutrient absorption. While antibiotics
have been a powerful tool used in animal agriculture for decades, concern over antibiotic resistance
has led to an urgent need to understand how animal microbiomes affect animal health. Factors such
as age, gut compartment, and health status influence the microbiota composition, but similar trends
exist across poultry species that can be exploited to improve intestinal health, and performance.
Good interventions target key functions to improve intestinal health or specific taxa responsible for
performance losses or disease, but promising new interventions target specific functions of beneficial
bacteria such as production of SCFA or tryptophan metabolites to stimulate cellular pathways with
systemic effects on poultry health. Future targeted approaches in poultry production require deep
understanding of how the microbiome influences bird health and production.
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