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Abstract: The Chlamydiae phylum is comprised of obligate intracellular bacteria including human
pathogens such as Chlamydia trachomatis and lesser-known Chlamydia-related bacteria like Waddlia
chondrophila or Simkania negevensis. Despite broad differences, these bacteria share a similar devel-
opment including a persistent state induced using stressors such as immune responses, nutrient
starvation, or penicillin introduction. In microbiology, this persistent state is identified by enlarged
bacteria, called aberrant bodies, which are unable to divide but are able to survive and resume the
developmental cycle upon clearance of the stressor. Clinically, chlamydial persistence is thought to
be linked to chronic disease and long-term infections with pathogenic strains. This review aims to
share and discuss the latest discoveries made on the little-known mechanisms that take place during
stress response. The results indicate that an inter-linked homeostasis between iron and tryptophan
is required for effective bacterial proliferation. During stress, Chlamydiae attempt to compensate by
inducing tight regulations of the tryptophan and iron acquisition operons. These compensations
allow bacterial survival but result in the halting of cell division. As cell division is tightly linked to
peptidoglycan synthesis and regulation, treatment with β-lactamase inhibitors can also exhibit an
aberrant body phenotype.
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1. Introduction

The bacterial phylum of the Chlamydiae is comprised of strictly intracellular bacteria
including the well-known human pathogens Chlamydia trachomatis, Chlamydia pneumoniae
and Chlamydia psittaci, which are part of the Chlamydiaceae family. C. trachomatis is one
of the most common bacterial-induced sexual infections [1]. While genital infections
with C. trachomatis (genovariants D to K) are commonly asymptomatic (up to 80% in
women), they can lead to genital tract inflammation. In males, complications are limited
to urethritis, while in females the more serious infections can lead to pelvic inflammatory
diseases, ectopic pregnancy, miscarriage, or tubal infertility [2–4]. Ocular infection with
C. trachomatis genovariants A, B, or C can cause trachoma, a disease which may lead to
irreversible blindness over time [5]. Other pathogens, such as C. psittaci, C. pneumoniae,
or C. abortus, can provoke potentially deadly lung infections in humans. C. pneumoniae is
spread through small respiratory droplets; C. psittaci and C. abortus are less common human
pathogens that are zoonotic agents transmitted by birds and ruminants, respectively [6,7].

Also, part of the Chlamydiae phylum are the recently discovered families referred to
as the Chlamydia-related bacteria, which include the Parachlamydiaceae, Waddliaceae, and
Simkaniaceae. The Chlamydia-like species have been observed in mammalian cells, amoeba,
and protists [8]. Chlamydia-related bacteria are adaptable to a broader range of hosts than
the Chlamydiaceae, which are limited complex hosts such as mammals, birds, and reptiles [9].
The genomes of Chlamydia-related bacteria are approximately twice as large as those of the
Chlamydiaceae family, resulting in increased metabolic potential, possibly explaining the
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broader range of hosts available [10]. Despite these differences, all Chlamydiae members
share a common biphasic developmental cycle.

The cycle initiates when elementary bodies (EBs), the infectious and non-replicative
form of the bacteria (~0.3 µm in diameter), adhere to and enter the host cell via endocytosis.
Following entry, EBs surround themselves with a protective endosomal vacuole known
as the inclusion. As the developmental cycle progresses, EBs transition to a slightly larger
(~1 µm), non-infectious and proliferative form named reticulate bodies (RBs). By hijacking
the host cell metabolic pathways, RBs acquire the necessary components for replication.
During the mid-cycle of infection, RBs begin to re-differentiate into infectious EBs which
are then released into the extracellular matrix either by extrusion of the inclusion, or by
host cell lysis [10,11].

