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Abstract: The integumentary system of the leatherback sea turtle (Dermochelys coriacea) is the most
visible and defining difference of the species, with its smooth and waxy carapace and finely scaled skin,
distinguishing it from the other six sea turtle species. The skin is the body’s largest organ and serves
as a primary defense against the outside world and is thus essential to health. To date, we have begun
to understand that the microorganisms located on the skin aid in these functions. However, many
host–microbial interactions are not yet fully defined or understood. Prior to uncovering these crucial
host–microbial interactions, we must first understand the communities of microorganisms present
and how they differ through life-stage classes and across the body. Here, we present a comprehensive
bacterial microbial profile on the skin of leatherbacks. Using next-generation sequencing (NGS), we
identified the major groups of bacteria on the skin of neonates at emergence, neonates at 3–4 weeks
of age (i.e., post-hatchlings), and nesting females. These data show that the predominant bacteria
on the skin of the leatherback are different at each life-stage class sampled. This suggests that there
is a shift in the microbial communities of the skin associated with life-stage class or even possibly
age. We also found that different sample locations on the nesting female (i.e., carapace and front
appendages = flipper) have significantly different communities of bacteria present. This is likely due
to differences in the microhabitats of these anatomic locations and future studies should explore if this
variation also holds true for neonates. These data define baseline skin microbiota on the leatherback
and can serve as a foundation for additional work to broaden our understanding of the leatherbacks’
host–microbial interactions, the impacts of environmental changes or stressors over time, and even
the pathogenicity of disease processes.

Keywords: leatherback sea turtle; skin microbiota; neonates; nesting females; next-generation
sequencing

1. Introduction

The leatherback sea turtle (Dermochelys coriacea) is the largest species of sea turtle and
the sole extant genus of the family Dermochelyidae [1]. One notable difference from other
marine turtles is the leatherback integumentary system. In contrast to scalation and the
heavy cornification of “hard-shelled” sea turtles, adult leatherback integument is pliable
and waxy [1]. Neonatal leatherback skin is uniquely composed of small domed scales [1].
Leatherback integument is not only grossly different from that of other marine turtles
but is also different in composition. The outermost layer of skin (stratum corneum) is
composed mainly of resilient and flexible alpha-keratin underlying a thin layer of (tough)
beta-keratin [1]. Other marine turtle species’ stratum corneum is composed of a thick layer
of beta-keratin [1].

The integumentary system in leatherbacks plays functional roles in thermoregulation,
osmotic balance, the prevention of dehydration, camouflage, the synthesis of vitamin D
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precursors, and as a barrier to infection and harmful wavelengths of light [1]. The skin is
also host to a complex and dynamic community of microorganisms that together make
up the skin microbiota. In recent years, the skin microbiota has been a major focus of
research in humans and animals [2–7]. This surge in research stems from the growing
understanding that microbiota, both skin and gut, can significantly impact host functions
such as development, behavior, and health [8–12]. More specifically, skin microbiota are the
primary defenses against invading pathogens and are thought to play significant roles in
host health, immune function, host resistance, and responses to endogenous and exogenous
stressors [9–16].

Research exploring the skin microbiota of marine animals has become an area of great
interest because of the skin’s constant contact with seawater and the microorganism that
live within it [17–21]. Investigations of marine mammals have begun to identify microbes
that make up species-specific core microbiota [18–21]. Unfortunately, few studies have
investigated skin microbiota in reptiles [5,10,22–25]. Moreover, the information on the
bacterial microbiota of free-ranging sea turtles is limited, and even fewer integumentary
flora studies have utilized contemporary culture-independent methods [6,10,25]. The
reason for this data gap is likely multifactorial. In the case of leatherbacks, it is likely due to
the unique challenges they pose to researchers both because of their pelagic oceanic lifestyle
and the difficulty of maintaining them (at any life-stage class) in human care for research or
rehabilitation [26,27]. However, investigations into the skin microbiota of leatherbacks can
provide essential insight for conservationists, researchers, and rehabbers on their health [6].
Additionally, application of these data will broaden our understanding of the leatherbacks’
host–microbial interactions, the impacts of environmental changes or stressors over time,
and even the pathogenicity of disease processes [6,10,28].

