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Abstract: In this paper, an automatic colony counting system based on an improved image prepro-
cessing algorithm and convolutional neural network (CNN)-assisted automatic counting method
was developed. Firstly, we assembled an LED backlighting illumination platform as an image captur-
ing system to obtain photographs of laboratory cultures. Consequently, a dataset was introduced
consisting of 390 photos of agar plate cultures, which included 8 microorganisms. Secondly, we
implemented a new algorithm for image preprocessing based on light intensity correction, which
facilitated clearer differentiation between colony and media areas. Thirdly, a U2-Net was used to
predict the probability distribution of the edge of the Petri dish in images to locate region of interest
(ROI), and then threshold segmentation was applied to separate it. This U2-Net achieved an F1 score
of 99.5% and a mean absolute error (MAE) of 0.0033 on the validation set. Then, another U2-Net was
used to separate the colony region within the ROI. This U2-Net achieved an F1 score of 96.5% and an
MAE of 0.005 on the validation set. After that, the colony area was segmented into multiple compo-
nents containing single or adhesive colonies. Finally, the colony components (CC) were innovatively
rotated and the image crops were resized as the input (with 14,921 image crops in the training set and
4281 image crops in the validation set) for the ResNet50 network to automatically count the number
of colonies. Our method achieved an overall recovery of 97.82% for colony counting and exhibited
excellent performance in adhesion classification. To the best of our knowledge, the proposed “light
intensity correction-based image preprocessing→U2-Net segmentation for Petri dish edge→U2-Net
segmentation for colony region→ResNet50-based counting” scheme represents a new attempt and
demonstrates a high degree of automation and accuracy in recognizing and counting single-colony
and multi-colony targets.

Keywords: bacterial colony counting; light intensity correction; convolutional neural networks;
U2-Net; ResNet50; image segmentation; image spatial normalization

1. Introduction

Colony detection is an important and routine task in quality inspection for microbiol-
ogists, including food (e.g., microbial limit test), medicine, cosmetics, water, production
equipment, air quality monitoring, and quarantine [1–3]. Currently, the majority of the
laboratories are still using the method of pouring sample suspensions with agar into plates
or streaking the agar plates with sample suspensions to culture colonies. However, the
traditional visual check method for colony detection is laborious and time-consuming [4].
To reduce labor and improve analysis accuracy, researchers and developers have focused
on image analysis methods. The main challenges in the methods are colony image acquisi-
tion, image segmentation, and classification of complex colonies. Furthermore, adjusting
manual parameters is often necessary, yet it proves challenging for users aiming to enhance
recognition accuracy.
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Traditional algorithms, such as thresholding, watershed, and wavelet transform,
have been widely used for segmenting the colony area in an image [5–10]. However,
these algorithms often exhibit poor performance when dealing with images that have
low contrast, noise, and/or adhesive colonies. In recent years, advancements in machine
learning have yielded an attractive research field in the microbiology discipline [11–13].
Deep learning approaches, such as convolutional neural networks (CNNs), which mimic
the information transmission mechanism of the visual system and learn features from
training samples, are very good at image processing, especially in image classification,
target retrieval, positioning detection, and target segmentation [14–17].

Over the years, research has increasingly focused on developing CNN techniques
for counting bacterial colonies on agar plates [18]. For instance, two CNN approaches
for bacterial colony counting were implemented, one based on a support vector machine
(SVM), and the other utilizing a CNN architecture within the BVLC Caffe framework.
These approaches achieved an impressive overall accuracy of 94.5% and demonstrated
a notable improvement in counting multiple colony aggregates [19]. A modified U-Net
architecture, incorporating a pre-trained ResNet34 network, was employed to quantify
white/red colonies across 492 pairs of plate images, excluding areas with multiple small and
overlapping colonies [20]. In addition, the Annotated Germs for Automated Recognition
(AGAR) dataset, comprising over 330,000 labeled microbial colonies, was established [21].
The performances of Faster R-CNN [22] and Cascade R-CNN were then evaluated [23]
on this dataset. Cascade R-CNN achieved the highest mean average precision (MAP) of
52.3% and 59.4% on intersection over union (IoU) ranging from 0.5 to 0.95. Furthermore,
a lightweight improved YOLOv3 [24] network based on the few-shot learning strategy
was proposed [25]. The network was trained and validated using only five raw images,
resulting in an improvement in average accuracy from 64.3% to 97.4% and a significant
decrease in the false negative rate from 32.1% to 1.5%.

