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Abstract: Diagnosing canine visceral leishmaniasis (CVL) in Brazil faces challenges due to the limita-
tions regarding the sensitivity and specificity of the current diagnostic protocol. Therefore, it is urgent
to map new antigens or enhance the existing ones for future diagnostic techniques. Immunoinformatic
tools are promising in the identification of new potential epitopes or antigen candidates. In this study,
we evaluated peptides selected by epitope prediction for CVL serodiagnosis in ELISA assays. Ten
B-cell epitopes were immunogenic in silico, but two peptides (peptides No. 45 and No. 48) showed
the best performance in vitro. The selected peptides, both individually and in combination, were
highly diagnostically accurate, with sensitivities ranging from 86.4% to 100% and with a specificity
of approximately 90%. We observed that the combination of peptides showed better performance
when compared to peptide alone, by detecting all asymptomatic dogs, showing lower cross-reactivity
in sera from dogs with other canine infections, and did not detect vaccinated animals. Moreover,
our data indicate the potential use of immunoinformatic tools associated with ELISA assays for the
selection and evaluation of potential new targets, such as peptides, applied to the diagnosis of CVL.

Keywords: canine visceral leishmaniasis; serological diagnosis; peptides-based ELISA; immunoinformatic

1. Introduction

Leishmaniasis belongs to a complex group of diseases caused by a parasite from the
Leishmania genus, leading to a broad spectrum of clinical presentations [1]. Leishmania infantum
is one of the primary causes of visceral leishmaniasis (VL), which is fatal in 95% of untreated
cases [2]. It is estimated that 50,000–90,000 new VL cases occur annually worldwide, with
only 25–45% of these cases being reported to the WHO. In Latin America, VL has been
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declared endemic in 12 countries, with 63,331 cases being registered between 2001 and
2018 [3]. In Brazil, VL remains a serious public health problem, with 3.466 new human
cases reported in 2018, which corresponds to 97% of the total cases in America [3].

Particularly in Brazil, the Leishmaniasis Control and Surveillance Program includes
the early diagnosis and treatment of human cases, control of insect vectors, and the identifi-
cation and culling of seropositive-infected dogs [4]. The management of infected dogs is
considered an essential component in the control of VL, given the zoonotic profile of the
disease in Brazil [5], where dogs are regarded as urban hosts of the disease, representing an
incidence of 5.4 per 1000 dogs-months and a prevalence of 8.1% in endemic areas [6].

Regarding the serodiagnosis of canine visceral leishmaniasis (CVL) in Brazil, the stan-
dard protocol recommended by the Brazilian Ministry of Health involves two sequential
tests, an initial dual path platform (DPP®) test, which is an immunochromatographic test
employed in the screening of seropositive dogs, followed by a sequential test, which is
an enzyme-linked immunosorbent assay (ELISA) that is considered as the confirmatory
test (Brazil. 2014). However, several studies have indicated that this current protocol is
inefficient, demonstrating a lower diagnostic accuracy in asymptomatic dogs and those in
the initial stages of the infection [7,8]. This represents a serious issue because up to 85% of
L. infantum-infected dogs may be asymptomatic in endemic areas, acting as a reservoir for
the transmission of L. infantum between sand flies and humans [9]. Moreover, the tests have
yielded false-positive results for dogs infected with other pathogens such as Ehrlichia canis
and Babesia canis [10,11], which could lead to unnecessary euthanasia of noninfected dogs.
In addition, it has been reported that the vaccination of dogs might lead to seroconversion,
which can directly impact the diagnosis of canine disease.

Despite these limitations, serological methods represent the most practical and flexible
tools for epidemiological research and CVL diagnosis. Thus, reinforcing the importance
of developing innovative alternatives and identifying new antigens. In this context, im-
munoinformatics presents itself as a rational tool, given its potential use as a catalyst in the
prospecting processes of candidate components of diagnostic tests and vaccines [12,13]. In
this study, we propose the use of an immunoinformatic approach to select B-cell epitopes
as antigen candidates to be used in CVL serodiagnosis.

