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Abstract: Addressing pressing health concerns, modern medical research seeks to identify new
antimicrobials to combat drug resistance, novel molecules for cancer treatment, and antioxidants
for inflammation-related diseases. Pisolithus (Basidiomycota) is a ubiquitous and widely distributed
fungal genus in forest ecosystems, known for establishing ectomycorrhizal associations with a range
of host plants, enhancing their growth, and conferring protection against biotic and abiotic stresses.
Beyond ecological applications, Pisolithus yields bioactive compounds with medicinal potential.
This comprehensive review explores the transversal biological activity of Pisolithus fungi, aiming to
provide a thorough overview of their antimicrobial, anticancer, and antioxidant potential. The focus
is on elucidating bioactive compounds within Pisolithus to trigger further research for innovative
applications. Compounds from Pisolithus displayed antimicrobial activity against a broad spectrum of
microorganisms, including antibiotic-resistant bacteria. The efficacy of Pisolithus-derived compounds
matched established medications, emphasizing their therapeutic potential. In anticancer research,
the triterpene pisosterol stood out with documented cytotoxicity against various cancer cell lines,
showcasing promise for novel anticancer therapies. Pisolithus was also recognized as a potential
source of antioxidants, with basidiocarps exhibiting high antioxidant activity. In vivo validation and
comprehensive studies on a broader range of compounds, together with mechanistic insights into the
mode of action of Pisolithus-derived compounds, are compelling areas for future research.

Keywords: biological activity; fungi; natural compounds; Pisolithus arhizus; Pisolithus tinctorius

1. Introduction

Nature stands as a highly promising reservoir of compounds with potential applica-
tions in human health. Some groups of organisms are widely known for their bioactive
potential, namely plants, macroalgae, microalgae, bacteria, invertebrates, and fungi, partic-
ularly members of the Basidiomycota [1–4].

Basidiomycota is a diverse and ecologically significant phylum of fungi that encom-
passes over 40,000 species. They exhibit diverse lifestyles, from decomposers breaking
down organic matter to pathogens affecting plant health. Additionally, some species
function as mycorrhizal symbionts, forming vital partnerships with plants in various
ecosystems [5,6]. Several species of this phylum reproduce sexually through basidiospores
stored in the basidium, a club-shaped structure that gives these fungi the common name
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club fungi [7]. Basidiomycota, with their diverse properties, hold crucial applications in
biotechnology and industry, contributing to areas such as enzyme production, bioremedi-
ation, and pharmaceutical development. Some well-known species of this phylum have
been used for hundreds of years as food, such as Lentinula edodes (shiitake) and Agaricus
bisporus, and as medicines (e.g., Ganoderma lucidum and Wolfiporia extensa) [8–10]. Others
are known for their poisonous nature, like the death cap (Amanita phalloides) [11,12]. The
number of bioactive natural products from Basidiomycota is considerable, as recently
reviewed [8,13–17], and includes compounds with antimicrobial, anticancer, antioxidant,
anti-inflammatory, and nutraceutical properties, among others.

Pisolithus, a fascinating genus of fungi within the Basidiomycota, exemplifies the
diverse ecological roles and bioactive potential found within this group of fungi. Pisolithus
species are widely distributed across various ecosystems on six continents and are recog-
nized for their distinctive fruiting bodies (basidiocarps). Characterized by large, round
structures resembling puffballs, Pisolithus basidiocarps are often found partially buried in
the soil. Besides the basidiocarps, Pisolithus are composed of hyphae, thread-like structures
that make up the mycelium of the fungus, and spores that are produced in the basidio-
carps [18–20]. One of the notable features of Pisolithus lies in the fact that its species form
ectomycorrhizal associations with plants, particularly trees. The Pisolithus genus contains
19 species that colonize the roots of more than 50 host plants. The mycorrhizal partnership
involves a mutually beneficial relationship where the fungus assists the plant in nutrient up-
take, especially phosphorus, in exchange for carbohydrates produced by the plant through
photosynthesis. This symbiotic association enhances the growth and protects the plant
against biotic and abiotic stresses [19,21,22]. The beneficial effects of Pisolithus species lead
to their incorporation into forestry management plans for promoting healthier ecosystems
and enhancing the long-term sustainable productivity of forestry plantations [23–26]. The
most studied Pisolithus species is Pisolithus arhizus (syn. = Pisolithus tinctorius).

Beyond their ecological role and forestry applications, researchers have explored bioac-
tive compounds produced by Pisolithus species, discovering substances with antimicrobial,
anticancer, and antioxidant properties. These findings open avenues for further exploration
into the medicinal potential of Pisolithus-derived compounds.