During the developmental cycle, RBs may be exposed to stress conditions such as
nutrient starvation, antibiotic introduction, or host immune responses. If these stressors are
introduced, the bacteria enter into a persistent state of infection marked by the presence
of a third form of bacteria called aberrant bodies (ABs). During persistence, ABs stop
dividing, become enlarged, and no longer produce infectious progeny [12–15]. However,
this phenomenon can be reversed with the clearance of the stress condition, after which
ABs can transition back into RBs and resume the developmental cycle. It is hypothesized
that the transition to persistent ABs is linked to the chronic physiopathology caused by
chlamydial infections in humans [16]. In this article, we will give a summary on the history
of aberrant bodies and updates on chlamydial response to different aberrance-inducing
conditions, both in terms of biological persistence but also in terms of morphological
changes associated with enlarged non-dividing bacteria with or without DNA replication.

2. Historical Overview on the Discovery of Aberrant Bodies

Some of the earliest morphological observations of ABs date back to 1948. In vivo,
in mice, Loosli et al. observed aberrant growth of C. muridarum, which at the time was
thought to be a virus, upon introduction of penicillin treatments [17]. Two years later,
Weiss et al. made a similar observation during infection of chick embryo cells with C.
psittaci followed by penicillin treatment. Weiss et al. described the so-called “granules” as
greatly enlarged and noted that they could not undergo binary fission after exposure to
the antibiotic. Furthermore, it was observed that the RBs on the periphery of the inclusion,
which actively divide and closely associate with the inner face of the inclusion membrane,
were affected more quickly by the penicillin treatment than those in the center of the
inclusion. Ultimately, the bacteria lost their characteristic spherical shape and became
irregular “plaques” or ABs [18]. Additionally, Weiss et al. discovered that this persistent
state resulted in a halt of EB production. Later investigations of other members of the
Chlamydiaceae showed that upon penicillin treatment, a similar division and differentiation
defect was detected [19,20]. A timeline of these discoveries is presented in Figure 1.

The ability of ABs to reverse the persistent state was unknown until the 1960–1970s.
In 1961, Galasso et al. showed that new chlamydial progeny originating from penicillin-
induced aberrant bodies of C. psittaci-infected HeLa cells were viable following removal
of the antibiotic. They found that even if aberrance was induced continuously for over
3 months, drug clearance led to a rapid increase in bacterial titer [21]. Electron microscopy
was later used to visualize the morphological structure of the ABs and the bacteria were
found to have large, flat sheets of membranes [22].

It was not until the 1990s that nutrient starvation and interferon-γ (IFNγ) treatment
were described as additional inducers of persistence in Chlamydiaceae [23,24]. Approxi-
mately 20 years later, the first publications describing ABs of Chlamydia-related bacteria
appeared. These studies included Estrella lausannensis [25], Waddlia chondrophila [26], Simka-
nia negevensis [27], Protochlamydia amoebophila [28], and Rhabdochlamydia porcellionis [29].
Indeed, ABs have been observed in most families in the order Chlamydiales. Interestingly,
iron starvation and alteration of the peptidoglycan synthesis pathway lead to the obser-
vation of aberrantly shaped bacteria in many members of the Chlamydiae phylum, as seen
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in Table 1. Interestingly, in the case of peptidoglycan synthesis disruption, they do not
share the same response to drugs. More recently, Scherler et al. demonstrated, using W.
chondrophila, that not only penicillin derivatives act on peptidoglycan biosynthesis. Other
antibiotics targeting the peptidoglycan biosynthesis pathways, including vancomycin (tar-
geting the D-ala/D-ala transpeptidase) and phosphomycin, a phosphonic acid antibiotic
which targets MurA to inhibit bacterial cell wall biogenesis [27], also yield similar results.
While many Chlamydiaceae are susceptible to β-lactam antibiotics, some other species, such
as Simkania negevensis, are completely resistant to them. Even so, Simkania negevensis ABs
were observed following a high dose of phosphomycin [27].
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3. The Metabolic Shutdown Induced by Tryptophan Depletion Is Partially Rescued by
Chlamydia’s Tryptophan Salvaging Pathway through the Preservation of Host
Cell c-Myc