Prior to exploring host–microbial interactions, microbial baselines must be obtained. A
robust survey of baseline skin microbiota in clinically healthy animals is necessary before its
connection to health, disease, and environmental variables can be explored. Once baselines
are obtained, research into the skin microbiota’s role in health, immune function, resistance
to endogenous stressors, and disease can commence. In this study, we used next-generation
sequencing (NGS) to identify and characterize the skin microbiota of leatherback sea turtles
at different life-stage classes (neonates and nesting females).

2. Materials and Methods
2.1. Neonate Selection and Husbandry

The leatherback sea turtle neonates involved in this study originated from naturally
oviposited nests on Juno Beach and Boca Raton, Florida. Neonates were collected during
the 2021, 2022, and 2023 hatching seasons (May–August). Throughout each season, nests
were routinely monitored for emergence. Upon emergence, all neonates were transported
to the Florida Atlantic University (FAU) Marine Laboratory in Boca Raton, Florida, for
assessment and entrance into the research colony. All neonates were visually examined
within 12 h of emergence. Up to 5 neonates from each nest were selected for entrance
into the research colony at the FAU Marine Laboratory. All of those selected for entrance
into the colony appeared clinically normal (i.e., active, alert, and had no obvious external
abnormalities). All neonates were housed indoors at the FAU Marine Laboratory. Atlantic
ocean water was pumped in through a near shore collection and was filtered through two
(100 µm) filtration socks, cleaned via protein skimming, and treated with ultraviolet light
sufficient to eliminate microbes [28]. Water was also sent through a chiller to maintain
appropriate temperatures for leatherback sea turtles (23–25 ◦C) [28]. Fluorescent lights
(UVA-UVB) on a 12:12 h cycle were hung 45 cm above the tanks [28].

2.2. Neonate Sample Collection

Skin swabs were collected from neonates entering the FAU research colony on the
day of emergence and again at 3–4 weeks of age. Sample collection followed the same
procedure at both time points. Each neonate was rinsed with 50 mL of sterile nano-pure
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water four times. Due to their small size, a single sterile swab (rayon or polyester) was used
to sample the animal’s whole integument, including the head, carapace, plastron, and all
four limbs. Swabbing was repeated in duplicate for each neonate. Each swab was placed
into a sterile vial and was stored at −80 ◦C until DNA extraction.

2.3. Nesting Female Selection and Sample Collection

All nesting females were sampled from Juno and Jupiter Beach, Florida. Samples
were collected during the 2022 and 2023 nesting seasons. For each nesting female, sample
collection began after initiation of egg deposition and the nesting fixed action patter, during
which the nesting female is nonresponsive to manipulation [29]. Prior to sampling, a
~30 cm area on the cranial half of the carapace was rinsed with 500 mL of sterile nano-pure
twice. Then, using sterile swabs (rayon or polyester) a ~10 cm by 10 cm area in the rinsed
region was swabbed twice. The rinsing and swabbing process was then repeated on the
proximal region of the flipper (left or right as available due to positioning). Samples were
placed into individual sterile tubes and then on ice until they could be stored in a freezer at
−80 ◦C until DNA extractions.

2.4. DNA Extractions

All DNA extractions were performed using the DNeasy® PowerSoil® Pro Kit
(QIAGEN®, Hilden, Germany) according to manufacturer’s protocol with the follow-
ing modifications. Swabs were placed into the PowerBead Pro Tubes with 800 µL of CD1
solution and left to sit for 5 min. PowerBead Pro Tubes were then vortexed for 10 min with
the swabs still in the tubes. The supernatant was removed from the PowerBead Pro Tube
from around the swab (i.e., the swab was still within the tube). The manufacturer’s protocol
was then followed until the final step, which had the following modification. Solution C6
was left to sit on the center of the white filter membrane for 5 min prior to centrifuging. All
DNA was stored at −80 ◦C until sequencing.

2.5. Next-Generation Sequencing

All DNA was submitted to the University of Tennessee Genomics Core for polymerase
chain reaction (PCR) and NGS. Next-generation sequencing was performed using the
V3-V4 region of the 16S rRNA gene with forward primer 5′ CCTACGGGNGGCWGCAG 3′

and reverse 5′ GACTACHVGGGTATCTAATCC 3′ on the Illumina MiSeq (San Diego, CA,
USA) [30].