In contemporary medical research, critical challenges abound, propelling the field
toward innovative solutions. The exploration and identification of novel antimicrobial
products are imperative in combatting rising drug resistance [27,28]. Moreover, the ongoing
search for new natural molecules in cancer treatment reflects a pressing need for trans-
formative approaches to enhance therapeutic outcomes in the relentless battle against
cancer [29,30]. Simultaneously, the quest for antioxidant molecules effective against
inflammation-related diseases addresses widespread health concerns [31,32].

In this context, and considering the transversal biological activity of Pisolithus, the
objective of this review is to provide a comprehensive overview of the (i) antimicrobial,
(ii) anticancer, and (iii) antioxidant potential of these fungi. The focus extends to highlight-
ing the bioactive compounds isolated from Pisolithus with the aim of catalyzing further
research for exploring innovative applications of these ubiquitous and widely distributed
fungi (Figure 1).
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Figure 1. A schematic representation of the bioactivities of Pisolithus, as described in this review. 
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Fortin [42] demonstrated that the mycelium of P. tinctorius has antifungal activity by 
inhibiting spore germination, provoking hyphal lysis, and inhibiting chitin synthesis and 
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Brunchorstia pinea, and Cochliobolus sativus. Subsequently, the compounds pisolithin A and 
pisolithin B (Figure 2) were isolated from P. arhizus mycelium [43]. These two phenolic 
compounds showed a considerable capacity for reducing the mycelial growth of several 
phytopathogenic fungi, such as Rhizoctonia solani, Verticillium dahlia, Pyrenochaeta terrestris, 
Cochliobolus sativus and Septoria musiva, phytopathogenic oomycetes, such as Pythium 
debaryanum and Pythium ultimum and dermopathogenic fungi, such as Microsporum 
gypseum and Trichophyton equinum. In some cases, the inhibition was higher than that 
obtained with other antifungal agents such as nystatin and polyoxin D. With the 
compound pisolithin A, it was also demonstrated a spore germination inhibition of the 
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2. The Bioactive Potential of Pisolithus
2.1. Antimicrobial Activity

Each year, millions of people worldwide succumb to microbial infections [33,34]. Mi-
crobial resistance to antimicrobial drugs is a growing global public health concern. Overuse
and misuse of antibiotics have led to the development of resistant strains, rendering once-
effective treatments ineffective [27,35]. Pathogenic microorganisms are a challenging threat
to both human and animal health, underscoring the critical importance of addressing
microbial infections in the context of public health [36,37]. Phytopathogens are harmful
organisms that cause plant diseases, posing a significant threat to agriculture. They can dev-
astate crops, leading to yield losses, economic challenges, and food security concerns [38,39].
Consequently, also in this field, an immediate and imperative need arises for the explo-
ration and identification of novel antimicrobial agents. Recently, two new phenols with
activity against several plant pathogenic fungi and clinically important bacterial strains
were obtained from fungi [40].

Antimicrobial compounds exert their effects through various mechanisms, such as
inhibition of the synthesis of the cell wall, proteins, nucleic acids, and cell membrane disrup-
tion of target microorganisms [41]. Several studies documented in the literature highlight
Pisolithus as a potential genus with antimicrobial activity (Table 1). Kope and Fortin [42]
demonstrated that the mycelium of P. tinctorius has antifungal activity by inhibiting spore
germination, provoking hyphal lysis, and inhibiting chitin synthesis and consequently
disrupting the cell wall in a range of phytopathogenic fungi, including Rhizoctonia praticola,
Truncatella hartigii, Sphaerosporella brunnea, Fusarium solani, Brunchorstia pinea, and Cochliobo-
lus sativus. Subsequently, the compounds pisolithin A and pisolithin B (Figure 2) were
isolated from P. arhizus mycelium [43]. These two phenolic compounds showed a consider-
able capacity for reducing the mycelial growth of several phytopathogenic fungi, such as
Rhizoctonia solani, Verticillium dahlia, Pyrenochaeta terrestris, Cochliobolus sativus and Septoria
musiva, phytopathogenic oomycetes, such as Pythium debaryanum and Pythium ultimum
and dermopathogenic fungi, such as Microsporum gypseum and Trichophyton equinum. In
some cases, the inhibition was higher than that obtained with other antifungal agents such
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as nystatin and polyoxin D. With the compound pisolithin A, it was also demonstrated a
spore germination inhibition of the plant pathogen T. hartigii, in concentrations ranging
from 50 to 150 µg/mL in 24 h [44]. Shrestha et al. [45] showed that Pisolithus sp. extracts
were able to inhibit the growth of the bacterial pathogens Klebsiella sp. and Escherichia
coli. Another example that reinforces the antimicrobial proprieties of Pisolithus is the work
of Ameri et al. [46], who conducted bioassays with Pisolithus albus crude extracts and
isolated fractions against strains of methicillin-resistant Staphylococcus aureus. In their study,
the authors observed a strong antibiotic action, especially in the fraction that contained
sesquiterpenes. Pisolithus microcarpus crude extracts have also shown antibacterial potential
against pathogens such as Pseudomonas aeruginosa and S. aureus [47].
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Figure 2. Chemical structures of pisolithin A (a) and pisolithin B (b), two Pisolithus-derived phenolic
compounds with antimicrobial activity.