Chlamydial persistence originating from IFNγ is one of the most studied stressors
due to its clinical relevance [24,57,58]. Interferons are secreted by Th1 cells, cytotoxic T
lymphocytes, and NK cells as a part of the innate and adaptive immune response against a
wide range of bacteria [59]. During infection of primate cell lines, IFNγ cytokines impact the
biosynthesis of indoleamine 2,3 dioxygenase (IDO). IDO catabolizes tryptophan within host
cells to reduce bioavailability by producing kynurenines [60]. C. trachomatis is auxotrophic
for tryptophan synthesis, and without it, replication and re-differentiation are not possible.
During infection, some RBs may succumb to a lack of tryptophan availability, but a fraction
of them can enter the persistent state due to a mechanism of tryptophan-salvaging from
indole [61]. IFNγ, in non-primate mammalian cell lines such as p47 GTPases in mice cells,
rather than IDO, is responsible for the tryptophan loss by forcing the pathogen to export
tryptophan-rich cytotoxic molecules that will target the p47 GTPases [62].

Survival from tryptophan starvation is possible in C. trachomatis genital strains due
to the trpRBA operon encoded in their genome, with trpR being a tryptophan-dependent,
auto-repressor of the operon. It is believed that the expression of genes from this operon
allows for the conversion of exogenous indole produced by the genital tract microbiota into
tryptophan, thereby evading IFNγ-mediated tryptophan starvation. Ocular strains of C.
trachomatis are more sensitive to the effects of IFNγ, and if a neighboring biovar colonizes
the eye, they do not produce indole. Indeed, the ocular strains of C. trachomatis have lost
their tryptophan synthesis gene function [63]. Evolutionarily, the tryptophan synthesis
pathway is weakly conserved among members of the Chlamydiae. Some species such as C.
abortus, C. pneumoniae, C. psittaci, Protochlamydia amoebophila, and Waddlia chondrophila have
lost all tryptophan-synthesizing genes. Simkania negevensis is the only Chlamydiales species
that encodes the full tryptophan synthesis pathway. The remaining members encode
partial operons.

It is interesting to note that despite this high variation in the presence of tryptophan
metabolism genes amongst the Chlamydiae, there are similarities in the tryptophan content
of some proteins. Proteins involved in tryptophan, nucleotide, S-adenosylmethionine, or
dicarboxylate transport were shown to have a high percentage of tryptophan residues
as do proteins involved in cell division and lipopolysaccharide (LPS) synthesis. A high
percentage of tryptophan residues in essential proteins inherently increases Chlamydiae’s
dependence to the amino acid [62]. However, in the event of tryptophan starvation, it is
believed the degradation of previously synthesized tryptophan-rich proteins could help
overcome the starvation by maintaining a pool of tryptophan for survival, as it is believed
that IDO cannot degrade tryptophan in the bacterial inclusion [61,63].

Most recent studies suggest that IFNγ-induced persistence in Chlamydiae is not induced
by the activity of IDO, but rather by host cell transcription factor c-Myc [39]. c-Myc is a
major polyvalent regulator of cell growth and proliferation and is essential for successful
C. trachomatis infection. By using a metabolite-uptake assay in an axenic culture, it was
demonstrated that C. trachomatis’ peptidoglycan synthesis was linked to glutamine uptake.
Glutamine plays a key role in EB to RB transition through the stimulation of c-Myc [64].
c-Myc stimulation increases production of glutamine transporters and glutaminases, which
are required for chlamydial replication [64]. Upon IFNγ stress, c-Myc levels are depleted
concomitantly with TCA cycle intermediary products, leading to chlamydial persistence.
Persistence could be rescued with over-expression of c-Myc or by adding TCA intermediates
despite the ongoing stress, in cell cultures as well as in organoids derived from human
fallopian tubes [39].

In addition to the role of IFNγ on the depletion of c-Myc, tryptophan is involved in the
inactivation of glycogen synthase kinase-3 (GSK3β) by phosphorylation. The inactivation of
GSK3β prevents c-Myc phosphorylation at threonine 58, which initiates a cascade resulting
in its degradation by the proteasome complex [65]. Overall, it seems that IDO allows not
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only the depletion of an essential tryptophan pool, but that its role also extends to the
decrease in a broad range of host metabolism products taken up by the Chlamydiae through
the indirect degradation of c-Myc [39].