Among the various neural network models, U2-Net [26] is a network structure based
on U-Net [27] that is widely used for foreground recognition in medical images. The
network architecture follows an encode–decode framework, incorporating elements from
an FPN (feature pyramid network) [28] and U-Net. The authors introduced a novel
module called RSU (ReSidual U-blocks), which has demonstrated excellent segmentation
performance. Each RSU functions as a small U-Net, and they are interconnected in a
structure similar to FPN, employing a top-down approach to enhance multi-scale capability.
ResNet [29] is a CNN-based image classification architecture that effectively extracts feature
information and exhibits faster convergence and higher accuracy. It is built on the concept
of residual learning, enabling the network to become deeper and to achieve improved
accuracy. In the official PyTorch code, ResNet offers five different depth options: 18, 34, 50,
101, and 152. The depth of each network refers to the number of layers that are trained and
updated, including convolution layers and fully connected layers.

Building upon the achievements of prior research, our objective is to present a com-
prehensive and accessible approach for microbiologists, encompassing the entire process
(Figure 1) from colony image acquisition to fully automated colony counting. The specific
goals of this study are as follows: (i) designing and configuring hardware for imaging ac-
quisition, (ii) culturing various bacterial species on agar plates and capturing photographs
to create a dataset of bacterial colony images, (iii) employing the U2-Net for region of inter-
est (ROI) [30] searching and colony region segmentation, and (iv) utilizing the ResNet50
framework for colony counting.
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Figure 1. Overview of the processing workflow of the automatic pipeline for bacterial colony seg-
mentation and counting in this study. The process begins with capturing a digital photo using the 
imaging system and preprocessing the image as input. The preprocessed image is then fed into U2-
Net for ROI recognition and separation of the colony region from the media. Connected component 
analysis and cutting of the colony region result in image crops containing individual colony com-
ponents (CCs). Finally, the CCs are rotated, and the image crops are resized as input for ResNet50 
to perform the counting and obtain the colony numbers. 

2. Materials and Methods 
2.1. Bacterial Culture 

The following bacterial strains were collected: Gram-negative bacteria Escherichia coli 
ATCC25922, Salmonella typhimurium ATCC14028, Vibrio parahaemolyticus ATCC17802, and 
Shigella sp. ATCC12038; Gram-positive bacteria Staphylococcus aureus ATCC6538, Staphy-
lococcus epidermidis ATCC12228, Listeria ivanovii ATCC19119, and Listeria monocytogenes 
ATCC19115. Each bacterium was activated by streaking on plate count agar (PCA) or nu-
trient agar media in a 9 cm (diameter) Petri dish and the bacteria were cultured at 35–37 
°C for 24–48 h to allow colony formation. Single colonies with good morphology were 
diluted using normal saline. Then, 100 µL aliquot of the bacterial suspension was inocu-
lated on media by using the spread plate method to ensure the growth of approximately 
0–300 colony forming units (CFU) on each plate. The bacteria were then incubated at 35–
37 °C for 24–48 h. Strains, media, and Petri dishes were purchased from Huankai Micro-
bial Sci. and Tech and the Guangdong Microbial Culture Collection Center (GDMCC), 
Guangzhou, China. 

2.2. Assembly of the Imaging Device 
As is known, when capturing images from the same plate using a reflected light cam-

era, the image quality varies significantly due to different surfaces and lighting conditions. 
Therefore, it is necessary to standardize shooting conditions in the design of the image 
capture instrument. The performance parameters of the CMOS sensor and zoom lens 
(purchased from Shenzhen Shunhuali Electronics Co., Ltd., Shenzhen, China) (Figure 
2B,C) are listed in Supplementary Tables S1 and S2. An acrylic backlight panel (BLP) (Fig-
ure 2E), with LED lights, was used to ensure the brightness and uniform illumination of 
the Petri dish from the bottom. For the sake of mobility and portability, a Raspberry Pi 
(equipped with a 64-bit, 1.5 GHz, four-core, 28 nm CPU, purchased from Shenzhen Trx-
com Electronics Co., Ltd., Shenzhen, China) was chosen (Figure 2A,D) for data acquisition, 
providing flexibility and adaptability to various experimental scenarios. 