In another study, ethanolic extract of P. albus displayed antibacterial activity against
Gram-positive (Bacillus subtilis, Enterococcus faecalis, Listeria monocytogenes, S. aureus) and
Gram-negative bacteria (Aeromonas hydrophila, E. coli, P. aeruginosa, S. typhimurium) [48].

In a recent investigation involving multidrug-resistant Gram-positive and Gram-negative
bacteria isolated from wound exudates of hospitalized human patients, Martins et al. [49] found
that hydroethanolic extracts of P. tinctorius had minimum inhibitory concentrations (MICs)
of 5, <0.156, 10, 5, 5, 5 mg/mL for Enterococcus faecium, S. aureus, Acinetobacter baumannii,
Enterobacter aerogenes, Klebsiella pneumoniae, and P. aeruginosa, respectively.

Carmo [50] prepared hexane and ethyl acetate fractions from P. tinctorius basidiocarps.
Both fractions inhibited the growth of the Gram-positive bacterium Enterococcus sp., with
MICs of 125 and 62.5 µg/mL for hexane and ethyl acetate fractions, respectively. The
hexane fraction also inhibited the growth of Bacillus cereus and S. aureus, both with a MIC
of 125 µg/mL. The human pathogenic Gram-negative bacteria, Shigella sonnei and Shigella
flexneri, were also inhibited by these fractions. The antifungal potential of both fractions was
demonstrated against human pathogenic fungi, with MICs of 125 µg/mL for Cryptococcus
neoformans and Cryptococcus gattii and 62.5 µg/mL for Candida krusei. Following these
promising results, Carmo [50] isolated and identified four secondary metabolites from the
P. tinctorius extracts and tested the antimicrobial activity of these compounds separately
(Table 1). The compounds were a ceramide P56, 5-hexadecenoic acid, and two triterpenoids:
pisolactone and the new metabolite 7,22-dien-3-ol, 24-methyl lanostane. Although all
four compounds displayed a certain degree of antibacterial activity, 5-hexadecenoic acid
(Figure 3) was notable for inhibiting the pathogenic Gram-negative bacteria S. sonnei and E.
aerogenes (MIC 25 µg/mL), P. aeruginosa, Morganella morgani, K. pneumoniae and S. flexneri
(MIC 50 µg/mL), and the Gram-positive bacteria B. subtilis (MIC 50 µg/mL) and S. aureus
(MIC 12.5 µg/mL).
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Figure 3. Chemical structure of 5-hexadecenoic acid, a secondary metabolite with antibacterial
activity isolated from Pisolithus tinctorius.

The antimycobacterial capacity was also revealed by pisolactone and ceramide P56,
which were effective against the pathogenic Mycobacterium abcessus, exhibiting MIC values
of 31.25 and 15.62 µg/mL, respectively. Moreover, the MIC displayed by ceramide P56
against M. abcessus was equivalent to the widely used antibiotic clarithromycin (MIC
16 µg/mL). Ceramide P56 was also effective against Mycobacterium fortuitum, which is
commonly associated with infections affecting the skin, soft tissues, and bones. The
obtained MIC of 31.25 µg/mL was equivalent to that of sulfametoxazol (MIC 32 µg/mL), a
commonly prescribed antibiotic [50].

All four isolated compounds of P. tinctorius presented antifungal activity, with the
most significant being pisolactone (Figure 4a) and 7,22-dien-3-ol, 24-methyl lanostane
(Figure 4b). The MICs displayed by these two compounds against Candida tropicalis, C.
krusei, C. neoformans, C. gattii, and Candida glabrata were 6.25, 1.56, 50, 50, and 1.56 µg/mL,
respectively. The MICs of pisolactone and 7,22-dien-3-ol, 24-methyl lanostane against
the three Candida species were lower than that of fluconazole, an antifungal medication
commonly used to treat fungal infections such as vaginal yeast infections (candidiasis),
oral and esophageal thrush, cryptococcal meningitis, and other systemic fungal infections.
Additionally, the MICs of pisolactone and 7,22-dien-3-ol, 24-methyl lanostane against C.
krusei and C. glabrata were equal to those of nystatin, another widely used antifungal
medication to treat fungal infections, particularly those caused by the yeast Candida [50].
These findings indicate the potential of the two Pisolithus-derived compounds to be used as
novel antifungal drugs.
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Figure 4. Chemical structures of the triterpenoids pisolactone (a) and 7,22-dien-3-ol, 24-methyl
lanostane (b), two secondary metabolites with antifungal and antibacterial activity isolated from
Pisolithus tinctorius.