Persistence has also been observed in a murine model of genital infection using the
Chlamydia-like organism W. chondrophila. Fourteen days after infection of mice uterine horns
with 109 bacteria, W. chondrophila DNA was detectable by RT-qPCR in the liver, spleen,
lumbar lymph nodes, and muscles of the mice. Investigation of the IgG response in the mice
concluded that IgG2a was the most abundant IgG present, suggesting a Th1-associated
humoral response was prominent. Further attempts to re-infect McCoy cell cultures with
infected spleen or liver homogenates showed no bacterial replication. While aberrant
morphology was not observed, the bacteria were present in a persistent form in McCoy
cells infected with liver/spleen homogenates, likely induced by the IFNγ secreted by the
stimulated Th1 cells [15].

4. The Chlamydial Iron Uptake Operon Is Stimulated upon Iron Starvation and Is
Tightly Regulated by Iron and Tryptophan Abundance

In all mammalian cells, free iron is stored in hemoprotein complexes. Building a
pool of iron is essential because iron plays a major role in metabolic reactions that require
electron exchanges [66]. Storing ferrous [Fe2+] and ferric [Fe3+] iron in protein complexes
allows tight regulation to prevent iron acquisition by potential pathogens. Mammalian
ferroxidases are able to convert ferrous iron in the serum to ferric iron. Ferric iron is then
able to bind to transferrins with a high affinity. Extracellular iron-transferrin complexes
can then bind to transferrin receptors, which are found on the surface of cells, and the
entire complex will enter into a target cell through endocytosis [66]. The endocytosis
cascade creates a destabilizing, acidic pH in the endosome that frees the ferric iron from
the transferrin [66]. The reduction of ferrous iron occurs prior to ferric iron transport
in the cytosol. There, it can be used for metabolic processes, such as the TCA cycle
or the electron transport chain or it can be stored in a ferritin complex. The free apo-
transferrin is then recycled through exocytosis where it can start a new cycle [66]. The
current chlamydial iron acquisition model proposes multiple methods for the entry of free
iron into the chlamydial inclusion.

One hypothesis is that a proportion of [Fe2+] diffuses through the inclusion membrane
by passive transport. An active method is thought to happen through slow-recycling
iron-transferrin endosomes. These inclusions are Rab11-transferrin-positive and have
been observed to be in close vicinity to chlamydial inclusions [67]. These slow-recycling
endosomes, which are not immediately sent to degradation by lysosomes and thus have a
longer residence time, can transiently fuse to the inclusion membrane, releasing their iron
content into the inclusion lumen [67,68]. To date, evidence of this kiss-and-run mechanism is
lacking but a similar mechanism was hypothesized in 1998 for phospholipid acquisition [69].
Following fusion, the endosome detaches from the inclusion membrane and enters the
classic endosomal recycling pathway. Once within the inclusion lumen, [Fe2+] and [Fe3+]
can access the periplasm of bacteria by passive transport or via siderophore-like receptors,
which have not yet been identified [67,68,70]. Transportation into the bacterial cytoplasm
is thought to happen through the ABC transporter complex encoded by the ytgABCD
operon [71]. YtgC has a C-terminal domain, YtgR, which has been found to be a DtxR-
like iron-dependent repressor and is cleaved away from ytgC during infection [72]. This
repressor is capable of binding to the promoter of its own operon and likely plays a role in
iron homeostasis in all Chlamydiae as homologous genes can be found in the genomes of
the previously described chlamydial species [73], including chlamydia-related bacteria.