Figure 1. Overview of the processing workflow of the automatic pipeline for bacterial colony
segmentation and counting in this study. The process begins with capturing a digital photo using
the imaging system and preprocessing the image as input. The preprocessed image is then fed
into U2-Net for ROI recognition and separation of the colony region from the media. Connected
component analysis and cutting of the colony region result in image crops containing individual
colony components (CCs). Finally, the CCs are rotated, and the image crops are resized as input for
ResNet50 to perform the counting and obtain the colony numbers.

2. Materials and Methods
2.1. Bacterial Culture

The following bacterial strains were collected: Gram-negative bacteria Escherichia coli
ATCC25922, Salmonella typhimurium ATCC14028, Vibrio parahaemolyticus ATCC17802, and
Shigella sp. ATCC12038; Gram-positive bacteria Staphylococcus aureus ATCC6538, Staphy-
lococcus epidermidis ATCC12228, Listeria ivanovii ATCC19119, and Listeria monocytogenes
ATCC19115. Each bacterium was activated by streaking on plate count agar (PCA) or
nutrient agar media in a 9 cm (diameter) Petri dish and the bacteria were cultured at
35–37 ◦C for 24–48 h to allow colony formation. Single colonies with good morphology
were diluted using normal saline. Then, 100 µL aliquot of the bacterial suspension was
inoculated on media by using the spread plate method to ensure the growth of approxi-
mately 0–300 colony forming units (CFU) on each plate. The bacteria were then incubated
at 35–37 ◦C for 24–48 h. Strains, media, and Petri dishes were purchased from Huankai
Microbial Sci. and Tech and the Guangdong Microbial Culture Collection Center (GDMCC),
Guangzhou, China.

2.2. Assembly of the Imaging Device

As is known, when capturing images from the same plate using a reflected light camera,
the image quality varies significantly due to different surfaces and lighting conditions.
Therefore, it is necessary to standardize shooting conditions in the design of the image
capture instrument. The performance parameters of the CMOS sensor and zoom lens
(purchased from Shenzhen Shunhuali Electronics Co., Ltd., Shenzhen, China) (Figure 2B,C)
are listed in Supplementary Tables S1 and S2. An acrylic backlight panel (BLP) (Figure 2E),
with LED lights, was used to ensure the brightness and uniform illumination of the Petri
dish from the bottom. For the sake of mobility and portability, a Raspberry Pi (equipped
with a 64-bit, 1.5 GHz, four-core, 28 nm CPU, purchased from Shenzhen Trxcom Electronics
Co., Ltd., Shenzhen, China) was chosen (Figure 2A,D) for data acquisition, providing
flexibility and adaptability to various experimental scenarios.
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Figure 2. Actual photograph of the assembled colony imaging system. (A,D), Raspberry Pi; (B,C),
CMOS camera and lens; (E) LED light source.

The distance between the lens and the Petri dish was determined based on the zoom
range of the lens. Subsequently, a three-layer enclosed cabinet was designed and con-
structed using acrylic boards. The lower box functions as a black opaque structure to house
the light sources. The middle box serves as a platform for positioning the Petri dish. The
transparent upper box is designed to contain the CMOS camera, lens, Raspberry Pi, and
wiring. The price of this device is less than USD 750.

2.3. Raw Image Acquisition

Bacterial cultures were positioned on the sampling table of the imaging device, and
a Python program was utilized to capture a live image of the Petri dish. Once the light
source and instrument had stabilized, the focus was adjusted manually or automatically to
achieve optimal sharpness, and photos were taken using transmission spectral imaging.
Subsequently, 100 frames were captured, and the average pixel value of these frames was
calculated to reduce the signal-to-noise ratio. The captured raw image (Figure 3) size is
2560 × 1922 pixels.