2. Materials and Methods
2.1. In Silico Strategies and Peptide Selection

For a better understanding, a flow chart with an experimental design is shown in
Figure 1. The strategy is detailed and explained in the next topics. The peptide sequences
were retrieved from the previously established L. infantum proteome relational database
proposed by Brito et al. 2017 [14]. Using this database, the search simultaneously consid-
ered the highest values of 3 B-cell epitope predictor algorithms (AAP12, BCPred12, and
BepiPred) [15–18]; in addition, all intracellular peptides were discarded after considering
results obtained from cell location predictor algorithms (WoLF PSORT, Sigcleave, TargetP,
and TMHMM) [19–22]. After that, to elucidate the interactions and metabolic pathways
of proteins containing the peptides in the previous step, we used the STRING v.11 algo-
rithms [23,24]; Leishmania was established as a reference organism, and text prospecting,
experiments, database, co-expression, neighborhood, genetic fusion, and co-occurrence
were used as active sources of interaction, with a mean confidence interval of 0.400, and the
design of PPI networks was made with the aid of the Cytoscape program, with the addition
of information obtained from KEGG [25]. Then, selected peptide sequences were compared
against Leishmania donovani, Leishmania braziliensis, Leishmania major, Trypanosoma cruzi,
Ehrlichia, and Babesia organisms using the Basic Local Alignment Search Tool (BLASTp) [26].
Furthermore, this same algorithm was used to eliminate proteins that, despite fulfilling the
previous criteria, presented a similarity greater than 60% to humans, dogs, and mice, thus
decreasing the possibility of obtaining proteins already present in these three organisms.
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Figure 1. Flow chart with an experimental design for the selection and application of synthetic
peptides, based on the epitope prediction approach, in the serological diagnosis of CVL [14].

2.2. Peptide Synthesis

Linear peptides from L. infantum (15–17 mer) were synthesized with a purity higher
than 95% obtained through purification by high-performance liquid chromatography by the
Genscript Co., Ltd. (Piscataway, NJ, USA). Once the peptides arrived at the Immunopathol-
ogy Laboratory, they were stored in an ultra-freezer at −80 ◦C until use, when they were
resuspended (1 mg/mL) in dimethyl sulfoxide (DMSO).

2.3. Enzyme-Linked Immunosorbent Assay

To identify the synthetic peptides that offered the highest performance, a peptide-
based ELISA was performed, and the conditions were standardized for all 10 peptides. Sera
of 10 animals infected with L. infantum and 10 healthy animals were used individually for
standardization and peptide screening. Flat-bottom polystyrene plates (Nunc MaxiSorp®,
San Diego, CA, USA) were sensitized with each peptide, at a concentration of 0.25 µg per
well, each well containing 100 µL of carbonate-bicarbonate buffer (pH 9.6), after which they
were incubated at 4 ◦C overnight. After incubation, 4 consecutive washes were carried out
with a wash solution composed of PBS (pH 7.2) added with 0.05% Tween 20, to remove
antigen excess. Then, using a wash solution added with 5% BSA, possible free sites were
blocked. In this step, each well was filled with 100 µL of this blocking solution for 2 h
at 37 ◦C. This was followed by another step of 4 consecutive washes, and, after that, the
diluted samples (1:600) were added after dilution in blocking solution (100 µL/well) and
incubated again at 37 ◦C for 1 h. After incubation and 4 consecutive washes, the plates
were incubated for 1 h at 37 ◦C with peroxidase-conjugated sheep anti-dog IgG (Bethyl
Laboratories, Inc., Montgomery, TX, USA) diluted 1:16,000 in a wash solution (100 µL/well).
The reactions were carried out using 3,3′,5,5′-Tetramethylbenzidine as the substrate for
20 min in the dark, with subsequent interruption of the reaction using 30 µL of 2.5 M H2SO4,
followed by analysis in a spectrophotometer (ELX800 Biotek Instruments, Winooski, VT,
USA) at 450 nm. After the screening, two peptides were selected as presenting the best
results after the assay with the serum samples. The sequence of the peptides No. 45 (Pep45)
and No. 48 (Pep48), described in the current work, is registered at the Instituto Nacional
da Propriedade Industrial (Brazil) under patent number BR 1020230118887, deposited on
15 June 2023.