Once iron levels are sufficiently high within the bacterial cell, YgtR also binds the
intergenic region (IGR) of the tryptophan operon independently of the TrpR repressor.
Thus, there is a need for YtgR to be additionally regulated by tryptophan so that the
iron-regulated repression of the tryptophan operon does not occur during tryptophan
starvation. Interestingly, by using 2,2-bipyridyl (BPDL), an iron chelator that can bind both
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[Fe2+] and [Fe3+], it has been demonstrated that the YtgR repressor also represses the trp
operon in C. trachomatis in a trp-dependent manner [32]. Due to the rare triple tryptophan
motif (WWW) present in the YtgC domain, YgtR levels can be regulated. Regulation
occurs when ribosomes fail to read the WWW motif, (i) resulting in a Rho-independent
translation termination and (ii) preventing repression of the tryptophan operon, even when
iron levels are sufficiently high. YtgC therefore is important in sensing and in regulating
both tryptophan and iron metabolism simultaneously [32].

5. The Aberrant Body Morphology Induced by Iron Starvation, IFNγ, and β-Lactamase
Inhibitors Is Related either to a Defect in Peptidoglycan Ring Assembly or
Its Regulation

Persistence induced by IFNγ, iron starvation, or penicillin treatment results in mor-
phologically distinct ABs, which are characterized by their large size in comparison to EBs
and RBs [13]. Although currently, there are no precisely defined quantitative parameters
of ABs, neither of the AB morphology nor the inclusion size [13,30]. A common point
of most of these triggers of persistence is that they affect the peptidoglycan biogenesis
pathway. If a stressor is introduced during infection, peptidoglycan synthesis is believed to
be down-regulated to limit the release of peptidoglycan compounds that can trigger host
cell immunity [74].

Historically, the response to peptidoglycan-disrupting drugs in the Chlamydiaceae
family remained a mystery, as the presence of a classical peptidoglycan sacculus could
not be detected and the role of peptidoglycan was not yet documented. This was referred
to as the “chlamydial anomaly” [75]. Later, peptidoglycan was found to be present in
members of the Chlamydiaceae family [74,76,77]. In 2014, Jacquier et al. and Frandi et al.
described in detail the proteins implicated in the division of members of the Chlamydiae
phylum, including remodeling of peptidoglycan by the AmiA and NlpD amidases [47,78].
Co-temporally, Anthony T. Maurelli enriched the muropeptides belonging to peptidoglycan
in C. trachomatis and identified their presence through mass spectrometry [77]. Georges
Liechti and his team discovered peptidoglycan in small amounts in C. trachomatis, thanks to
a new cell wall labeling method using d-amino acid dipeptide fluorescent probes, which are
incorporated in newly synthetized peptidoglycan [74]. This work convincingly illustrates
the polarized division as described in C. trachomatis by Abdelrahman in 2016 [79]. Detailed
analysis of peptidoglycan degradation products by Greub et al. confirmed the importance
of peptidoglycan during division [10,76,80,81]. Interestingly, not all Chlamydiae lack a
peptidoglycan sacculus. In Protochlamydia amoebophila, peptidoglycan could be observed by
electron microscopy surrounding the bacteria during replication [82].