2.4. Image Preprocessing

The color of an image can be influenced by data acquisition conditions, such as
brightness, contrast, white balance, etc. Preprocessing images to a similar color can help
improve the subsequent recognition accuracy of CNN models. Initially, the Petri dish area
is approximately segmented from the image by steps including image denoising (range-
based adaptive bilateral filter [31]), differential transformation, and threshold segmentation.
Subsequently, through edge detection, the colony region and culture medium region were
roughly separated. Considering that differences in the composition and thickness of the
media between batches have an impact on the luminosity data that cannot be ignored,
the average luminosity of all pixels in the culture medium region is represented by I0
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and the luminosity of a pixel at specific location in the entire image is represented by Ii.
The corrected intensity data for each image were subsequently expressed as Formula (1).
Figure 4A illustrates the flowchart of the data preprocessing, and the effect of preprocessing
is shown in Figure 4B.

lgIi′ = lgI0 − lgIi (1)
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2.5. Colony Identification and Counting

The process of colony identification and counting in this paper is mainly divided into
three steps. In the first step, the edge of the Petri dish (foreground) is segmented using a
U2-Net model. Along the inner edge of the extracted contour, the ROI (culture medium
and colony region) is separated. The output of this U2-Net then undergoes threshold
segmentation to obtain the foreground mask. Usually, pixels with gray values greater than
the threshold are marked as the foreground (target), and pixels with gray values less than
or equal to the threshold are marked as the background (non-target). In the second step, the
colony region (foreground) is segmented from culture medium region (background) using
another U2-Net model, following the same masking approach. Afterward, each connected
region obtained by connected component labeling is regarded as a colony component (CC),
which may contain a single colony or adhesive colonies. These CCs are then rotated, and
the corresponding image crops are standardized to a size of 128 × 128 pixels. In the third
step, these standardized image crops are inputted to ResNet50, which extracts features and
outputs the number of colonies. The workflow is briefly illustrated in Figure 1.

2.5.1. Culture Dish Edge Segmentation
Dataset Preparation and Network Construction

To train U2-Net for extracting the edges of the Petri dishes, we manually annotated the
foreground regions of the preprocessed images: the inner and outer edges of Petri dishes
were labeled, and the pixel values between the 2 circles were filled with a pixel value of
255, resembling Figure 5Ab. A total of 255 colony images were annotated, with 219 images
used as the training set and 36 images used as the validation set.
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Figure 5. Overview of Petri dish edge segmentation results. (A) An example of the input image
after preprocessing (a), highlighted Petri dish edge (b), and the central region of the Petri dish/ROI
(c); (B) F1 score and MAE curve on the validation set; (C) a box plot comparing the Petri dish edge
segmentation performance of U2-Net at different thresholds. n = 255. MAE, precision, and recall
metrics were calculated separately for U2-Net at different thresholds. In the box plot, the center line
represents the median, the bottom and top hinges represent the first and third quartiles, and the
whiskers show the most extreme points within 1.5 times the interquartile range.
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To improve the training efficiency of the model, the RGB values were normalized
to a range between 0 and 1. Since the light intensity values were already adjusted to
a recognizable distribution, the typical standardization operation based on mean and
standard deviation was not applied here.

Network Training

The U2-Net model we used is initialized with random parameters. AdamW was
employed as an optimizer with a learning rate of 1 × 10−3, betas (0.9, 0.999), and epsilon
(eps) of 1 × 10−8. The learning rate decay strategy employed for the model is cosine
learning rate decay [32]. The chosen loss function was binary cross Entropy with logits
loss (BCEWithLogitsLoss) [33]. To prevent overfitting, a regularization term with a weight
decay of 1 × 10−4 is incorporated to the loss function. The batch size is set to 1.

To address the class imbalance between the foreground and background, we increased
the weight of the foreground in the loss function to enhance the accuracy of foreground
recognition. Since the edge region of the Petri dish in the images occupies approximately
1/8 of the background area, we set a foreground-to-background weight ratio of 8:1 in the
loss function.

To evaluate the model’s prediction performance on the validation set, we utilized mean
absolute error (MAE) and F1 score as evaluation metrics [34]. The F1 score is the harmonic
mean of precision and recall, where predicted values greater than 0.5 are considered as
1 and values less than 0.5 are considered as 0. The F1 score ranges between 0 and 1,
with a higher value indicating better classifier performance. MAE is used to measure the
magnitude of differences between the model’s predicted values and the ground truth. A
smaller MAE indicates less discrepancy between the model’s predictions and the actual
values. The calculations used are shown in Formulas (2)–(4) (TP: true positives; FN: false
negatives; and FP: false positives). Formulas (2)–(4) are as follows:

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1 =
1.3 ∗ Precision ∗ Recall
0.3 ∗ Precision + Recall

(4)

The output of U2-Net is the probability of each pixel being classified as foreground,
and a threshold segmentation is performed to determine the final mask of foreground
(the edge of the dish, Figure 5Ab). Subsequently, the ROI was separated by utilizing the
generated mask (Figure 5Ac).