2.4. Preparation of L. infantum Soluble Antigenic Extract

The L. infantum strain MCAN/BR/2008/OP46 was used for the preparation of the
L. infantum soluble antigenic extract. Stationary phase promastigotes of L. braziliensis were
grown at 24 ◦C in liver infusion tryptose (LIT) medium supplemented with 10% fetal bovine
serum (FBS, Sigma-Aldrich, Saint Louis, MO, USA), 100 U/mL penicillin, and 100 µg/mL
streptomycin, at pH 7.4. The soluble Leishmania infantum antigen (SLiA) was prepared as
described previously by Reis et al. (2006) [27].
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2.5. Animal Samples

The study protocol number 083/2007 was approved by the Universidade Federal
de Ouro Preto Committees of Ethics in Animal Experimentation. Serum samples from
113 dogs were selected from a serum bank at the Laboratório de Imunopatologia from
the Universidade Federal de Ouro Preto, where they were stored at −20 ◦C. The samples
were categorized into distinct groups (Figure 2). Twenty (20) samples from noninfected
dogs were included as the control group (CNI; n = 20). This group was composed of
five (05) sera from control dogs born in a kennel of the Federal University of Ouro Preto
(Minas Gerais, Brazil) and fifteen (15) sera from control dogs from an endemic area in Brazil
(Governador Valadares, Minas Gerais, Brazil). The control dogs were characterized by
negative parasitological and PCR-restriction fragment length polymorphism (RFLP) results
for L. infantum in the bone marrow and seronegative results for Leishmania spp. using
DPP® and BioManguinhos ELISA®. The L. infantum-infected group of dogs (CVL; n = 37)
was divided into three groups based on their clinical status: asymptomatic dogs (AD;
n = 18) with no clinical signs of CVL; oligosymptomatic dogs (OD; n = 9) presenting one to
three signs; and symptomatic dogs (SD; n = 10) with more than three characteristic clinical
signs of VL. The characteristic signs include opaque bristles, a severe loss of weight, ony-
chogryphosis, cutaneous lesions, apathy, and keratoconjunctivitis (Reis 2006) [27]. The CVL
group was determined based on the serological reactivity of dogs in the BioManguinhos
ELISA®, DPP®, and PCR-RFLP in the bone marrow results. Sera from dogs infected with
E. canis (n = 15), B. canis (n = 9), or Trypanosoma cruzi (n = 15) were used for cross-reactivity
analyses. Each infection was previously characterized using specific serology (ELISA) and
PCR-positive results, and samples were confirmed to be PCR-negative in the bone marrow
for L. infantum. In addition to the groups described above, the study also used 17 samples
from dogs vaccinated with Leish-Tec® (n = 7), a commercial vaccine against CVL available
in Brazil, and a potential candidate vaccine, LBSap (n = 10) (Aguiar Soares 2020) [28]. All
dogs presented negative serology using DPP® and ELISA and were PCR-negative in the
bone marrow for Leishmania spp.
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Figure 2. The experimental design employed in the serological test for peptides No. 45, No. 48,
and mix. The control noninfected group (CNI), dogs from the endemic area and nonendemic area.
The L. infantum-infected dogs (CVL) were stratified according to their statuses as asymptomatic
dogs (AD), oligosymptomatic dogs (OD), and symptomatic dogs (SD). Vaccinated dogs (LBSap and
Leish-Tec®) and dogs infected with other pathogens (Trypanosoma cruzi, Ehrlichia canis, and Babesia
canis) constitute the other two groups evaluated.
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2.6. Statistical Analysis

The OD cutoff assays were calculated using the receiver operating characteristic curve
(ROC curve), by considering the point that yielded the highest combined value of sensitivity
and specificity for each antigen. GraphPad Prism software (version 8.0 for Windows) was
used to provide the area under the curve (AUC) and the ROC curve. The sensitivity,
specificity, negative predictive value (NPV), positive predictive value (PPV), and accuracy
were calculated according to Greenhalgh (1997).