In C. trachomatis, peptidoglycan has been observed at the divisional plane of the RB
which forms the first septal disk. The septal disk expands to form a ring, which then
constricts to finalize the division process. In C. trachomatis, penicillin binding protein 2
(PBP2) and PBP3 are two regulators which are independently responsible for the pepti-
doglycan ring expansion and constriction, respectively [83,84]. It has been observed that
the volume and thickness of the ring decreases with the number of divisions that have
occurred, resulting in smaller bacterial progeny size as infection time progresses. This
study correlates well with the description made in 2018 that the transition from RB back to
EB occurs after subsequent divisions reduce the chlamydial bacteria size below a certain
threshold [85]. The enlarged phenotype of ABs is a result of the absence of division, despite
continued bacterial growth. This occurs through the prevention of three different processes,
peptidoglycan ring expansion, ring constriction, or peptidoglycan metabolism, as described
by Cox et al. [84]. Peptidoglycan ring expansion can be blocked using a PBP2 inhibitor
such as mecillinam. Alternatively, peptidoglycan ring constriction can be inhibited by PBP3
inhibitors such as piperacillin. Broad spectrum β-lactamase inhibitors, like penicillin G, are
able to target both PBP2 and PBP3 [83,84]. It is likely that a similar mechanism is present
in the other members of the Chlamydiae phylum, as they all have homologs of PBP2 and
PBP3 [73].
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Scherler conducted a comparative study of ABs of a distant relative of C. trachomatis:
Waddlia chondrophila. ABs were induced by glycopeptides, penicillins, or iron chelators.
There, a threshold of length and area was defined to classify a bacterium as an AB. It
was found that treatment of Vero cells with phosphomycin (500 µg/mL), penicillin G
(1000 µg/mL), clavulanic acid (900 µg/mL), piperacillin (500 µg/mL), mecillinam (200
µg/mL), deferoxamine (400 µM), and 2,2′ bi-pyridyl (100 µM) resulted in inclusions contain-
ing a great majority of ABs compared to RBs. Treatments with MP265 (100 µM), teicoplanin
(250 µg/mL), and novobiocin (450 µM) led to more heterogenous mixes of RBs and ABs.
The different treatment types also resulted in diversity in AB area, AB length, and number
of ABs per inclusion. The treatments also differently impacted the ability of the ABs to
replicate DNA. Mecillinam and phosphomycin treatment reduced DNA replication by less
than 10-fold while iron-chelating drugs almost completely stopped the process. This study
illustrates that variations in the formation of ABs in Chlamydia-like organisms results from
different response mechanisms based on the stimulus present. This approach assessed the
variations in AB size and showed that MP265 induces small aberrant bodies [13]. MP265
is a chemical compound, which binds to MreB to prevent filament formation and is thus
critical in cell shaping. If MP265 is added early in the infection, the treated bacteria would
exhibit aberrant bodies of similar morphology and size as compared to healthy RBs [13,86].

While penicillins affect division by preventing peptidoglycan ring constriction or
expansion, persistence inducers such as iron or tryptophan starvation may instead affect
peptidoglycan metabolism by blocking the synthesis of necessary peptidoglycan precur-
sors. Interestingly, bactoprenol, one such peptidoglycan precursor, is synthetized by the
methylerythritol phosphate pathway (MEP) which is both iron and pyruvate dependent
and widely found in bacteria [87]. The MEP pathway initiates with a pyruvate substrate that
goes through several reactions to yield bactoprenol, a carrier module known to transport
peptidoglycan monomers into existing peptidoglycan chains that are being synthesized.
Pyruvate is also a key molecule during the TCA cycle. Therefore, tryptophan depletion
may indirectly prevent the MEP pathway from functioning by downregulating c-Myc, ulti-
mately preventing the synthesis of bactoprenol required for peptidoglycan synthesis. In the
MEP pathway, the transition from methyl-D-erythritol-2,4-cyclodiphosphate (MEcPP) to
isoprenoid precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate
(DMAPP) requires two reactions catalyzed by two enzymes, IspG and IspH, respectively.
These enzymes contain iron–sulfur clusters which are obtained from free cytosolic iron.
During iron starvation, these enzymes are non-functional, potentially halting peptidoglycan
synthesis and thus chlamydial division [88].

6. Conclusions/Discussion

Throughout this review, progress in the understanding of ABs induced by tryptophan
and iron starvation in the Chlamydiae phylum has been shown. The latest discoveries have
unveiled the links between the two different types of stressors on the bi-sensitive ytgR
repressor of the ytgABCD iron operon and the trp operon. Repression of these operons is
both iron and tryptophan dependent and regulating mechanisms are enacted to prevent
a self-sabotaging repression only when tryptophan is depleted. Details of the findings
summarized here can be found in Figure 2.

