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Abstract: Arthrobotrys oligospora, a widespread nematode-trapping fungus which can produce conidia
for asexual reproduction and form trapping devices (traps) to catch nematodes. However, little is
known about the sporulation mechanism of A. oligospora. This research characterized the functions
and regulatory roles of the upstream spore-producing regulatory genes, AosfgA and AofluG, in
A. oligospora. Our analysis showed that AosfgA and AofluG interacted with each other. Meanwhile,
the AofluG gene was downregulated in the ∆AosfgA mutant strain, indicating that AosfgA positively
regulates AofluG. Loss of the AosfgA and AofluG genes led to shorter hyphae and more septa, and
the ∆AosfgA strain responded to heat and chemical stresses. Surprisingly, the number of nuclei was
increased in the mycelia but reduced in the conidia of the ∆AosfgA and ∆AofluG mutants. In addition,
after nematode induction, the number and volume of vacuoles were remarkably increased in the
∆AosfgA and ∆AofluG mutant strains. The abundance of metabolites was markedly decreased in
the ∆AosfgA and ∆AofluG mutant strains. Collectively, the AosfgA and AofluG genes play critical
roles in mycelial development, and they are also involved in vacuole assembly, the stress response,
and secondary metabolism. Our study provides distinct insights into the regulatory mechanism of
sporulation in nematode-trapping fungi.

Keywords: Arthrospora oligospora; sporulation-related genes; vacuole assembly; secondary metabolism

1. Introduction

Plant-parasitic nematodes are widely distributed and are the pathogens responsible
for numerous crop diseases and yield reductions, which seriously impair agricultural
production [1]. At present, the disease control of plant-parasitic nematodes is still dom-
inated by chemicals. However, chemicals are not only highly toxic, but also potentially
harmful to both organisms and the environment [2]. In recent years, research on efficient
and environmentally friendly nematicidal bioresources has received increasing attention.
Nematode-trapping fungi (NTFs) are a class of filamentous fungi that produce specialized
traps to capture and digest nematodes [3]. Currently, diverse traps have been discovered
in various NTFs, including adhesive three-dimensional networks, adhesive branches, ad-
hesive knobs, constrictor rings, non-constricting rings [4,5], acanthocytes [6], and spiny
balls [7]. Nematodes can be captured through adhesion or mechanical means. The ne-
matode’s mycelium forms specialized invasive structures when the fungus contacts the
nematode and subsequently destroys the nematode cuticle through mechanical expansion
accompanied by the secretion of degrading enzymes [8]. Moreover, endoparasitic fungi
attack nematodes through spores, which germinate rapidly, and after being ingested by
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the nematode, the mycelium invades the internal structure of the nematode, leading to
nematode death [9].

Arthrobotrys oligospora is a classic NTF that mainly produces adhesive three-dimensional
networks to adhere, capture, penetrate, infest, and disintegrate nematodes after sensing
their presence [10]. To efficiently capture “prey”, A. oligospora has evolved to attract ne-
matodes using olfactory mimicry and sex pheromones [11]. A. oligospora expands its
reproduction mainly by producing conidia. Interestingly, the conidia of A. oligospora dis-
play significant variations in size and morphology on different media [12]. In addition,
under specific survival conditions, such as feces and soil where plants live, the conidia of
A. oligospora can germinate directly to form conidial traps without moving through the
nutrient growth stage [13,14]. Therefore, the study of the regulatory mechanism of sporu-
lation is crucial for elucidating the mycelial development, trap formation, and potential
application of A. oligospora and other NTFs.

Spore production involves multiple biological processes, such as gene expression, cell
differentiation, and cellular interrelationships [15]. Notably, asexual spore production is
essential to the lifecycle of most filamentous fungi [16]. Presently, there are few studies on
the functions and regulatory mechanisms of the spore-producing regulatory genes of NTF.
However, the regulatory mechanisms of sporulation have been elucidated in the model
fungi Aspergillus nidulans and Neurospora crassa. In A. nidulans, the brlA, abaA, and wetA
genes together form a central developmental pathway (CDP), which mainly regulates the
orderly expression of other sporulation-related genes [17]. All three genes are essential
for spore production [18,19]. In addition, an upstream developmental activation pathway
(UDAP), including fluG, flbA, flbB, flbC, flbD, and flbE, can lead to the initiation of sporulation
and the activation of brlA [20,21]. SfgA, a negative regulator, represses fluG and flbA-flbE
during the trophic growth phase. Later, fluG gradually releases the inhibitory effect of sfgA
and activates the flb gene to initiate spore production [22]. Further, the velvet regulator
vosA and velB genes were able to be activated by abaA, whereas brlA was regulated via
negative feedback from the velB-vosA heterodimer [23]. Notably, light-dependent regulatory
networks (fphA, lreA, lreB, flbA, flbB, and flbC) and G-protein regulatory networks (fadA,
sfaD, and gpgA) were also reported in A. nidulans [24,25]. The two pathways differ in that
light-dependent regulatory networks primarily regulate the ratio of asexual and sexual
development in fungi, whereas G-protein regulatory networks determine between trophic
mycelial growth and asexual spore production development [26,27]. Unlike A. nidulans,
the genes which participate in the regulation of macroconidia formation are acon-2, con-3,
csp-1, and csp-2 in N. crassa [23]. In summary, asexual spore production in filamentous
fungi is a complex process co-regulated by multiple genes. The study of the asexual spore
production mechanism of NTFs and other biocontrol fungi can lay the foundation for the
study of mycelial growth, development, and differentiation mechanisms, and also provide
new insights into the development of efficient nematode bio-control agents.