2.5.2. Colony Region Separation

Through the previous process, we identified the ROIs (Figure 6Aa). However, these
ROIs usually consist of colonies, culture media, and other impurities, such as stains or
damaged culture media. To address this, we trained another U2-Net network for pixel-
level recognition, with colonies as the foreground. Thereafter, we applied a threshold
segmentation technique to the foreground probability map generated by this U2-Net [35],
enabling us to precisely define the colonies (Figure 6Ab).
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(B) F1 score and MAE curve on the validation set.

Dataset Preparation

We manually marked the pixels belonging to the colonies within the ROIs of 255 colony
images, creating masks resembling those in Figure 6Ab. These masks served as labels to
construct the dataset, with 219 images allocated for training and 36 images designated for
validation.

Network Training

The images in the training set were horizontally flipped to augment the data (with
a flip rate of 0.5). The RGB channel values of the images were scaled to the range of 0–1
using the same method as described above. The training parameters remained consistent
with those used for the Petri dish edge segmentation process. After colony region extrac-
tion, we conducted threshold segmentation (Figure 7) to determine the final mask of the
colony region.
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Figure 7. Comparison of colony segmentation performance at different thresholds. (A) An example
of the results of connected component analysis after colony segmentation by U2-Net and threshold
segmentation at different thresholds (0.2, 0.9, and 0.999). A threshold of 0.2 leads to incorrectly
segmented edge objects (indicated by red arrows). With a threshold of 0.999, adhesive colonies
are segmented more accurately (indicated by white arrows). However, increasing the threshold
results in incorrect segmentation of colonies (indicated by blue arrows); (B) a box plot showing the
segmentation performance comparison of U2-Net at different thresholds. n = 255. MAE, precision,
and recall metrics were calculated separately for U2-Net at different thresholds. The median, bottom
and top hinges, and whiskers carry the same meaning as described above.

2.5.3. Colony Counting
Dataset Preparation

Using connected component analysis, we segmented the foreground (colony region)
images obtained in the previous step into crops containing no colonies, single colonies, or
adhered colonies (colony components) and manually annotated the number of colonies
in each crop. The labels in the training and validation datasets included ten categories
ranging from 0 to 9. If the number of colonies was 9 or more, it was uniformly labeled as 9.
Crops devoid of colonies were assigned a label of 0. Among the labels, 76.6% contained
isolated colonies, 9% contained 2 colonies, 2.2% contained 3 colonies, 1.2% contained more
than 3 colonies, and 10.9% contained 0 colonies.

To improve the recognition accuracy of ResNet50, spatial normalization was applied to
the CCs (Figure 8A). By fitting an ellipse around the CC and taking the center of the ellipse
as the rotation center point O, the CC was rotated by an angle θ to align the major axis
of the ellipse vertically. This rotation operation ensured consistent spatial characteristics,
making the distribution of adhesive colonies more uniform.
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For training ResNet50, the dimensions of image crops were standardized to 128 ×
128 pixels. Images smaller than 128 × 128 pixels were padded with zeros to achieve the
standard size. Images larger than 128 × 128 pixels were resized by reducing the longer
side to 128 pixels while maintaining the aspect ratio. The shorter side was then padded
with zero to reach a length of 128 pixels. This approach preserved the colony features while
ensuring that all image crops were a consistent size. In total, 14,921 image crops were used
for training, and 4281 image crops were used for validation.

Network Architecture

Given variations in runtime and classification accuracy across different ResNet ver-
sions, the well-used and robust ResNet50 was selected. To accommodate the prediction of
10 categories (class 0–9), we modified the output channels of the final layer to 10.

Network Training

Similar to the previous two processes, the RGB channel values of all images were
scaled to the range of 0–1. The optimizer used for training is Adam, with a learning rate
of 0.0001. The chosen loss function was BCEWithLogitsLoss. To improve accuracy, we
also introduced different weights for each annotated category when computing the loss to
balance the sample quantities among categories. The weight for each class was calculated
using the following Formula (5) (where wi is the weight for annotated category ®, and ni is
the sample quantity for annotated category i):

wi =
max(n)

ni
(5)
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2.6. Training Environment

This study was conducted using PyCharm and Python 3.9. The training and testing of
the models were performed on a deep learning workstation equipped with an Intel®) X®

(R) CPU E5-2680 v4 processor and a NVIDIA Tesla P100 GPU with 16 GB of memory. The
workstation was running Windows 10, and GPU acceleration was achieved using CUDA
10.0 and cuDNN 7.6. We implemented our models using Torch 1.12.1 and Torchvision 0.13.1.