The current hypothesis indicates that, following host cell immune response by IFNγ,
the host cell tryptophan pool is depleted by the enzyme IDO. The absence of tryptophan
activates GSK3β, an enzyme known to initiate host cell c-Myc degradation. This results
in a decrease in the production of glutaminases and glutamine transporters necessary
for the TCA cycle to perform optimally. With the halting of the TCA cycle, pyruvate,
which is necessary for the bactoprenol synthesis by the MEP pathway, is not produced in a
sufficient concentration. Bactoprenol is an essential compound of the peptidoglycan ring
and therefore, division is halted, leading to ABs. The persistence of ABs may be a result of
their ability to counteract the consequences of stressors. When tryptophan is absent, the
trpRBA operon, normally repressed by both TrpR and YtgR, is activated. TrpR repression
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ends due to the absence of a necessary tryptophan co-factor, while YtgR repression stops
once there is an insufficient pool of tryptophan to assemble the 3xtrp motif in its sequence.
Moreover, degradation of previously produced tryptophan-rich chlamydial proteins refills
the tryptophan pool within the inclusion, which is inaccessible to IDO in the host cytoplasm.
While the chlamydial response is not robust enough to completely overcome the immune
response, it is able to create a metabolic equilibrium to allow bacterial survival.

During iron stress, proliferation-favorable homeostasis is also disrupted. The absence
of free ferrous iron may prevent the synthesis of peptidoglycan through the inactivation of
iron-dependent enzymes IspH and IspG, thereby blocking the MEP pathway. Peptidoglycan
is necessary during division due to its presence in the peptidoglycan division ring, which
must expand and then constrict to complete a round of replication. The ytgABCD operon
is then activated due to the lack of [Fe2+] cofactor required for YtgR-mediated repression.
Although iron uptake by Chlamydiae is high during infection, it is not sufficient to overcome
once there is a lack of iron, leading to another inducer of persistence.

β-lactamase inhibitors also induce persistence in Chlamydiae. These inhibitors act on
the peptidoglycan division ring in a different mechanism to iron stress detailed before.
Rather than preventing the synthesis of peptidoglycan, β-lactamase inhibitors affect the
regulation of the ring itself by either preventing the expansion of the ring during the initia-
tion of division or the constriction that is necessary to complete division. In each scenario
detailed here, the outcome is a termination of cell division characteristic of persistent ABs.

Proposing a general model that would encompass the effect of different stressors for
all members of the family is an extremely tedious task due to multiple layers of complexity
that occur. One layer is the genomic variation between Chlamydiaceae in the trp operon.
Some Chlamydiae genomes, such as W. chondrophila, do not contain any known trp operon.
Even so, by aligning the YtgR sequences of different Chlamydiae species, it was shown that
W. chondrophila does indeed contain the triple-tryptophan motif in its YtgR amino acid
sequence that is believed to regulate the repression of the trp operon in other Chlamydiae.
Inversely, S. negevensis, which does encode a full trp operon, does not harbor this triple-
tryptophan regulating sequence in its YtgR repressor [73]. Additionally, both W. chondrophila
and S. negevensis are known to infect a broad range of host cells including protozoa, amoeba,
and mammalian cells. Each host has a unique capacity for immune response and iron or
tryptophan utilization, adding an additional layer of complexity to modeling the persistence
response in these bacterial species.