Table 1. Pisolithus extracts, fractions, and isolated compounds and their antimicrobial activities.

Extract/Compound Species Fungal Structure Assay Antimicrobial Activity Reference

Pisolithin A
Pisolithin B

(phenolic compounds)
P. arhizus Mycelium

Spore germination
Hyphal growth

measured by
protein estimation

Activity against
phytopathogenic fungi,

phytopathogenic
oomycetes, and

dermopathogenic fungi

[43,44]
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Table 1. Cont.

Extract/Compound Species Fungal Structure Assay Antimicrobial Activity Reference

Pisolactone
(triterpenoid) P. tinctorius Basidiocarp Broth

microdilution

Activity against
Gram-negative and

Gram-positive bacteria
Antimycobacterial

Antifungal

[50]

7,22-dien-3-ol,
24-methyl lanostane

(triterpenoid)
P. tinctorius Basidiocarp Broth

microdilution

Activity against
Gram-negative and

Gram-positive bacteria
Antifungal

[50]

5-hexadecenoic acid
(unsaturated fatty

acid)
P. tinctorius Basidiocarp Broth

microdilution

Activity against
Gram-negative and

Gram-positive bacteria
Antifungal

[50]

Ceramide P56
(ceramide) P. tinctorius Basidiocarp Broth

microdilution

Activity against
Gram-negative and

Gram-positive bacteria
Antimycobacterial

Antifungal

[50]

Crude
extracts/fractions P. albus Basidiocarp Agar well

diffusion

Activity against
methicillin-resistant
Staphylococcus aureus

[46]

Methanolic
extracts/fractions P. microcarpus Mycelium Disk diffusion

Activity against
Pseudomonas aeruginosa

and S. aureus
[47]

Ethanolic extracts P. albus Basidiocarp Disk diffusion
Activity against

Gram-negative and
Gram-positive bacteria

[48]

Ethyl acetate extracts P. tinctorius Basidiocarp and
spores

Agar well
diffusion

Activity against
phytopathogenic fungi [51]

Ethyl acetate extracts P. tinctorius Mycelium filtrate Mycelium growth
in solid medium

Activity against
phytopathogenic fungi [52]

Hydroethanolic
extracts P. tinctorius Basidiocarp Broth

microdilution

Activity against
multidrug-resistant
Gram-negative and

Gram-positive bacteria

[49]

2.2. Anticancer Activity

According to the World Health Organization global cancer statistics (GLOBOCAN), in
2020, around 19 million new cancer cases were diagnosed, and over 9.9 million deaths were
registered [53]. Although research into cancer treatment has been insistent, the number of
diagnosed cases is expected to keep increasing, adding up to 29.4 million cases by 2040 [54].
The conventional approach to cancer treatment involves chemotherapy, which is highly
associated with aggressive and prolonged collateral effects, mainly due to the very toxic
nature of the involved compounds. Accordingly, the search for alternative and less toxic
approaches has gained prominence, encouraging increased research into the discovery and
development of new products, namely from natural origin [55,56].

Anticancer compounds exert their effects through various mechanisms to target cancer
cells and inhibit tumor growth. Some common mechanisms of action include inhibition of
DNA synthesis, cell division and angiogenesis, induction of apoptosis, and disruption of
tumor metabolism [57].
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Also, in the field of natural compounds for cancer treatment, the genus Pisolithus has
aroused interest, with a focus on the triterpene pisosterol. Pisosterol was first isolated
from the basidiocarps of P. tinctorius and chemically elucidated by Gill et al. [58] (Figure 5).
Over the years, its cytotoxicity and mechanisms of action have been elucidated, mainly in
cellular models, with relevant results (Table 2).
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One of the first reports on the anticarcinogenic action of pisosterol was ascribed to Mon-
tenegro and co-workers in 2004 [59]. The effect of the compound was tested in vitro, in
mouse erythrocytes to infer its effects on membrane disruption, sea urchin developing
embryos, and in the tumor cell lines CEM (human leukemia), HL-60 (human leukemia),
B16 (murine melanoma), HCT-8 (human colon cancer), MCF-7 (human breast cancer),
PC-3 (human prostate cancer) and SF-268 (human neuroblastoma) for cytotoxicity. The
cytotoxicity of the compounds inferred using the viability assay based on the reduction
of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide salt (MTT) by viable
cells was compared to doxorubicin and etoposide, which are clinically used drugs in cancer
chemotherapy. The results showed no activity in erythrocytes or even in the development
of the embryos of sea urchins. However, there was a strong growth inhibition in all tumor
cell lines, notably in leukemia CEM, HL-60 cells, and B16 melanoma cells with IC50 of
1.55, 1.84, and 1.65 µg/mL, respectively. Sea urchins have been used as model species to
infer mechanisms of cell cycle control, cell adhesion, fertilization, cell differentiation, gene
expression regulation, and death [60], and in general, cytotoxic substances tested in the sea
urchin eggs and tumor cells are active in both assays [61]. This last assumption was not
observed by Montenegro et al. [59] in their work with pisosterol. Since phase G1 is arrested
in sea urchin cells and G2 is briefer than in mammals, the authors suggested an action of
pisosterol on these cell cycle phases.