3. Results
3.1. The Imaging System Captures High-Quality Colony Images

The high-resolution photographs used in this study were captured using the imaging
device, which comprises a 5.1 Mpx CMOS sensor camera with a 2.8–12 mm lens and LED
source light mounted below the Petri dish (Figure 2). The darkroom structure eliminates
the influence of ambient light and enhances illumination uniformity. Compared to similar
workstations, it has a relatively affordable price and is highly portable for various remote
application scenarios.

We successfully cultured eight common foodborne pathogens. Using this setup, we
collected a total of 390 high-resolution raw RGB images of agar plates with a resolution of
2560 × 1922 pixels (Figure 3). By employing the transmission light source mode, reflections
and shadows that may occur when using a mobile phone or camera for direct shooting
were eliminated, emphasizing the ROI and providing sufficient contrast between the
colonies and the background in the images. The distribution of original pictures of the
eight bacterial species is as follows: 64 images for S. aureus, 66 images for E. coli, 38 images
for L. monocytogenes, 55 images for S. typhimurium, 32 images for L. ivanovii, 60 images for
Shigella sp., 48 images for S. epidermidis, 20 images for V. parahaemolyticus, and 7 images for
colony cultures of environmental samples.

3.2. Image Preprocessing

Variations in the composition and thickness of the media can profoundly influence im-
age luminosity, contrast, and colony recognition factors that are frequently underestimated.
Following the capture of original images, a subsequent preprocessing step (Figure 4A)
was applied. Subsequently, the correction of light intensity data for each image, using
Formula (1), was employed to mitigate interference from the media and Petri dish. This
correction enhanced the contrast between colonies and the background, revealing more
intricate colony features (Figure 4B), which were then extracted for CNN training.

3.3. Petri Dish Edge Segmentation

Considering the existing challenges in colony analysis, such as colony size, adhesion,
and potential residual noise after preprocessing, neural networks were employed in the sub-
sequent steps. We first utilized U2-Net to extract the edges of the Petri dish (Figure 5Aa,b)
and located the central region, referred to as the ROI (Figure 5Ac). The model’s prediction
performance on the validation set was evaluated by the MAE and F1 score.

The F1 score and MAE curves of the model on the validation set for each epoch are
shown in Figure 5B. The model achieves a maximum F1 score of 99.5% and a minimum
MAE of 0.0033, indicating extremely accurate foreground predictions. The parameters that
achieved the highest F1 scores and the lowest MAE were chosen as the optimal parameters.

Different threshold values can influence the size of the ROI. To determine the threshold
that best suits the requirements, we performed threshold segmentation tests on the output
of U2-Net using thresholds ranging from 0.1 to 0.9, as well as 0.95 and 0.99. Boxplots of
MAE, precision, and recall illustrate the distribution of segmentation results for different
thresholds. As shown in Figure 5C, as the threshold increases, MAE reaches its minimum
value at 0.7, precision gradually increases, and recall gradually decreases. These results
indicate that lower thresholds yield more complete and reliable ROIs [36]. A relatively
lenient delineation of the edges implies fewer residuals, preventing U2-Net from mistakenly
identifying edges as colonies and thereby affecting colony counting. Lower threshold
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settings also improve generalization while maintaining MAE within an acceptable range.
Therefore, we selected 0.1 as threshold in this study.

3.4. Colony Region Separation

After obtaining the ROI (Figure 6Aa,b), we used another U2-Net model to extract the
colony regions within the ROI. The curve in Figure 6B represents the F1 score and MAE
on the validation set for each epoch. This U2-Net model achieved a maximum F1 score of
96.5% and a minimum MAE of 0.005 on the validation set, indicating its accurate extraction
of colonies.