3. Results
3.1. The Database Provides Potential Epitopes for Use in CVL Diagnosis

The database used had 8241 predicted proteins, which when submitted to the B-cell
predictor algorithms, returned 47,482 epitopes according to BepiPred, 957,493 according to
BCPred12, and 2,361,313 according to AAP12. A search script was then used to find the
higher scores for all algorithms, resulting in peptides belonging to five proteins, which were
predicted by all three predictive algorithms, and which were secreted/excreted and are not
intracellular: LinJ.18.1500, LinJ.32.0970, LinJ.36.2160, LinJ.28.1850, and LinJ. 20.0350. After
selection, these proteins have their biological importance analyzed using PPI networks,
and all five proteins seem to relate to important cellular functions, especially in metabolic
pathways. The peptide sequence, position, prediction scores, and protein ID of each peptide
selected are shown in Table 1. The BLASTp analysis was performed to evaluate the identity
and similarity between the selected peptides and non-redundant protein sequences from
L. donovani, L. braziliensis, L. major, T. cruzi, Ehrlichia, and Babesia organisms (Table 2). It
is possible to note that for peptides No. 50 and No. 52 to No. 55, no similarity with
Ehrlichia was found. Furthermore, all peptides showed 100% identity and a low e-value for
L. donovani. For L. braziliensis, the identity values were lower, not reaching 100% for any
peptide. The identity for L. major, in general, was higher when compared to L. braziliensis,
and it can still be observed that peptide No. 48 had the highest e-value among all Leishmania
species and an identity lower than 90%. Regarding sequence similarity with other genera
of pathogens, it was observed that peptides No. 46, No. 47, No. 48, No. 50, No. 51, and
No. 52 had a high e-value and/or low identity.

Table 1. B-cell epitopes selected with the highest prediction scores in the databank. The protein
identification, peptide sequence, position in protein sequence, prediction scores, and reactivity index
are shown.

Protein ID Peptide
ID

Peptide
Sequence Position

Prediction Scores Reactivity
IndexAAP12 BepiPred BCPred12

LinJ.18.1500
(XP_001464963)

45 VDPNFQFFHLPVLMF 692–706 0.9 0.8 0.8 7.94
46 EGYSSQYYENSWFHRL 763–777 0.9 0.97 0.8 7.80

LinJ.32.0970
(XP_001467777) 47 WAPISEQKGTTYPTTPNGLPV 493–507 1 1.28 1 6.17

LinJ.36.2160
(XP_001469796) 48 FALIRQGFESFPPTPKT 374–390 1 1.67 0.98 7.51

LinJ.28.1850
(XP_001470212)

50 LAVQPAPSTSDAAGA 288–302 0.9 1.47 0.98 6.26
51 AYQETPESERAELPP 115–129 0.9 1.25 0.98 5.36
52 LPKGPSVPTLPYQEA 443–457 0.9 1.1 0.99 7.19

LinJ.19.0350
(XP_001464998)

53 SRRPPPLDPEEPEKV 171–185 1 1.74 1 3.93
54 GLGEEEKEVRQTLRDLR 304–320 1 1 0.96 4.83
55 CVERITPRVRDRRASYKQS 262–276 1 0.61 1 7.91
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Table 2. Similarity values obtained by BLASTp for each selected B-cell epitope when confronted with
the proteome of other species of parasites. Asterisks (*) indicate the absence of a similar sequence;
identity values are indicated in percentages (%).