In recent years, studies on A. oligospora have centered on mycelial development and
trap formation. However, limited studies have been conducted on spore-producing genes.
Previous studies show a close link between traps and conidia, and the knockout of most
signaling proteins or functional genes affects not only the trap formation but also the
formation of conidia [28–30]. Recently, our group has elucidated the functions of AoMedA,
AoBrlA, AoAbaA, and AoWetA in A. oligospora. AomedA, AobrlA, AoabaA, and AowetA serve
crucial roles in the spore formation, mycelial development, trap formation, and vacuole
assembly of A. oligospora [31]. However, the functions of the UDAP-associated genes are
still unknown in NTF. In the current research, we investigated the interactions and roles
of the UDAP genes AosfgA and AofluG in A. oligospora. Our data suggest that AosfgA and
AofluG are involved in mycelial growth, conidium formation, the stress response, vacuole
assembly, and secondary metabolism in A. oligospora.
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2. Materials and Methods
2.1. Strains, Plasmids, and Growth Conditions

Arthrobotrys oligospora wildtype (WT) strain (ATCC 24927) and the mutant strains
∆AosfgA and ∆AofluG were cultured on potato dextrose agar (PDA) (200 g potato, 20 g
dextrose, and 20 g agar per 1 L) medium at 28 ◦C. Saccharomyces cerevisiae strain FY834, a
uracil-deficient strain, was used for knockout vector construction and screening and was
cultured on yeast extract peptone dextrose (YPD) (10 g yeast extract, 20 g peptone, and 20 g
dextrose, and 20 g agar per 1 L) medium at 30 ◦C. In addition, the Escherichia coli strain
(DH5α) (TaKaRa Biotechnology Co. Ltd., Dalian, China) was utilized for the preservation
and cloning of plasmid vectors. It was grown on Luria–Bertani (LB) medium at 37 ◦C [32].
Further, pCSN44 and pRS426 plasmids were used to amplify the hygromycin cassette (hph)
and construct the knockout vectors, respectively [33]. Caenorhabditis elegans N2 was cultivated
in an oat medium at 26 ◦C for the induction of trap formation of the NT fungi.

2.2. Fluorescent Quantitative PCR (RT-qPCR)

Mycelial samples of the WT strain cultured from 1 to 7 days on corn dextrose with
yeast extract (CMY) (20 g corn starch, 5 g yeast extract, and 20 g agar per 1 L) medium were
collected, and mycelial RNA was extracted using the Multisource Total RNA Miniprep Kit
(Axygen Scientific, Union City, CA, USA). Subsequently, cDNA was obtained using Prime-
Script RT Reagent Kit with gDNA Eraser (TaKaRa Biotechnology Co. Ltd., Dalian, China).
Finally, RT-qPCR was performed according to the manufacturer’s instructions. The 2−∆∆Ct

method was used to analyze the obtained data, and the β-tubulin gene (AOL_s00076g640)
was used as the reference [34]. The primers for detecting transcript levels of sporulation-
related genes are shown in Table S1. The relative expression level (RTL) levels of the genes
were presented using GraphPad Prism 8.0 (GraphPad Software Inc., San Diego, CA, USA).
Three biological replications were performed for the experimental data.

2.3. Y2H Assay

The AofluG, AosfgA, AoflbA, and AovosA genes were ligated to pGADT7 and pGBKT7
vectors, respectively, and then the above vectors were cotransformed into Y2HGold yeast
competent cells (Clontech, CA, USA). Meanwhile, pGBKT7-53/pGADT7-T and pGBKT7-
Lam/pGADT7-T vectors were used as positive and negative controls, respectively. The specific
experimental methods and medium selection were the same as described previously [35].