2.6. Data Processing

Sequence data were analyzed using the DADA2 pipeline v1. 18.0 [31,32] in RStudio
v4.3.1 [33]. Taxonomy was assigned using the IDTAXA algorithm in the DECIPHER v3.18
package [34,35]. Samples with <10,000 reads were removed prior to statistical analysis.

2.7. Statistical Analysis

All data analyses were performed using Rstudio v4.3.1 [33]. Packages used included
‘phyloseq’ v1.41.1, ‘vegan’ v2.6-4, ‘devtools’ v2.4.5, ‘microbiome’ v3.18, and ‘ggplot2’
v30.3 [36–40]. Alpha diversity was explored using Observed OTUs, Shannon index, Chao1
estimates, and Inverse Simpson index. Alpha diversity comparisons between age classes
and between sample location on nesting females were made using pairwise Wilcoxon rank
sum tests with Holm p-values that were adjusted for multiple comparisons [41]. Beta diver-
sity was explored using principal coordinate analysis (PCoA) (Bray–Curtis) and pairwise
Adonis tests were used to compare between life-stage classes and between sample location
on nesting females [41].
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3. Results
3.1. Comparisons across Life-Stage Classes

From 2021 to 2023, a total of 178 neonatal leatherbacks from 38 nests were sampled at
emergence and 140 of those turtles were also sampled again at 3–4 weeks of age (Table 1).
During the 2022 and 2023 nesting seasons, a total of 37 nesting females were sampled
(Table 1). Across all life-stage classes, five phyla were predominant: Proteobateria, Bac-
teroidota, Patescibacteria, Bdellovibrionota, and Firmicutes (Table 2, Figure 1). Relative
abundance of each phylum was similar across all leatherbacks except for Patescibacteria,
which was found in higher abundance in nesting females than in neonates at emergence or
neonates at 3–4 weeks of age. There were six prominent families across all leatherbacks
that included Flavobacteriaceae, Rodobacteraceae, Xanthomonadaceae, Moraxellaceae,
Saprospiraceae, and Pseudomonaadaceae (Table 3, Figure 2). At emergence, the most abun-
dant families were Xanthomonadaceae and Moraxellaceae. However, at 3–4 weeks, a shift
in the most abundant families to Flavobacteriaceae and Rodobacteraceae was observed.
Flavobacteriaceae and Rodobacteraceae were also the most abundant bacterial families
found on the nesting females.

Table 1. Summary of sequencing results.

Turtles
Sampled

Number of
Samples

Submitted for
PCR and NGS

Samples
Used for
Analysis

Total Reads Average
Reads

Emergence 178 172 151 7,503,179 49,690

3–4 weeks 140 135 126 7,337,226 58,232

Nesting
females 37 74 * 63 4,767,105 74,486

* This number includes swabs from both the flipper and carapace.

Table 2. Relative abundance of top 10 most abundant bacterial phyla across life-stage classes.

Phylum Neonates at
Emergence

Neonates at
3–4 Weeks Nesting Females

Proteobacteria 63.0 67.5 60.6

Bacteroidota 26.2 23.8 25.3

Actinobacteriota 6.7 4.5 1.6

Patescibacteria 0.3 0.1 8.1

Bdellovibrionota 2.5 0.3 0.8

Firmicutes 0.8 2.2 0.2

Cyanobacteria 0.01 0.03 1.4

Planctomycetota 0.06 1.1 0.16

Verrucomicrobiota 0.39 0.08 0.97

Myxococcota 0.06 0.18 0.02
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Figure 1. Relative abundance of top 10 bacterial phyla in different life-stage classes of leatherback
sea turtles. Note that at the phylum level there are few differences between the life-stage classes.
However, Patescibacteria are more prominent on the nesting females when compared to neonates at
emergence or 3–4 weeks of age.

Table 3. Relative abundance of top 10 most abundant bacterial families across life-stage classes.