Given the cytotoxic results induced by pisosterol and described in the previous re-
search, Montenegro et al. [62] conducted a study to determine if pisosterol was able to
induce cell differentiation using the leukemia cell line HL-60 as a cancer cell model and
peripheral blood mononuclear cells (PBMCs) as non-cancer cells. The data showed that
HL-60 cells treated with pisosterol tend to differentiate into monocytic cells, and apoptosis
was detected. No cytotoxicity was registered in PBMCs, even in the highest concentration
(5 µg/mL), suggesting that pisosterol can be selective to cancer cell lines. In addition,
Burbano et al. [63] conducted a study to elucidate the mechanisms of action of pisosterol in
HL-60 leukemia cells by analyzing the homogeneously staining region (HSR) 8q24 aberra-
tion. Chromosome 8 rearrangements showing HSRs are recurrent karyotype abnormalities
predominantly shown by HL-60 cells. The authors found that 99% of cells showed HSRs
before pisosterol treatment, while 90% of the analyzed cells lacked this HSR region when
treated with pisosterol. Although HL-60 cells resumed their growth after washing and
re-incubation in a pisosterol-free culture medium and cells with HSRs did not suffer signifi-
cant apoptosis or necrosis in the presence of pisosterol at a concentration of 1.8 µg/mL, the
results revealed pisosterol as a putative drug to be used in combination with conventional
anticancer therapy.
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Pereira and co-authors [64] described the effect of pisosterol in the glioblastoma
multiform (GBM) cell lines U343 and AHOL1. The treatment with three concentrations
of pisosterol (0.5, 1.0, and 1.8 µg/mL) did not alter the cell morphology of the two cell
lines, which is an indication that pisosterol does not induce cell differentiation in these
GBM cells. Results showed a significant decrease in mitotic index only at 1.8 mg/mL.
These results corroborate the findings of Montenegro et al. [59], in which the pisosterol
IC50 for HL-60 cell was 1.84 µg/mL as previously described. Cells were also treated for
abnormalities involving chromosome 8 or 8q24, the location where the C-MYC gene is
mapped. The results indicated that no new chromosomal abnormalities emerged after
treatment, suggesting that pisosterol has no clastogenic and/or aneugenic effect. This
finding corroborates the earlier work of Burbano et al. [63], which was also conducted on
HL-60 cells. Still, in the work of Pereira et al. [64], the interphase nuclei of the U343 and
AHOL1 cells were analyzed by fluorescence in situ hybridization (FISH) for C-MYC before
and after treatment with pisosterol. Results showed that after treatment with 1.8 µg/mL
pisosterol, only 33% of U343 cells and 15% of AHOL1 cells had more than two C-MYC
alleles when compared to the 72% of U343 and 65% of AHOL1 cells before the treatment.
This result might be of particular importance since the C-MYC protein is known to be
involved in cell cycle progression from G1 to S phase.

The potential of pisosterol in cancer therapy was also described on a panel of glioma
cell lines by Ferreira et al. [65]. Cellular viability and proliferation of U343, AHOL1,
U-87MG, and 1321N1 cells were significantly decreased in a dose-dependent manner
(concentrations of 0.97, 1.94, and 3.50 µM), with inhibition of cell proliferation via the
G2/M phase arrest and cell death by apoptosis. Treatment with pisosterol also revealed
a dose-dependent downregulation of the expression of MYC, BCL2, BMI1, and MDM2
genes and a significant dose-dependent upregulation of gene expression levels of CASP3,
TP53, ATM, CDK1, CDKN1A, CDKN2A, CDKN2B, CHK1 and p14ARF, which corroborate
the inhibition of cell cycle progression and both the caspase-independent and caspase-
dependent apoptotic pathways (Table 2).