2.4. Sequence and Phylogenetic Analysis of AoSfgA and AoFluG

Using the amino acid sequences of spore-producing genes in model fungi such as the
Aspergillus nidulans, Aspergillus fumigatus, and Neurospora crassa as references, the homologs
of AosfgA and AofluG in A. oligospora were obtained through comparison using the NCBI
database [36]. The physicochemical properties of individual amino acid sequences were
calculated using ExPASy-ProtParam-tool, and the domains and functional sites of proteins
were predicted using InterProScan. After that, the amino acid sequences were compared
and analyzed by using DANMAN (version 6.0) (Lynnon Biosoft, San Ramon, CA, USA)
and Clustal X (version 1.81) software in combination. The neighbor-joining (NJ) trees were
constructed using MEGA 7.0 and subjected to 1000 bootstrap replicates [37].

2.5. Targeted Gene Deletion

The sequences of AosfgA (AOL_s00097g406) and AofluG (AOL_s00043g361) were
obtained from the genome of A. oligospora via the NCBI database. The upstream and
downstream fragments of AosfgA and AofluG were PCR-amplified from A. oligospora using
paired primers, and the hph gene was amplified using the pSCN44 plasmid as a template.
The primers for gene disruption are listed in Table S2. The PCR amplicons and pRS426
plasmid backbone (digested with EcoRI and XhoI) were co-transformed into S. cerevisiae
FY834 by electroporation and the recombinant clone strains pRS426-AosfgA-hph and pRS426-
AofluG-hph were screened on SC-Ura medium. Afterward, the fragments were transformed
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into protoplasts of A. oligospora by a PEG/CaCl2-mediated method [31]. The positive
transformants were screened using PDAS (200 g potato, 0.3 g yeast extract, 0.6 M sucrose,
10 g molasses, and 20 g agar per 1 L) containing 200 mg/mL hygromycin (Amresco, Solon,
OH, USA) and verified by means of PCR and Southern blotting (digested with HindIII) [38].
Southern blotting was performed using the North2South Chemiluminescent Hybridization
and Detection Kit (Pierce, Rockford, IL, USA) according to the manufacturer’s instructions.

2.6. Colony Growth and Stress Adaption Analysis

To assess mycelial growth, WT, ∆AosfgA, and ∆AofluG strains were inoculated on PDA
and TG media at 28 ◦C for 5 days, and then the mycelial growth rate was observed and
recorded. The heat tolerance of the strains was tested by using the following method: WT
and mutant strains were incubated on TYGA (10 g tryptone, 5 g yeast extract, 10 g dextrose,
5 g molasses, and 20 g agar per 1 L) medium at 28 ◦C for 1 d; then, they were placed in the
incubator at 28 ◦C, 34 ◦C, 38 ◦C, 40 ◦C, 42 ◦C, and 44 ◦C for 8 h, respectively. Finally, the
plates were incubated at 28 ◦C until day 5, after which the diameters of the colonies were
measured [30]. The sensitivities of the WT, ∆AosfgA, and ∆AofluG strains to different stresses
were as follows: H2O2 (5, 10, and 15 mM) and menadione (0.05, 0.07, and 0.09 mM) as
oxidative stressors, NaCl (0.1, 0.2, and 0.3 M) and Sorbitol (0.25, 0.5, and 0.75 M) as osmotic
stressors, and SDS (0.01%, 0.02%, and 0.03%) and Congo red (0.03, 0.06, and 0.09 mg/mL)
as cell wall-perturbing agents [39]. Briefly, the WT and mutant strains were inoculated in
TG (10 g tryptone, 10 g dextrose, and 20 g agar per 1 L) medium and treated with various
chemical stress reagents for 5 days at 28 ◦C. The type and concentration of the stressor are
marked in the images. After that, the colony diameter was determined, and the relative
growth inhibition (RGI) was determined [40].

2.7. Staining Analysis

To examine the changes in mycelial cells and conidia, septa and nuclei were stained
using 20 µg/mL calcofluor white (CFW) (Sigma-Aldrich, St. Louis, MO, USA) and
20 µg/mL 4′, 6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich, St. Louis, MO, USA)
in the dark for 5–10 min, respectively. The stained samples were observed by means of
fluorescence microscopy (ECLIPSE Ni-E, Nikon, Tokyo, Japan) [28].

2.8. Analysis of Conidial Production and Morphology

To observe the conidiophores, the WT and mutant strains were inoculated separately
on PDA medium for 3 days, then transferred to water agar (WA) plates for incubation for
24 h to 48 h, and then observed under a light microscope (Olympus, Tokyo, Japan) [41].

To determine the conidial production, the WT and mutant strains were cultured on
CMY media for 7 days, and the spores were eluted with 5 mL ddH2O. After that, the 1 µL
of the spore suspension was observed and counted using a light microscope [42]. The spore
production was calculated three times.