Family Neonates at
Emergence

Neonates at
3–4 Weeks Nesting Females

Flavobacteriacea 5.7 21.1 50.1

Rhodobacteraceae 3.0 13.3 17.9

Xanthomonadaceae 14.2 7.0 0.02

Moraxellaceae 13.3 0.3 2.1

Alcaligenaceae 6.3 0.95 0.002

Pseudomonaadaceae 9.1 4.6 0.04

Weeksellaceae 10.8 1.3 1.6

Enterobacteriaceae 2.6 10.8 .0008

Rhizobiaceae 5.5 2.4 .04

Nocardiaceae 3.8 3.6 .004
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Figure 2. Relative abundance of top 10 bacterial families in different life-stage classes of leatherback
sea turtles. A broad range of bacterial families was found on neonates at emergence with the most
abundant families being Xanthomonadaceae and Moraxellaceae. In neonates at 3–4 weeks, the
most abundant families shifted to Flavobacteriaceae and Rodobacteraceae. Flavobacteriaceae and
Rodobacteraceae were also the most abundant bacterial families found on the nesting females.

Analysis of alpha diversity revealed significant differences between all life-stage
classes in Observed Operational Taxonomic Units (OTUs) (df = 2, Figure 3a; Table 4) and in
species richness between samples as measured by Chao1 estimates (df = 2 Figure 3b; Table 4),
Shannon (df = 2, Figure 3c; Table 4), and Inverse Simpson indices (df = 2, Figure 3d; Table 4).
For beta diversity, we detected clustering patterns for all life-stage classes of leatherbacks
sampled (i.e., emergence, 3–4 weeks, and nesting females). Significant differences in
microbial communities existed between all three life-stage classes (Figure 4; Table 5).
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Figure 3. Alpha diversity across life-stage classes of leatherback sea turtles measured by (a) Observed
OTUs, (b) Chao1 estimates, (c) Shannon, and (d) Inverse Simpson indices. Pairwise Wilcoxon rank
sum tests with Holm p-values adjusted for multiple comparisons revealed significant differences
among all groups for all measures of alpha diversity (df = 2). See Table 4 for p-values.

Table 4. Pairwise Wilcoxon rank sum tests with Holm p-values adjusted for multiple comparisons
across alpha diversity measures (i.e., Observed OTUs, Chao1, Shannon, and Inverse Simpson indices)
revealed significant differences among all groups (df = 2).

Emergence 3–4 Weeks
Alpha

Diversity
Measure

Observed
OTUs Chao1 Shannon Inverse

Simpson
Observed

OTUs Chao1 Shannon Inverse
Simpson

3–4 weeks 0.003 0.003 <0.001 <0.001 -- -- -- --
Nesting
females <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001
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Figure 4. Beta diversity expressed using a principal coordinate analysis (PCoA) of Bray–Curtis
distance showing differences in microbiota across all life-stage classes of leatherback sea turtles. This
may be due to significant differences in microbial communities that exist between all life-stage classes.
There is some overlap between neonates at emergence and neonates at 3–4 weeks. This may be due to
a slower shift in the microbial community in some individuals. However, significant differences were
still seen between all life-stage classes regardless of the overlap in neonates. See Table 5 for p-values.

Table 5. p-values for the pairwise Adonis tests used to compare beta diversity between the life-
stage classes.

Emergence 3–4 Weeks

3–4 weeks 0.001

Nesting females 0.001 0.001

3.2. Comparisons between Carapace and Flipper on Nesting Females

Predominant phyla on both the carapace and flipper of nesting females were similar.
However, Cyanobacteria and Verrucomicrobiota were both more predominant on the front
flipper, while Patescibacteria was found in higher abundance on the carapace (Table 6,
Figure 5). Bacterial families were also very similar between sample locations on the nesting
females, except Rubritaleaceae was notably more abundant on the flipper (Table 7, Figure 6).
Significant differences in alpha diversity were seen in Observed OTUs (df = 1, p = 0.004;
Figure 7a) and in species richness between carapace and flipper samples as measured
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by Chao1 estimates (df = 1, p = 0.004; Figure 7b), Shannon (df = 1, p <0.001; Figure 7c),
and Inverse Simpson indices (df = 1, p <0.001; Figure 7d). Analysis of beta diversity also
revealed significant differences in microbial communities between the two sample locations
(i.e., carapace and flipper) (R2 = 0.09, p = 0.001; Figure 8).

Table 6. Relative abundance of top 10 bacterial phyla of different sample locations on nesting
leatherback sea turtles.