Peptide
ID

Similarity

L. donovani L. braziliensis L. major T. cruzi Ehrlichia Babesia
E-Value Identity E-Value Identity E-Value Identity E-Value Identity E-Value Identity E-Value Identity

45 8 × 10−11 100 1 × 10−8 92.86 1 × 10−9 93.33 2 × 10−8 86.67 23 85.71 14 77.78
46 6 × 10−12 100 18 62.5 9 × 10−9 87.5 19 66.67 83 85.71 13 100
47 1 × 10−14 100 2 × 10−11 85 1 × 10−14 100 48 61.11 69 76.92 38 71.43
48 2 × 10−11 100 2 × 10−7 87.5 44 85.71 22 75 11 80 44 100
50 2 × 10−7 100 28 69.23 3 × 10−5 92.86 61 78.57 * * 57 90
51 3 × 10−9 100 3 × 10−7 92.86 3 × 10−9 100 16 77.78 33 75 11 53.33
52 7 × 10−9 100 2 × 10−7 93.33 7 × 10−9 100 40 80 * * 66 64.29
53 2 × 10−9 100 1 × 10−8 93.33 2 × 10−9 100 2 × 10−5 80 * * 16 85.71
54 6 × 10−11 100 3 × 10−9 94.12 8 × 10−9 94.12 2 × 10−7 88.24 * * 39 70
55 9 × 10−14 100 2 × 10−11 89.47 1 × 10−12 94.74 1 × 10−10 89.47 * * 21 77.78

3.2. All Peptides Were Able to Differentiate Infected and Uninfected Animals during the
Standardization Step of the ELISA Reaction

After standardization, and to evaluate the peptides as immunodiagnostic using indi-
vidual serum samples, ELISA reactions were performed using the 20 previously character-
ized samples from 10 infected animals and 10 uninfected animals. All peptides showed
the ability to distinguish animals infected by L. infantum. Using the average of the values
obtained in the individual ELISA, the reactivity index showed that each peptide was able to
differentiate infected from uninfected animals by 7.94, 7.80, 6.17, 7.51, 6.26, 5.36, 7.19, 3.93,
4.83, and 7.91 times for peptides No. 45–No. 55, respectively (Table 1). By observing this
index, it is possible to notice that all peptides significantly separated infected animals from
animals not infected by L. infantum, with peptide No. 45 being the highest and peptide
No. 53 having the smallest difference between optical density values.

3.3. The Peptides No. 45, No. 48, and the Combination of Both Showed the Best Capacity to
Distinguish L. infantum-Infected Dogs with Different Clinical Forms from the Noninfected Dogs

Considering the results obtained in the ELISA standardization, our selection indicators
for the next assays were a peptide with the highest reactivity level and another peptide
that showed the lowest OD mean of the negative control. In this sense, the peptides No. 45
(VDPNFQFFHLPVLMF) and No. 48 (FALIRQGFESFPPTPKT) were selected for the next
step. We observed that the peptides No. 45 (Pep45) and No. 48 (Pep48), in an isolated form
as well as in combination (mix), demonstrated an increased efficiency in differentiating
infected dogs from the noninfected, as shown in Figure 3a. Thus, SLiA, No. Pep45, No.
Pep48, and mix presented 35/37 (94.6%), 32/37 (86.5%), 37/37 (100%), and 36/37 (97.3%)
of the true-positive results, respectively. Therefore, peptide No. 48 and peptide mix were
capable of detecting all the asymptomatic dogs (18/18; 100%), oligosymptomatic dogs
(9/9; 100% using peptide No. 48, and 8/9; 88.8% using peptide mix), and all symptomatic
dogs (10/10) (Figure 3b). The general performance of peptide No. 48 and the peptide
mix was superior compared to that of peptide No. 45 and SLiA, demonstrating higher
positive (94.8% and 97.3%) and negative predictive values (100% and 95%) and accuracy
(both assays presented 96.5%).