2.9. Observation of Trap Morphology and Determination of Pathogenicity

A total of 2 × 104 spores of the WT and mutant strains were inoculated separately
on WA plates at 28 ◦C for 4–5 days, and approximately 200 nematodes (C. elegans N2)
were added for trap induction. Afterward, the traps were photographed and counted at
12, 24, 36, and 48 h. Meanwhile, the mortality rates of the nematodes at different time points
were characterized [43]. Three biological replicates were performed in the above experiment.

To further observe the internal structural changes in the traps of WT and mutant strains,
the mycelium was collected and fixed using an electron microscope fixative (Servicebio,
Wuhan, China), after which it was observed by means of transmission electron microscopy
(TEM) (JEM-1400Plus, Hitachi, Japan) [44].
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2.10. Liquid Chromatography–Mass Spectrometry (LC-MS) Analysis

The WT and mutant strains were shaken in potato dextrose broth (PDB) medium at
28 ◦C and 180 rpm for 5 days, and the fermentation broth was collected by filtering the
mycelia. After that, the mycelia were dried and weighed [30]. An equal volume of ethyl
acetate was added to the fermentation broth, sonicated three times, and left overnight.
The upper organic phase was dried in a vacuum rotary evaporator, and the sample was
dissolved in chromatographic-grade methanol. Then, the solution was filtered through
a 0.22 µm membrane filter. Finally, the previously mentioned procedures for sample
quantification, processing (Thermo Fisher Scientific Dionex Ultimate 3000 UHPLC system
and a Thermo Fisher high-resolution Q precision focusing mass spectrometer) (Thermo
Fisher Scientific, Miami, FL, USA), and metabolomic data (Compound Discoverer 3.3
software package) analysis were performed [45].

2.11. Statistical Analysis

Each experiment was biologically replicated three or more times to verify the accuracy
of the results, and the data are expressed as mean ± standard deviation (SD). Prism 8.0
(GraphPad Software, San Diego, CA, USA) was used as the data analysis software. p < 0.05
was used as the threshold for determining significant differences, and p < 0.001 represented
highly significant differences.

3. Results
3.1. AoSfgA Interacts with AoFluG

To ascertain the expression of the upstream regulatory genes (AofluG, AosfgA, AoflbA,
AoflbB, AoflbC, and AoflbD), the light-regulated gene (AofphA), and the velvet regulator
genes (AovosA and AovelB) during spore production in A. oligospora, we examined the
transcriptional levels of these genes in WT strains 1–7 days post-incubation (dpi) using
RT-qPCR. The findings indicated that the expression level of AofluG was dramatically
raised from the third to the seventh dpi, whereas the expression levels of AosfgA, AoflbA,
and AovosA were decreased or unimpaired during the culture period. In addition, the
expression levels of AoflbB, AoflbC, AoflbD, AofphA, and AovelB initially showed a decreasing
trend but increased significantly at seven dpi; in particular, the AoflbB, AoflbC, and AoflbD
showed a similar transcription profile (Figure 1A). Next, we verified whether there was a
link between the proteins with opposite expression levels using Y2H analysis. We found
that AoFluG interacts with AoSfgA but not with AoFlbA or AoVosA (Figure 1B).

3.2. Sequence Analysis of AoSfgA and AoFluG Protein

To explore the interaction between AoSfgA and AoFluG proteins, the homologs of
the two proteins were analyzed in A. nidulans and N. crassa, as well as in other NTFs. As
the evolutionary tree illustrates, the homologs of AoSfgA and AoFluG are divided into
two located branches, whereas both of them together were clustered with other NTFs
(Arthrobotrys flagrans, Dactylellina haptotyla, and Drechslerella brochopaga) in the same branch
(Figure 2A). The structural domains of these two proteins are highly conserved in different
fungi. Among them, the major conserved domains are the GAL4 and fungal_TF_MHR
superfamily in the AoSfgA and homologous proteins, while the major conserved domains
are the COG2159 superfamily and GIn-synt C superfamily in the AoFluG and homologous
proteins (Figure 2B). Additionally, there are higher sequence similarities of AoSfgA and
AoFluG proteins with the homologs from NTFs than with other filamentous fungi; for
example, AoSfgA shares similarities with NTFs (90.63–97.13%) and other filamentous fungi
(34.14–38.01%). Similarly, AoFluG shares similarities with NTFs (53.05–83.30%) and other
filamentous fungi (33.33–38.02%) (Figure 2C).