While the previously described studies on the anticancer potential of pisosterol were
based on cancer cell assays, in 2008 Montenegro and colleagues [66] conducted a study
directed to an in vivo evaluation. In the study, sarcoma 180 tumor cells were subcutaneously
transplanted into Swiss female mice and treated with 50 and 100 mg/m2 of pisosterol for
7 days. The results showed a tumor growth inhibition ratio of 43.0 and 38.7% for mice
treated with pisosterol at 50 and 100 mg/m2, respectively, and 54.9% for mice treated with
5-fluorouracil at 50 mg/m2 as positive control. In order to evaluate the toxicological impact
of pisosterol in in vivo models, morphological analyses were made. The treatment had
an impact on the liver, showing Kupffer cells hyperplasia, focal infiltrate of inflammatory
cells, and centrilobular venous congestion, demonstrating that the liver is a target organ of
pisosterol. On the other hand, the authors concluded that the damages can be reversible
since no stromal fibrosis was detected and conjunctive tissue was preserved.

Although the most relevant anticancer studies on Pisolithus were assigned to pisosterol,
several other compounds have been described. Different medium and long-chain saturated
fatty acids that have been isolated from methanolic extracts of P. tinctorius [67] were
indicated to have anticancer activity, the most relevant being capric and lauric acids. These
compounds were shown to induce apoptosis in colorectal, skin, and breast cancer cell
lines [68–70]. Lastly, the ergosterol derivate, ergosterol peroxide that had been isolated
from basidiocarps of P. tinctorius among other fungi [71], showed promising results against
different cancer cell lines such as HT29 colon adenocarcinoma cells [72]. More recently,
Parisi and co-authors [73] reported the isolation and structure elucidation of thirteen
new and two already known triterpenoids from chloroform and methanolic extracts of
basiodiocarps of P. arhizus. From the panel of isolated compounds, 24-methyllanosta-8,24
(31)-diene-3β,22ε-diol previously described by Baumert et al. [74] and the newly isolated
24 (31)-epoxylanost-8-ene-3β, 22S-diol were found to induce moderate cytotoxicity in a
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dose-dependent manner on the cancer cell lines U-87MG and Jurkat, with no cytotoxicity
in the normal keratinocytes cell line HaCaT.

Most of the anticancer studies directed to Pisolithus have been based on compounds
isolated from the basiodiocarp. In a pioneering work, Alves et al. [75] evaluated the
anticancer potential of DCM/MeOH and EtOAc/MeOH crude extracts of P. tinctorius
spores against the human osteosarcoma cell line MG63, the human breast carcinoma cell
line T47D, the human colon adenocarcinoma cell line RKO, and the normal human brain
capillary endothelial cell line hCMEC/D3. The cytotoxicity results based on the MTT
assays showed a decrease in cancer cell line viability of 92% and 88% for DCM/MeOH
and EtOAc/MeOH crude extracts, respectively, without a significant reduction in the
viability of the normal cells. The most notable results were obtained with the DCM/MeOH
extract with cell viability of 12% in RKO and MG63 cells and 6% in T47D cells after 48 h of
exposure. These results extend the anticancer activity of Pisolithus to structures other than
the basiodiocarp, highlighting the potential of this fungal genus.

Table 2. Anticancer activity of the triterpene pisosterol isolated from Pisolithus tinctorius.

Biological Model Assay Mechanism/Effect Reference

CEM, HL-60, B16, HCT-8,
MCF-7, PC-3, SF-268 cell lines MTT Cytotoxicity [59]

HL-60 cell line

MTT Cytotoxicity

[62]

Trypan blue exclusion Viability
α-Naphthyl acetate esterase activity

Cell differentiationNBT
BrdU incorporation Inhibition of DNA synthesis

Differential fluorescent staining with
acridine/orange ethidium bromide Apoptosis

Mitotic index Cell cycle arrest [63]

Chromosome analysis Homogeneously staining region
(HSR) 8q24 aberration

U343, AHOL1 cell lines

Cytogenetic characterization:
metaphases stained with Giemsa

solution and banded with
trypsin-Giemsa
Mitotic index
FISH analysis

8q24.12–q24.13 chromosome
aberrations
Cytotoxicity

Expression of C-MYC gene

[76]

U343, AHOL1, U-87 MG,
1321N1 cell lines

MTT Cytotoxicity

[65]
Trypan blue exclusion Viability

Flow cytometry Cell cycle arrest
Staining with Annexin V-FITC/PI Apoptosis

qPCR and western blotting

Expression levels of MYC, ATM,
BCL2, BMI1, CASP3, CDK1, CDKN1A,
CDKN2A, CDKN2B, CHEK1, MDM2,

p14ARF and TP53 genes

Swiss female mice Histopathology and
morphologic observations

Induction of cellular and nuclear
pleomorphism; coagulative

type necrosis
[66]

MG63, T47D, RKO cell lines MTT Cytotoxicity [75]