3.4. The Selected Peptides Present Low Cross-Reactivity with Immunoglobulins from Dogs Infected
with Other Canine Pathogens

The ELISA assays showed low reactivity when serum samples from T. cruzi-, E. canis-,
and B. canis-infected dogs were tested (Figure 4). No cross-reactivity was observed
in T. cruzi-infected animals in all tests, in contrast to that with SLiA, which presented
57% positive results for these samples. We observed that the peptide mix showed better
results when compared to the results shown by isolated peptides and SLiA. As shown in
Figure 4c, the peptide mix presented superior sensitivity (97.2%), specificity (84.7%), NPV
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(98%), PPV (80%), and AUC (0.9794). Moreover, an accuracy analysis of this approach
indicated an excellent performance (89.5%).
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Figure 3. Performance of the peptides No. 45, No. 48, and mix in the discrimination of noninfected
and L. infantum-infected dogs presenting different clinical forms. (a) Distribution of the individ-
ual optical density results of the control noninfected dogs (CNI) and L. infantum-infected dogs
(CVL) tested by the peptides No. 45, No. 48, mix, and soluble Leishmania infantum antigen (SLiA).
(b) Distribution of the individual optical density results of the control noninfected dogs (CNI) and
L. infantum-infected dogs according to clinical forms. The CVL dogs were stratified according to their
clinical statuses as asymptomatic dogs (AD), oligosymptomatic dogs (OD), and symptomatic dogs
(SD). The dotted lines within the graphs represent the cut-offs calculated by the ROC curve between
the negative and positive results of SLiA (OD = 0.273), Pep45 (OD = 0.41), Pep48 (OD = 0.431), and mix
(OD = 0.331). (c) The ROC curves were constructed with the results of the control noninfected, and
L. infantum-infected control serum samples tested by each assay. (d) Results of sensitivity, specificity,
negative predictive values (NPV), positive predictive values (PPV), and accuracy from the canine
visceral leishmaniasis positive and negative animals tested by the peptides No. 45, No. 48, the mix,
and SLiA.
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Figure 4. Cross-reactivity of the peptides No. 45, No. 48, and mix with samples from dogs infected
with other pathogens of medical and diagnostic importance. (a) Distribution of the individual optical
density results from serum samples from dogs infected with Leishmania infantum, Trypanosoma cruzi,
Ehrlichia canis, and Babesia canis using the peptides No. 45, No. 48, mix, and soluble Leishmania
infantum antigen (SLiA). The dotted lines within the graphs represent the cut-offs calculated by the
ROC curve between the negative and positive results of SLiA (OD = 0.273), Pep45 (OD = 0.41), Pep48
(OD = 0.431), and mix (OD = 0.331). (b) The ROC curves were constructed with the results of serum
samples from control noninfected dogs, L. infantum-infected dogs, and dogs infected with other
pathogens tested by each assay. (c) Results of sensitivity, specificity, negative predictive values (NPV),
positive predictive values (PPV), and accuracy from noninfected control dogs, L.infantum-infected
dogs, and dogs with other canine pathogens tested by the peptides No. 45, No. 48, mix, and SLiA.

3.5. Peptides No. 45, No. 48, and Combination Present No Reactivity with Immunoglobulins from
the Serum Samples of Vaccinated Dogs

We evaluated the serologic reactivity of serum samples from dogs vaccinated with two
vaccines against CVL, Leish-Tec®, a commercially available vaccine in Brazil, and LBSap, a
potential vaccine candidate that will be commercially available (Figure 5a). We observed
that the isolated peptides demonstrated low reactivity for these samples, presenting higher
sensitivity, specificity, predictive values, and accuracy compared to that shown by SLiA.
However, our data indicate that the mixture of peptides demonstrated a better performance
(Figure 5b), high sensitivity (97.2%), high specificity (96.8%), and high accuracy (97.1%),
as none of the vaccinated dogs presented with any reaction to the peptide mix, whereas
70.5% of vaccinated dogs were detected positive by SLiA. These results indicated that
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no reactivity or false-positive diagnosis was observed for the vaccinated dogs when the
peptide mix was employed.
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Figure 5. Performance of the peptides No. 45, No. 48, and mix in the discrimination of L. infantum
infected dogs from vaccinated dogs. (a) Distribution of the individual optical density results from
serum samples from dogs infected with L. infantum and vaccinated dogs using the peptides No. 45,
No. 48, mix, and soluble Leishmania infantum antigen (SLiA). The dotted lines within the graphs
represent the cut-offs calculated by the ROC curve between the negative and positive results of SLiA
(OD = 0.273), Pep45 (OD = 0.41), Pep48 (OD = 0.431), and mix (OD = 0.331). (b) Results of sensitivity,
specificity, negative predictive values (NPV), positive predictive values (PPV), and accuracy from
noninfected control dogs, L. infantum-infected dogs, and vaccinated dogs tested by the peptides
No. 45, No. 48, mix, and SLiA.