3.3. Deletion and Validation of the AosfgA and AofluG Genes

To further investigate the genes’ functions, AosfgA and AofluG genes were knocked
out by means of homologous recombination (Figure 2D). The resulting transformants were
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confirmed via PCR to be 1098 bp and 1488 bp in size for the WT and ∆AosfgA mutant
strains and 4191 bp and 5354 bp for the WT and ∆AofluG mutant strains, respectively
(Figure 2E). Next, the positive transformants were further verified using Southern blotting
(digested with Hind III), which showed that the ∆AosfgA and ∆AofluG mutant strains had
been successfully obtained (Figure 2F).
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level of 1 was used as the control. (B) Yeast two-hybrid (Y2H) assay of AoFluG, AoSfgA, AoFlbA, and
AoVosA proteins in A. oligospora. Plasmids pGBKT7-53 and pGADT7-T served as positive controls
(PCs), whereas pGBKT7-Lam, pGADT7-T, pGBKT7, and pGADT7 served as negative controls (NCs).
Yeast transformants were diluted in 0.9% NaCl, and on this basis, they were diluted four times
with equal volume for 100, 10−1, 10−2, 10−3, and 10−4. Growth was determined on SD/–Trp/–Leu
(SD/−2), SD/–Trp/–Leu/–His/–Ade (SD/−4), and SD/−4/X−a−Gal/Aba media with serially
diluted yeast cells. Asterisks indicate that the mutant strain significantly differs from the WT strain
(Tukey’s HSD, * p < 0.05).
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3.4. AosfgA and AofluG Genes Regulate Mycelial and Nuclei Development

The WT and mutant strains were grown on PDA and TG plates for 6 days, and the
results showed that the ∆AosfgA mutant strain had lower growth rates than the WT strain,
whereas the ∆AofluG mutant strain had a higher growth rate than the WT strain, but none
of them were statistically different (Figure 3A–C). CFW staining revealed that the mycelial
cell septa were increased, and the average mycelial length was shorter in the ∆AosfgA
and ∆AofluG mutant strains (Figure 3D). Furthermore, DAPI staining revealed many more
nuclei in the mycelium of the ∆AosfgA and ∆AofluG mutant strains relative to the WT
strain (Figure 3E), whereas the average number of nuclei within the conidia of the mutant
strains was reduced (Figure 3F). Overall, the AosfgA and AofluG genes affect the mycelial
development and the number of nuclei in A. oligospora.

3.5. AosfgA and AofluG Genes Impair Conidial Growth

The WT, ∆AosfgA, and ∆AofluG mutant strains were grown on PDA plates for 3 days
and then transferred to WA plates for conidial observation. Under the same culture condi-
tions, the morphologies of the conidiophores of the ∆AosfgA and ∆AofluG mutants were
unchanged relative to the WT strain; however, the growth densities of the conidiophores
were increased (Figure 4A), whereas the conidium yields of the ∆AosfgA and ∆AofluG
mutants were not statistically different from that of the WT strain (Figure 4B). The mor-
phologies of the conidia were observed and counted, and the conidia of the WT strain
were mainly of the types a, b, and c, with the most mature septate being type a (43%) and



Microorganisms 2024, 12, 615 8 of 17

the least immature, type d, being only 1.3%. More conidia with septa were found in the
∆AosfgA and ∆AofluG mutant strains of types a (38.3% and 77.8%) and b (40.5% and 15.5%),
and there were more immature conidia of type d (10.2% and 6.8%) than in the WT strain
(Figure 4C,D). The above results suggest that deletion of the AosfgA and AofluG genes
delays conidial formation.
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Figure 3. Characterization of the mycelial growth and nuclei of WT, ∆AosfgA, and ∆AofluG mutant
strains. (A) Comparison of colony morphology on PDA and TG media. Bar = 1 cm. (B,C) Comparison
of the mycelial growth rate in PDA (B) and TG (C) media for 5 days. (D) CFW staining observations
and length statistics of mycelial cells of WT, ∆AosfgA, and ∆AofluG mutant strains. White arrow:
mycelial septa. (E,F) Nuclei of mycelia (E) and conidia (F) were observed and counted by co-staining
them with DAPI and CFW. White arrow: mycelial septa. Red arrow: nuclei. Asterisks indicate
that the mutant strain significantly differs from the WT strain (Tukey’s HSD, * p < 0.05, ** p < 0.01,
*** p < 0.001).