MTT—3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide salt; NBT—nitro blue tetrazolium salt; CEM—
T lymphoblast cell line; B16—murine melanoma cell line; HCT-8—human colon adenocarcinoma cell line; MCF-
7—breast cancer cell line; PC-3—prostate cancer cell line; SF-268—human neuroblastoma cell line; HL-60—human
leukemia cell line; U343—human glioblastoma cell line; AHOL1—human glioblastoma cell line; U-87 MG—
human glioblastoma cell line; 1321N1—human astrocytoma cell line; MG63—human osteosarcoma cell line;
T47D—human breast carcinoma cell line; RKO—human colon adenocarcinoma cell line; FISH—fluorescence
in situ hybridization; FITC/PI—fluorescein isothiocyanate/propidium iodide; qPCR—quantitative polymerase
chain reaction; DNA—deoxyribonucleic acid.
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2.3. Antioxidant Activity

More than 50% of global deaths are linked to inflammation-related diseases, such as
stroke, diabetes, cancer, and neurodegenerative and autoimmune conditions [31,77].

Inflammation is a natural defense mechanism against endogenous or exogenous
antigens and involves enhanced or exacerbated production of reactive nitrogen species
(RNS) and reactive oxygen species (ROS). However, ROS and RNS are generated in regu-
lar metabolic pathways by most cells, as well as in inflammatory processes to eliminate
pathogens when, in excess, these oxidative species can promote oxidative stress associated
with chronic inflammation [78]. Antioxidants play a pivotal role in maintaining cellular
homeostasis and preventing oxidative stress-induced damage. They are compounds that
neutralize or inhibit the detrimental effects of ROS and free radicals, thereby reducing
inflammation and preventing cellular damage [79]. Both oxidative and inflammatory pro-
cesses are thought to be involved in several different pathogenesis mechanisms [77,80–84].
Antioxidants exert their protective effects through a combination of direct scavenging
of free radicals, modulation of enzyme activity, induction of antioxidant defenses, and
modulation of signaling pathways. These mechanisms collectively contribute to the ability
of antioxidants to mitigate oxidative stress and prevent cellular damage associated with
aging, inflammation, and various diseases [85,86].

It is crucial to explore and develop new medicines to address these health challenges.
The discovery of novel molecules exhibiting antioxidant activity is essential for advancing
innovative medical solutions that contribute to global well-being.

Recently, Martins et al. [49] assessed the antioxidant activity of hydroethanolic extracts
from eight macrofungi. P. tinctorius stood out as one of the fungi with the highest values
of antioxidant activity, evaluated by three different methods: 2,2-di(4-tertoctylphenyl)-
1-picrylhydrazyl (DPPH), 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS),
and ferric reducing antioxidant power (FRAP), with 1291.00, 519.10 and 128.30 µM Trolox
(6-hydroxy-2,5,7,8-tetramethlychroman-2-carboxylic acid)/g, respectively (Table 3).

Table 3. Extracts of Pisolithus species with antioxidant activity.

Extract Species Fungal Structure Assay Reference

Hydroethanolic P. tinctorius Basidiocarp
DPPH radical scavenging activity
ABTS radical scavenging activity

FRAP
[49]

Ethanolic
Aqueous P. tinctorius Basidiocarp DPPH radical scavenging activity

FRAP [87]

Ethanolic P. arhizus Basidiocarp DPPH radical absorbance [88]

Methanolic P. arhizus Basidiocarp
Mycelium

DPPH radical scavenging activity
Reducing power

Inhibition of β-carotene bleaching
[89]

Hydroethanolic
Methanolic P. tinctorius Basidiocarp DPPH radical absorbance [90]

Butanolic
Ethyl acetate P. microcarpus Mycelium DPPH radical scavenging activity [47]

Ethanolic P. arhizus Basidiocarp
Total antioxidant status (TAS)

Total oxidant status (TOS)
Oxidative stress index (OSI)t

[91]

Ethanolic P. albus Basidiocarp
DPPH radical scavenging activity

Reducing power of iron
iron-chelating power

[48]

Methanolic
Ethanolic P. arhizus Basidiocarp DPPH radical scavenging activity

Metal chelating power [92]

DPPH—2,2-di(4-tertoctylphenyl)-1-picrylhydrazyl; ABTS—2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid);
FRAP—ferric reducing antioxidant power.
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Similarly, Pringle et al. [87] showed that P. tinctorius ethanolic and aqueous extracts
had the highest antioxidant activity among four tested fungi. It is interesting to note that
the P. tinctorius ethanolic extract, at 200 µg/mL, had a similar antioxidant activity, assessed
by DPPH, as catechin, a reference compound with high antioxidant capacity.

The high antioxidant activity of P. arhizus in comparison with other macrofungi was
also demonstrated in the study of Campi et al. [88]. The antioxidant concentration deter-
mined by DPPH was 36.66 mg/g of ascorbic acid equivalent (AAE), the second highest
among nine tested fungi.