4. Discussion

Bioinformatics has already shown promise in identifying potential antigens for vac-
cines or diagnosing infectious parasitic diseases, presenting a reduction in the time needed
for this exploration and in the costs, in addition to gaining in diagnostic performance,
considering the increase in specificity, sensitivity, and reproducibility indexes [12,29]. In
this study, bioinformatics tools were used to select linear epitopes for B-cells based on the
combination of three prediction algorithms, BepiPred, AAP12, and BCPred12, based on the
assumption that the combination of different algorithms has greater accuracy, especially
when dealing with protozoa [30]. Our selected peptides show good score values, including
algorithms that are considered more restrictive, which is the case for BepiPred [31,32]. Fur-
thermore, using the PPI networks, it was possible to evidence the biological importance of
the proteins that contained the selected peptides, as they can participate in the modulation
of cellular activities like virulence, metabolism regulation, or latency behavior in some
species of the parasite [33–36]. The similarity assessment was performed to obtain a previ-
ous result of possible cross-reactions between pathogens that can be found in a co-infection
situation [10,37]. In this context, a high similarity can be observed with members of the
same genus, such as L. infantum and L. donovani. However, one must pay attention to the
similarity in the treatment of the disease when caused by species of the same genus, in
addition to the geographic distribution of certain species, such as L. donovani, which is not
considered prevalent in the New World [38,39]. These observations, added to the lower
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similarity noted between different genera of parasites, made all the peptides selected by
the B-cell prediction algorithms promising for further steps. Thus, all ten selected peptides
were used for the standardization steps of the ELISA technique and the assessment of
diagnostic capacity.

All 10 peptides showed potential results in the prediction and similarities scores;
however, the screening for in vitro evaluation was based on the standardization tests. In
this context, we selected peptide No. 45, with a greater difference in reactivity between the
mean of infected and uninfected animals that showed the highest reactivity index (7.94),
and peptide No. 48, which had the lowest OD mean of the negative control; this threshold
can be used to define the lower limits of detection with a reduced cross-reaction between
uninfected and infected animals.

Our data indicated that Pep45, Pep48, and a mix of these peptides showed excellent
performance, with high sensitivity (86.4%, 100%, and 97.2%, respectively), high specificity
(100%, 90%, and 95%, respectively), and elevated accuracy (91.2%, 96.5%, and 96.5%,
respectively) in detecting IgG from L. infantum-infected dogs presenting different clinical
forms. Moreover, these peptides were subjected to a proof-of-concept experiment to test
their ability to distinguish leishmaniasis from other infections (T. cruzi, B. canis, E. canis) or
vaccinated dogs. Similar studies that employed immunoinformatic tools demonstrated that
the peptides, alone or in combination, were reactive to the serum of infected dogs, with
accuracy values ranging from 99.6% to 100%; their assay was highly sensitive and specific
when compared to the soluble Leishmania antigen, which showed low sensitivity and
specificity [40]. These peptides, selected using immunoinformatic tools, display superior
performance when compared to other studies that have used crude Leishmania antigen
preparations such as the commercial kit for canine leishmaniasis diagnosis in Brazil, which
uses antigens prepared from Leishmania major-like promastigotes [41–43]. The antigens used
in these assays display variability in accuracy parameters owing to antigen preparation and
antigenic differences among Leishmania species. These considerations were consistent with
the present study’s results, in which the statistical parameters of ELISA using the soluble
antigen of L. infantum (SLiA) displayed inferior performance.