3.6. AosfgA Positively Regulates AofluG in A. oligospora

Next, the expression levels of 15 spore-producing genes in the ∆AosfgA and ∆AofluG
mutant strains were detected by means of RT-qPCR. Notably, the transcript levels of all
spore-producing genes were elevated in the ∆AosfgA mutant strain at the third and fifth
days, but the expression level of AofluG was remarkably reduced at the third day and had
no difference from the WT strain at the fifth day (Figure 4E). In contrast, the expression
levels of almost all genes were increased at the third and fifth days, except the gene AoabaA,
which was downregulated at the seventh day in the ∆AofluG mutant strain (Figure 4F).
Together with the previous reports, we speculate that AofluG is located downstream of
AosfgA in A. oligospora and upstream of the AoflbA, AoflbB, AoflbC, and AoflbD genes, which
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further regulate sporulation (Figure 4G). Thus, it is further validated that AosfgA positively
regulates AofluG in A. oligospora and that AosfgA is a critical regulator upstream of AofluG.
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Figure 4. The role of AosfgA and AofluG genes on conidial development in A. oligospora. (A) Compari-
son of conidiophores in WT, ∆AosfgA, and ∆AofluG mutant strains. Bar = 50 µm. (B) Comparison
of conidia yields in WT, ∆AosfgA, and ∆AofluG mutant strains. (C,D) Observations on (C) and
statistics (D) for conidial styles of WT, ∆AosfgA, and ∆AofluG mutant strains. a–d in (C) represent
different morphologies of conidia, respectively. (E,F) The expression levels of sporulation-related
genes in ∆AosfgA (E) and ∆AofluG (F) mutant strains were detected using RT-qPCR, respectively.
(G) Speculation on the interaction pattern of the upstream spore-production regulatory network
of A. oligospora. Asterisks indicate that the mutant strain significantly differs from the WT strain
(Tukey’s HSD, * p < 0.05, ** p < 0.01).

3.7. AosfgA and AofluG Genes Do Not Affect Trap Formation but Regulate Vacuole Assembly

To verify whether AosfgA and AofluG affect trap formation, traps were induced by
adding the same number of nematodes to the WT, ∆AosfgA, and ∆AofluG mutant strains
(Figure 5A). According to the data, both the number of traps and nematode mortality in
the ∆AosfgA and ∆AofluG mutant strains were a little higher than those in the WT strain,
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although not statistically different (Figure 5B,C). Moreover, a notable rise in the quantity
and volume of vacuoles in the ∆AosfgA and ∆AofluG mutant strains was observed by means
of TEM after nematode induction, in contrast to the WT strain. It was also observed that
mitochondria became elongated in the ∆AosfgA and ∆AofluG mutant strains (Figure 5D).
The above results demonstrate that deletion of the AosfgA and AofluG genes does not affect
trap formation but affects the vacuole assembly and mitochondrial morphological changes
in trap cells.
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3.8. AosfgA Responds to Heat and Chemical Stresses

Firstly, the WT, ∆AosfgA, and ∆AofluG mutant strains were tested for high-temperature
tolerance. As can be seen from the results, the ∆AosfgA strain was more sensitive to high
temperature, and the RGI increased significantly at 38 ◦C and 40 ◦C. In contrast, the
∆AofluG strain reflected insensitivity to high temperature (Figure 6A,B). Next, chemical
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stresses were determined for the WT, ∆AosfgA, and ∆AofluG mutant strains. Adding
different concentrations of oxidative stress reagents showed that the ∆AosfgA strain was
more sensitive to 5 mM H2O2, with an RGI value that was 1.27 times greater than that of
the WT strain (Figure S1A,B). Nevertheless, the ∆AofluG strain was insensitive to H2O2
and menadione (Figure S1A–C). The ∆AosfgA strain was more sensitive to high amounts of
NaCl (0.2 and 0.3 M), with 1.90- and 1.21-times higher RGI values than those of the WT
strain, respectively (Figure S2A,B). In addition, the ∆AofluG strain was more sensitive to
0.5 M sorbitol (Figure S2A–C). Finally, in the existence of cell wall synthesis disruptors, both
the ∆AosfgA and ∆AofluG mutant strains showed insensitivity to SDS, with the ∆AosfgA
strain being sensitive to different concentrations of congo red (Figure S3A–C). Overall, the
∆AosfgA strain was more responsive to heat and chemical stresses than the ∆AofluG strain.
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Figure 6. Comparison of the temperature tolerance of the WT, ∆AosfgA, and ∆AofluG mutant strains.
(A) Comparison of the colonial morphology under high-temperature stress between the WT, ∆AosfgA,
and ∆AofluG mutant strains. (B) RGI values of the WT, ∆AosfgA, and ∆AofluG mutant strains grown
at 28, 34, 38, 40, 42, and 44 ◦C, respectively. Asterisks indicate that the mutant strain significantly
differs from the WT strain (Tukey’s HSD, * p < 0.05, ** p < 0.01, *** p < 0.001).