Phylum Carapace Flipper

Proteobacteria 63.9 57.5

Bacteroidota 22.2 28.2

Patescibacteria 10.8 5.6

Actinobacteriota 1.3 1.8

Cyanobacteria 0.48 2.2

Verrucomicrobiota 0.09 1.8

Bdellovibrionota 0.49 1.2

Deinococcota 0.02 1.0

Campilobacterota 0.55 0.04

Firmicutes 0.09 0.25
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Table 7. Relative abundance of the top 10 bacterial families of different sample locations of nesting
leatherback sea turtles.

Family Carapace Flipper

Flavobacteriacea 58.9 41.8

Rodobacteraceae 17.5 18.3

Saprospiraceae 12.6 13.3

Moraxellaceae 1.4 2.9

Rubritaleaceae 0.04 3.9

Hyphomonadaceae 1.1 1.9

Bdellovibrionaceae 0.56 2.4

Weeksellaceae 0.22 2.8

Crocinitomicaceae 0.80 1.5

Trueperaceae 0.03 2.3
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4. Discussion

In this study, we provide essential baseline microbiota data in leatherbacks and show
that the composition of skin microbiota changes between life-stage classes and location
on the body. These data fill a key knowledge gap for this species and can be used as a
tool to assess population health and understand the impacts of environmental shifts [6].
Due to their long pelagic oceanic life history, sea turtles are often referred to as sentinel
species [42–44]. As such, they are used to assess environmental changes and their potential
impacts on marine life [42–44]. Due to the skin’s constant contact with seawater, it is an
ideal location to assess the impacts of environmental factors on health [18–21]. Using
these baseline data, researchers and conservationists can now begin to investigate host–
microbial interactions, the impacts of environmental changes or stressors over time, and
even extrapolate the pathogenicity of skin disease [6,10,28].

4.1. Comparisons across Life-Stage Classes

Across all life-stage classes, relative abundance was similar for the top two most
predominant phyla (i.e., Proteobacteria and Bacteroidota). These results are similar to
those reported in Mediterranean loggerheads (Caretta caretta) [25]. However, the third
most predominant bacterial phylum in leatherbacks differs from that reported in logger-
heads (i.e., Bdellovibrionota). In neonates, at emergence and 3–4 weeks of age, the third
most predominant bacterial phylum was Actinobacteriota, and in nesting females, it was
Patescibacteria. Patescibacteria was found in higher abundance in nesting females when
compared to neonates at emergence (27× and 3–4 weeks (81×). This phylum was found in
higher abundance in nesting females. The phylum Patescibacteria is considered a super-
phylum composed of a diverse set of bacteria [45,46]. Bacteria within this phylum are often
found in aquatic environments [46–49]. Thus, it is likely that the abundance of this bacterial
phylum on the skin increases with prolonged exposure to an aquatic environment (i.e.,
seawater) and therefore is found in higher abundance on the skin of nesting females. At the
family level, there was a shift in the two most abundant families from Xanthomonadaceae
and Moraxellaceae at emergence to Flavobacteriaceae and Rodobacteraceae at 3–4 weeks of
age. This shift most likely reflects a normal life-stage class-related change in skin micro-
biota and is also likely related to the environmental shift the neonates make from the nest
environment to the ocean. Both life stage and local environment are known to influence mi-
crobial communities [4,50–52]. These theories are further supported as the most prominent
bacterial families on nesting females are also Flavobacteriacea and Rodobacteraceae.

Observations in alpha diversity reveal significant differences in the microbial diversity
on individuals at each life-stage class. All measures of alpha diversity (i.e., Observed,
Chao1, Shannon, and Inverse Simpson) reveal a trend of increasing alpha diversity over
time. Additionally, the significant differences observed in beta diversity suggest that the
communities present at each life-stage class are different. This suggests that the microbial
communities present on the skin change throughout the life-stage classes measured here.
Limited studies in reptiles make comparisons difficult; however, studies in humans have
reported changes in skin microbiota related to age [50,53–55].