Our results for Pep48 and the peptide mix indicate an efficiency in the detection
of most of the infected dogs, including the asymptomatic ones, increasing the odds of
detecting infected dogs that might not be detected using other serological tests. The current
protocol recommended by the Brazilian Ministry of Health for CVL diagnosis has several
limitations. The specificity of the immunochromatographic assay (DPP®-CVL) presented
specificities varying from 70% to 91.7% [44,45], whereas ELISA (EIE®-LVC) presented
specificity values varying from 87.5% to 91.76% [44,46].

In this study, we demonstrate that the peptides No. 45, No. 48, and mix presented
no reactivity in samples of T. cruzi-infected animals, indicating that these peptides may
not be shared between Leishmania and T. cruzi species. In human VL, several studies
have shown issues related to cross-reactivity with Chagas disease, owing to the sharing
of antigens associated with phylogenetic proximity [47,48]. However, we demonstrated
that the mixture of peptides increased the specificity and accuracy compared to that shown
by isolated peptides, as confirmed by the higher performance values and lower cross-
reactivity in T. cruzi, E. canis, and B. canis pathogens [49], and have previously reported that
the association of antigens can lead to better performance because of the use of a single
platform for the simultaneous serological measurement of antibodies against different
antigens of L. infantum. This fact can be associated with the binding of antibodies with
higher avidity to the antigens, and the peptide mix could select these antibodies more
effectively, favoring a more specific interaction. Despite the lack of concrete evidence of
genomic homology between the genus Ehrlichia and Leishmania, false-positive results are
usually found in most conventional serological tests [43,50]. However, some studies do not
support serological cross-reactivity among Leishmania species, E. canis, and B. canis (10),
based on the phylogenetic differences in such species, since the microorganisms of the genus
Ehrlichia are intracellular bacteria, whereas Leishmania and Babesia are protozoa of the orders
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Kinetoplastida and Piroplasmida, respectively [10,51,52]. Other studies have associated
leishmaniasis infection with an increasing co-infection with E. canis and B. canis. Attipa et al.
(2018) reported that dogs with clinical leishmaniasis are 12 times more susceptible to
E. canis infection when compared to healthy dogs, indicating a suppression of the immune
system caused by Leishmania infection, which could allow reactivation of a subclinical
E. canis infection that was present previously or enable the establishment of a new E. canis
infection, and recommend the simultaneous treatment of both diseases [11,53]. Although,
in the present study, each infection was previously characterized using specific serology
(ELISA) and PCR-positive results and confirmed to be PCR-negative for L. infantum, new
mechanisms must be elucidated to understand the cross-reactivity between such species.

The development of vaccines against CVL has been stimulated as an effective and
cost-effective strategy for controlling the spread of leishmaniasis in endemic and expand-
ing areas [54]. Although vaccine-induced anti-Leishmania antibodies can be detected for
several months after immunization, it is essential to evaluate whether a vaccine-induced
seroconversion might cause unnecessary culling of noninfected dogs and, consequently,
generate problems in surveillance and control programs [55,56]. Both vaccines (Leish-Tec®

and LBSap) described in the present study can induce a humoral response [28,57,58]. We
observed that peptides No. 45 and No. 48 presented low reactivity with antibodies obtained
from dogs immunized with the commercial vaccine, Leish-Tec®, and dogs immunized
with the LBSap vaccine. The peptide mix showed no reactivity, whereas high reactivity
was observed (70.5% of the samples) in vaccinated dogs when SLiA was employed. Our
findings indicate that the peptides evaluated had better performance compared to other
studies that failed to show low reactivity in samples from vaccinated dogs [59].

In summary, our findings showed that the peptide mix presented a higher performance
compared to that shown by SLiA and the isolated peptides, with an excellent capacity
for the detection of asymptomatic animals and for discriminating infections with other
pathogens or vaccinated dogs, which could improve CVL diagnosis, especially in endemic
areas. These data also support the establishment of this approach as the gold standard
and open new possibilities for employing these peptides in the construction of chimeric
proteins, to improve the accuracy of this test or for the development of a rapid test that
could be used as a versatile tool in control programs or in human diagnosis disease.
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