3.9. AosfgA and AofluG Genes Contribute to Secondary Metabolite Synthesis

The fermentation broths of the WT, ∆AosfgA, and ∆AofluG mutant strains were sub-
jected to LC-MS. The PDA chromatograms showed a considerable reduction in metabolite
abundance in the mutant strains under the same circumstances as the WT strains, with
the most pronounced reduction being in the ∆AosfgA mutant strain (Figure 7A). The
differential compounds were counted. The number of compounds upregulated and down-
regulated in the ∆AosfgA mutant strain was found to be 2854 and 13,841, respectively, while
in the ∆AofluG mutant strain, it was 4297 and 12,022, respectively (Figure 7B). Cluster
analysis of the upregulated compounds showed high expression in the WT and ∆AofluG
mutant strains (Figure 7C). The top 20 compounds with significant changes in the ∆AosfgA
and ∆AofluG mutant strains are listed in Table S3 and Table S4, respectively. Among
them, the major compounds in the ∆AosfgA mutant strain were prednisone, diamino-N-
carbamoylmethaniminium, 2-hydroxy palmitic acid, etc., while the major compounds in the
∆AofluG mutant strain were 3′-angeloyloxy-2′,4′-dihydroxy-6′-methoxychalcone, trichu-
rusin F, 1H-imidazole-4,5-dicarbohydrazide, and so on. Then, KEGG pathway analysis
was performed on the differential compounds. The findings demonstrated that the differ-
ential compounds were primarily concentrated in various metabolic pathways, such as
secondary metabolite biosynthesis, microbial metabolism in diverse environments, tyrosine
metabolism, and the degradation of aromatic compounds. Meanwhile, a few compounds
were also enriched in the AMPK signaling pathway, MAPK signaling pathway, calcium
signaling pathway, and cell cycle, meiosis, and longevity regulation pathways (Figure 7D).
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Figure 7. Comparison of metabolic profiling between the ∆AosfgA and ∆AofluG mutant strains.
(A) Chromatogram analysis of secondary metabolites of WT, ∆AosfgA, and ∆AofluG mutant strains.
(B) Volcanic map analysis of different secondary metabolites between the WT, ∆AosfgA, and ∆AofluG
mutant strains. (C) Heat map analysis of upregulated compounds in the ∆AosfgA and ∆AofluG mutant
strains, compared with the WT strains. (D) KEGG pathway analysis of differential compounds
between the WT, ∆AosfgA, and ∆AofluG mutant strains.

Arthrobotrisins are structurally novel compounds produced in A. oligospora, and
research has demonstrated that arthrobotrisins are associated with trap formation [46].
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Therefore, the finding range was set to m/z = 393–394, and the WT strain detected the
peak of arthrobotrisins at a retention time (Rt) of 30 min (diagnostic fragment ions at
m/z 139, 393, and 429). However, no ionic peaks of arthrobotrisins were detected in the
∆AosfgA or ∆AofluG mutant strains (Figure S4A,B). The results suggest that the knockdown
of AosfgA and AofluG genes affects the synthesis of arthrobotrisins.

4. Discussion

Asexual sporulation is an important aspect in the reproduction and environmental
adaptation of filamentous fungi [22]. However, its complex regulatory mechanisms in NTFs
are largely unknown. In the present research, we elucidated the functions and interactions
of the key genes of the upstream regulatory network of conidium production, AosfgA and
AofluG, in the model NTF A. oligospora.

SfgA is a Zn(II)2Cys6 family protein, a transcriptional regulator implicated in pro-
cesses such as carbon and nitrogen utilization, secondary metabolism, and multicellular
development [47]. The developmental activator FluG is necessary for asexual spore pro-
duction as the core of UDAP [48]. Before asexual sporulation, SfgA proteins may repress
the expression of flbA, flbB, and flbC by binding to promoters, whereas FluG proteins act
as developmental activators participating in the synthesis of the extracellular sporulation-
inducing factor [23,49]. According to previous studies, sfgA is located downstream of
fluG [50]. In A. nidulans, double-mutant analyses of sfgA and fluG showed inhibition of
conidia formation and sterigmatocystin production, and the overexpression of sfgA or
deletion of fluG resulted in no conidium production [22]. In A. oligospora, we also verified
the existence of an interaction between AosfgA and AofluG proteins.

In A. nidulans and A. flavus, fluG is the most upstream manager of growth and develop-
ment [51]. The absence of AosfgA and AosfgA had a minimal effect on mycelial growth in A.
oligospora, and there was no non-conidia-producing phenotype in the colonies of ∆fluG mutant
strains, which is very different from A. nidulans [52]. Notably, we observed a considerable
rise in the number of nuclei in hyphae but a decrease in the number of nuclei in spores in
the ∆AosfgA and ∆AofluG mutant strains. Although mycelial growth, spore production, and
pathogenicity defects were rare, the conidia of the ∆AosfgA and ∆aofluG mutants were altered
in size, morphology, and complexity, which may also affect conidial function.