It is important to note that the leatherback neonates at 3–4 weeks of age included in
this study were maintained in a laboratory environment. The ocean water the neonates
are housed in is filtered and treated with UV light to kill any microbes present. Addition-
ally, for biosecurity reasons, all neonates were handled minimally and only while using
clean examination gloves. Consequently, the maintenance of these animals in this ‘clean’
environment likely has some impact on the skin microbiota. It has also been shown that
captivity can impact the composition of microbiota [56–58]. Consequently, the microbiota
data presented here for leatherback neonates at 3–4 weeks of age may not directly reflect
their wild counterparts. However, due to limitations with accessing wild populations
of neonatal leatherbacks, this is the closest approximation to healthy wild leatherback
neonates currently available. In the future, if access allows, additional studies should be
conducted on wild leatherback neonates. Though access to wild leatherback neonates
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is limited, a potential alternative next step to consider could be rearing leatherbacks in
untreated and constantly circulating ocean water.

4.2. Comparisons between Carapace and Flipper on Nesting Females

The relative abundance of both bacterial phyla and families were relatively similar
between the carapace and the flipper of nesting females. However, the phyla Cyanobacteria
and Verrucomicrobiota were both more predominant on the flipper while Patescibacteria
was found in higher abundance on the carapace. The bacterial family Rubritaleaceae
was notably more abundant on the flipper. Alpha diversity was consistently higher on
the flipper when compared to the carapace, and differences in beta diversity between
locations show that the bacterial communities at each location were significantly different.
Minor differences in relative abundance of phyla and families were expected, as were the
significant differences in both alpha and beta diversity.

Previous studies in loggerheads and freshwater turtles have demonstrated significant
differences in microbial communities on different parts of the body such as the head,
skin, and shell [23–25]. Kanjer et al. (2022) reported higher diversity and richness on
the carapace of loggerheads when compared to samples taken from the skin (i.e., head,
neck, and flippers) [25]. This is likely due to microhabitats on the skin that influence the
microbiota at different locations on the body [58]. In contrast to the loggerheads, I found
significantly higher alpha diversity on the flippers of leatherbacks when compared to
the carapace. This difference is likely due to the unique composition of the leatherbacks
integumentary system. The adult leatherback carapace is a waxy, pliable surface composed
of a resilient and flexible alpha-keratin underlying a thin layer of beta-keratin [1]. In contrast
to this, the front flippers are covered in smooth and fine scalation [1]. The texture and
compositional differences between these two regions likely create two unique microhabitats
that may be more or less favorable to particular bacteria. The fine scalation on the front
flipper likely allows the proliferation of a more diverse array of bacteria, resulting in the
higher alpha diversity observed, though not significantly higher. The proteins forming the
skin and scutes vary across the turtle bodies, contributing to the nature of microhabitats.
Morphological work with several freshwater species document structural and biochemical
diversity and nature of integument with body region [59,60].

Health assessments of nesting sea turtles are the most common due to the ease of
accessing them during oviposition [61–64]. However, it is important to note that the
physiologic state of the nesting female is highly unique and may influence the skin micro-
biota [65–67]. Leatherback sea turtles are capital breeders that forage little to none during
nesting season [63,68]. In addition to fasting, a nesting female also undergoes changes in
hormone levels associated with reproduction [65–67], which has been shown to impact
skin microbiota in humans [66,69]. Consequently, the microbiota data presented here for
nesting leatherbacks may not reflect the normal microbiota of a foraging leatherback [6].
As such, additional studies should be aimed at characterizing the normal microbiota of
foraging leatherbacks, both male and female.

The differences between sample locations seen in nesting females may also be true
for neonatal leatherbacks. In this study, the whole body of neonatal leatherbacks was
swabbed due to their small size and the generally conserved fine scalation across their
body [1]. However, given the observations in nesting females, differences between sample
locations (i.e., carapace and limbs) should also be explored over time in neonates. As
leatherback neonates grow and shed their scales, it is likely that differences in microbial
communities will arise across the body and resemble that of the nesting female. The shift
of these communities over time could then be used to make inferences to the role of the
bacteria at different locations and during different life stages.

5. Conclusions

This study presents novel information on leatherback skin microbiota and reveals
that a unique skin microbiota exists at different life-stage classes. Additionally, we found
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that different locations on the body host unique microbial communities. Moving forward,
additional research should be aimed at identifying the core microbiota present on the skin
or foraging leatherbacks and in wild neonates, if logistically feasible. However, these
baseline data serve as an essential foundation to begin to understand the role that the
skin microbiota plays in leatherback health, immune function, disease, and resilience to
environmental stressors. Understanding these essential host–microbial relationships is the
next step in managing this highly endangered species.
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