The collective findings from these recent studies show high antioxidant activity across
diverse assessments, including DPPH, ABTS, and FRAP methods, positioning Pisolithus as
a promising source of antioxidant compounds.

Reis et al. [89] evaluated the antioxidant activity of methanolic extracts of P. arhizus
using three different methods. Interestingly, all methods revealed that the antioxidant
activity of P. arhizus varied among its different fungal components. In basidiocarps, the
antioxidant activity assessed by DPPH radical scavenging activity, reducing power, and
inhibition of β-carotene bleaching was EC50 0.56, 0.37, and 0.24 mg/mL, respectively.
In mycelium, it was EC50 > 20.00, 7.29, and 2.49 mg/mL, respectively, showing that
basidiocarps have higher antioxidant activity than mycelium.

3. Conclusions

In the exploration of Pisolithus, this comprehensive review enlightens the bioactive
potential harbored within the genus, offering insights into its antimicrobial, anticancer,
and antioxidant properties. Although bioactive compounds isolated from Pisolithus have
been understudied, the bioactive potential of the genus is promising and deserves to be
compiled to stimulate further investigations.

Three species of Pisolithus that exhibited bioactive potential have been reported,
namely P. arhizus/P. tinctorius, P. albus and P. microcarpus. The diverse bioactive poten-
tial of Pisolithus is underscored by the discovery of compounds with markedly distinct
chemical structures, extracted from different fungal structures—be it the basidiocarp or the
mycelium, and the potential hidden in other structures such as the spores. This not only
highlights the rich reservoir of bioactive compounds within Pisolithus but also accentuates
the importance of exploring the multifaceted contributions of different fungal components
in unlocking innovative applications across diverse therapeutic landscapes.

Compounds derived from Pisolithus exhibited antimicrobial activity against a spectrum
of microorganisms, showcasing efficacy against both Gram-negative and Gram-positive bac-
teria, mycobacteria, dermopathogenic fungi, phytopathogenic fungi, and phytopathogenic
oomycetes. Particularly noteworthy is the effectiveness of Pisolithus against antibiotic-
resistant bacteria, positioning it as a valuable contender in the battle against antibiotic
resistance. The bioactive compounds from Pisolithus demonstrated antimicrobial perfor-
mance comparable to established antibacterial and antifungal medications, accentuating
the therapeutic potential of these natural products. Their ability to match the efficacy of
current pharmaceuticals is a testament to the capacity of Pisolithus-derived compounds.

In the realm of anticancer activity, the triterpene pisosterol emerges as a standout
compound from P. tinctorius. With documented cytotoxicity against various cancer cell
lines, pisosterol holds promise as a novel candidate for anticancer therapies. Despite
significant strides in understanding its effects in vitro and in vivo, further investigations
are warranted to unravel the mechanisms underlying its anticancer properties.

Furthermore, Pisolithus has been unveiled as a potential source of antioxidants, with
studies on extracts and fractions showcasing promising results. Notably, basidiocarps
exhibited superior antioxidant activity compared to mycelium, offering avenues for targeted
extraction and isolation strategies.

While in vitro studies presented compelling evidence of the Pisolithus bioactive prowess,
it is imperative to acknowledge the necessity for in vivo validation. Limited information
on isolated compounds and a selective focus on certain activities underscore the need
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for expansive studies encompassing a broader spectrum of compounds and activities.
Mechanistic insights into the mode of action of Pisolithus-derived compounds remain a
compelling area for future research.

Most of the compounds isolated from Pisolithus belong to chemical groups well known
for their bioactive potential. Pisolithin A and B are phenolic compounds. Phenolics exhibit a
range of bioactivities, including antimicrobial, anticancer, and antioxidant effects [93]. Piso-
lactone and 7,22-dien-3-ol, 24-methyl lanostane are two triterpenoids, and this class of or-
ganic compounds has been described as potential antimicrobial and anticancer drugs [94,95].
Pisosterol is a triterpene. Triterpenes were found to induce antimicrobial, antiviral, an-
ticancer, and antioxidant properties, among others [96–98]. The chemical nature of the
isolated compounds thus reflects what is already known regarding their therapeutic poten-
tial and elevates Pisolithus to another level on the scale of pharmacological interest. While
producing biomass for compound isolation at an industrial scale may pose challenges, nat-
ural models can serve as valuable tools for designing novel agents with potent bioactivities.
Therefore, compounds from Pisolithus may continue to represent promising leads for the
development of new drugs in the future [95].

As our understanding of the multifaceted nature of Pisolithus continues to evolve,
the wealth of bioactive potential residing in Pisolithus signifies a promising frontier in
the development of innovative antimicrobial, anticancer, and antioxidant applications for
addressing contemporary health challenges.
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