As mentioned previously, fluG is required to mediate spore production by generating
extracellular secretion signals [20]. Meanwhile, ∆fluG mutant strains do not form conidio-
phores but produce spores under nutrient-deficient conditions [52]. In contrast, the ∆sfgA
mutant strains produced more compact conidiophores [51]. In our study, spore production
did not change significantly, but the conidiophores became more dense in the ∆AosfgA and
∆AofluG mutant strains. In addition, the proportion of immature conidia in the ∆AosfgA
and ∆AofluG mutant strains was substantially greater than in the WT strains. Further, we
detected a reduced level of AofluG gene expression in the ∆AosfgA mutant strain and an
increased level of AosfgA expression in the ∆AofluG strain. Unlike A. nidulans and A. flavus,
AosfgA may have some positive feedback on AofluG in A. oligospora, but overexpression and
double mutation assays are needed to validate this and to draw definitive conclusions.

Fungal vacuoles have multiple roles in regulating cell growth and development,
including ion metabolism and storage, pH and osmotic pressure regulation, nutrient
transport, and apoptosis [53,54]. The process of autophagy, which transports intracellular
cargo needing degradation to the vacuole, is closely linked to fungal development and
pathogenicity [55]. In our results, an increase in vacuole volume was observed in both the
∆AosfgA and ∆AofluG mutant strains after nematode induction. Similarly, in our previous
work, an increased vacuole volume, irregular shape, and elongation were observed after the
knockdown of AobrlA, AoabaA, and AowetA genes in CDP [31]. However, our recent study
also revealed that deletion of the Aosec22 gene, which is associated with vesicle transport,
results in the vacuoles in mycelial cells becoming small and fragmented in A. oligospora [42].
Notably, in Drechslerella dactyloides, the vacuoles in hyphae and uninflated ring cells of the
∆DdVam7 mutant became smaller, also verifying that vacuole assembly is closely related to
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mycelial growth, conidiation, and the predatory process [56]. In summary, the vacuoles
are critical for nutrient transport in fungi, and abnormal vacuole changes may interfere
with trap maturation, while the formation of large vacuoles and the molecular mechanisms
involved remain to be further explored.

The opposite expression levels of AofluG and AosfgA were verified via the RT-qPCR
analysis of nine asexual spore-producing upstream regulatory genes in A. oligospora. Inter-
estingly, the ∆AosfgA and ∆AofluG mutant strains also had different phenotypes to heat
stress. Our results reveal that ∆AosfgA mutant strains are sensitive to high temperatures,
while ∆AofluG mutant strains show insensitivity. Furthermore, we also verified that the
∆AosfgA and ∆AofluG mutant strains showed diverse phenotypes after H2O2, NaCl, sor-
bitol, and congo red treatments. Therefore, we inferred that the ∆AosfgA mutant strain
could respond quickly upon sensing external stimuli compared to the ∆AofluG mutant
strain. Similarly, in A. flavus, sfgA has been reported to have increased susceptibility to
hyperosmotic, oxidative, and stressful pressures that are resistant to cell wall synthesis [51].

In A. flavus, deletion of the sfgA gene leads to increased aflatoxin biosynthesis, sug-
gesting an essential role for sfgA in the regulation of secondary metabolism [51]. Using
LC-MS analysis of the fermentation broth of the WT, ∆AosfgA, and ∆AofluG mutant strains,
it was found that the abundance of compounds in the mutant strains was significantly
decreased, and no arthrobotrisins peaks were detected. It is suggested that AosfgA and
AofluG regulate secondary metabolism and are essential for arthrobotrisin biosynthesis.
Meanwhile, KEGG enrichment analysis of the differential compounds revealed that AosfgA
and AofluG are involved in multiple metabolic pathways. Based on metabolomics data,
our results suggest that the AosfgA and AofluG genes can lead to a decrease in compound
abundance in A. oligospora and affect the production of arthrobotrisins. Arthrobotrisins are
one of the factors which impair trap development [46,57]. Meanwhile, G proteins [28] and
the MAPK signaling pathway [30] play crucial roles in trap formation. In addition, trap
formation is a very complex process regulated by multiple signaling pathways and cellular
processes. Therefore, the effect of arthrobotrisins on traps may be counteracted by other cel-
lular processes in this study. Collectively, our study proposes a novel modulation of AosfgA
and AofluG in A. oligospora and reveals critical roles in mycelial and conidial development,
stress responses, vacuole assembly, mitochondrial morphology, and secondary metabolism.
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