To further investigate the global regulation of different Chlamydiae species, transcrip-
tional studies have been performed under multiple conditions like heat shock, iron star-
vation, or tryptophan starvation [33,36,55,89,90]. However, comparing the results of the
assays has proven to be difficult. For example, RNA sequencing data derived following
treatment of cultured cells infected with W. chondrophila [55] or C. trachomatis [33] with
iron chelator BPDL to induce persistence, resulted in dissimilar regulations for most genes.
Strikingly, the bacterial stress operon regulated by HrcA was activated for W. chondrophila,
but not for C. trachomatis. Conversely, this operon was activated in persistent C. trachomatis
during heat shock [36]. Differential triggering of HrcA response between different chlamy-
dial species in the same type of host cell may reflect different susceptibility. These results
imply that Chlamydiae have a metabolic toolkit optimized for a specific target organism.
This aligns with the fact that these intracellular bacteria have a greatly reduced genome,
partially resulting from co-evolution with a specific host [91,92]. The importance of host
cell compatibility is greatly illustrated in studies where spontaneous ABs were observed
without any treatment, as infection in a non-optimal host will increase stress for those
bacteria (Table 1).
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Figure 2. Schematic indicating dynamics between host cell metabolism and the chlamydial response
to iron starvation, IFNγ, and antibiotics acting on peptidoglycan biosynthesis. Rectangles with blue
gradient represent aberrant body (AB) inducers. Following host cell immune response by interferon
gamma (IFNγ), the cytoplasmic tryptophan pool is depleted by the indolamine 2,3-dioxygenase
enzyme (IDO) [59]. The absence of tryptophan then activates glycogen synthase kinase-3 beta
(GSK3β), an enzyme that initiates host cell c-Myc degradation [39]. The consequence of this is a
decreased production of glutaminases and glutamine transporters necessary for the TCA cycle to
function. In addition to this reduced function, glycolysis is slowed down resulting in a decrease in
pyruvate production [39]. Therefore, there may not be sufficient pyruvate necessary for bactoprenol
synthesis by the methylerythritol (MEP) pathway [87]. Bactoprenol is an essential compound of
the bacterial peptidoglycan ring, so without it, division is halted, leading to the production of
aberrant bodies. If there is a lack of tryptophan (Trp) available, the trpRBA operon, which is normally
repressed by both TrpR and YtgR, is activated. TrpR repression is released due to the absence of the
necessary tryptophan cofactor while YtgR repression stops because there is not enough tryptophan
available to assemble the unstable 3xTrp motif in its sequence [32]. To counteract the effects of
tryptophan deprivation, tryptophan-rich chlamydial proteins are degraded to refill the pool of
bacterial tryptophan, which is sequestered from the host cell and isolated from IDO [62]. During iron
stress, proliferation-favorable homeostasis is disrupted. The absence of free ferrous iron prevents
the synthesis of peptidoglycan (PG) via the blockage of the MEP pathway due to the lack of two
iron-dependent enzymes, IspH and IspG [88]. The ytgABCD operon then becomes activated due to
the lack of a [Fe2+] cofactor which is required for YtgR-mediated repression [32]. While the chlamydial
response allows an increase to the pools of tryptophan and of free iron, this compensation might
not be sufficient to completely overcome the stress. Phosphomycin and glycopeptide antibiotics
such as vancomycin and teicoplanin induce aberrant bodies by affecting directly the peptidoglycan
synthesis pathway [13,76]. Penicillin derivatives target penicillin binding proteins (PBP) to prevent
the peptidoglycan division ring from expanding or constricting [76]. Together, this may create a new
metabolic equilibrium that allows bacterial survival at the cost of proliferation.
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Additionally, the parameters that have been historically used to characterize ABs
separately from EBs or RBs have been described here. Recent evidence suggests that these
historic classifications may not encompass all types of ABs which can arise. For example,
following treatment of cell cultures infected with either C. trachomatis or W. chondrophila
with MP265, an MreB inhibitor, the bacteria exhibited persistent behavior, but there was
no significant increase in the area and length of the cells, depending on the timing of
the treatment [13,30]. It would therefore appear that the enlarged bacterial size is not
mandatory when peptidoglycan disruption co-occurs with cell wall synthesis inhibition.
Given this new finding, it would be prudent to re-examine those previous studies that
excluded a persistence phenotype based on size alone to potentially uncover novel insights.

In vitro studies of aberrant bodies generally focus on each stress individually, while
their occurrence in vivo is more probably multifactorial. Genomic and metabolomic studies
could help assess the level of synergy or incompatibility between chlamydial species and
their potential host cells. Moving forward, examining the differential susceptibility of
stress from one host cell to another can provide new understanding of chlamydial infection.
These new insights could help provide an explanation as to why enlarged ABs have rarely
been described in vivo, and why they can appear spontaneously.
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