Regarding the threshold selection for postprocessing of extracted colony region, we
also conducted segmentation tests using multiple thresholds on the validation set. As
shown by the red arrow in Figure 7A, setting the threshold to 0.2 resulted in false-positive
colonies, primarily located at the edges of the ROI. These false-positive results mainly
represented edges of the medium region. As the threshold increased from 0.2 to 0.999, the
number of false-positive colonies significantly decreased, and higher thresholds improved
the ability to segment multiple adhesive colonies (as indicated by the white arrow in
Figure 7A), thereby reducing the burden and errors of ResNet50. However, setting the
threshold too high (0.99 and 0.999) resulted in some colony regions being partly classified
as background, as indicated by the blue arrow in Figure 7A, leading to an increase in
MAE. The boxplots of MAE, precision, and recall illustrate the distribution of segmentation
results at different thresholds, as shown in Figure 7B. With the increase in threshold, MAE,
precision, and recall, respectively, exhibited the same trend as in Figure 5C. In the task of
colony region extraction, compared to Petri dish edge segmentation, it is more crucial to
achieve low MAE and high precision predictions in order to accurately segment colonies
and minimize the false-positive rate. Taking all factors into consideration, we selected 0.9
as the threshold, which provides a low false-positive rate for the majority of colony images
and accurately segments adhesive colonies.

3.5. Training and Validation Performance of ResNet50 on Colony Counting

The spatial normalization used in this study (Figure 8A) helps to enhance the spatial
consistency of CCs, alleviate the counting pressure on ResNet50, and improve the model’s
recognition accuracy. When half of the data were not rotated, ResNet50’s performance was
slightly inferior. When all data were randomly rotated by 45 degrees, ResNet50 exhibited
the poorest performance. In comparison, when all CCs were subjected to our spatial
normalization, ResNet50 achieved faster training speed, a lower loss curve, and higher
accuracy on the validation set (Figure 8B,C).

3.6. Test Performance of the Pipeline on Colony Counting of Entire Images

This study used manually annotated results as the ground truth and the predicted
colony numbers as the predicted values to construct the confusion matrix for the entire
counting process on the test set (Table 1). The recovery calculated for class > 0 was shown in
Equation (6), where ntrue and npred, respectively, represent the actual and predicted bacterial
counts. For the class = 0 scenario, given the absence of colonies in the image crops, the
recovery evaluation is treated as a binary classification. Here, TP represents the number of
image crops correctly predicted as class 0, and FN represents the number of image crops
predicted as other classes.

Recovery =

1 − |ntrue−npred|
ntrue

, ntrue > 0
TP

TP+FN , ntrue = 0
(6)

Our approach achieved an overall recovery of 97.82%, with 66.55% of colonies seg-
mented into single colonies and 10.21% of colonies segmented into two-adhesion colonies.
The identification effect on image crops with no colonies and with 1–3 colonies was the
best (recall: 83.62–97.59%; precision: 89.80–98.88%; recovery: 94.54–99.90%), but the iden-
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tification effect on adhesions with more than three colonies began to decline. However,
most of the incorrect predictions are close to the actual values. Additionally, counting these
adhesive colonies is often challenging even for experienced technicians.

Table 1. The confusion matrix, recall, precision, and recovery of the proposed method on test set.

Predict
Class

Ground Truth

0 1 2 3 4 5 6 7 8 9

0 485 36 0 0 3 0 0 0 0 0
1 19 3002 10 3 1 0 1 0 0 0
2 0 37 458 15 0 0 0 0 0 0
3 0 1 4 97 0 0 0 0 0 0
4 0 0 0 0 58 6 0 0 0 0
5 0 0 0 1 3 56 5 0 0 0
6 0 0 0 0 0 0 71 2 1 0
7 0 0 0 0 0 0 4 103 1 0
8 0 0 0 0 0 0 0 0 61 3
9 0 0 0 0 0 0 0 0 0 75

Recall 96.23% 97.59% 97.03% 83.62% 89.23% 90.32% 87.65% 98.10% 96.83% 96.15%
Precision 92.56% 98.88% 89.80% 95.10% 90.63% 86.15% 95.95% 95.37% 95.31% 99.99%
Recovery 96.23% 99.90% 99.36% 94.54% 95.38% 98.06% 98.77% 99.73% 99.40% 99.57%

Figure 9 illustrates the results of the entire automated counting process depicted in
Figure 1. Each white box represents a CC, and the number displayed on the box represents
the colony count, demonstrating the ability to accurately identify isolated colonies and
perform well on most adhesive colonies. Additionally, the hyperparameters for the entire
colony counting process have been fine-tuned for various scenarios, eliminating the need
for further adjustments.
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4. Discussion

4.1. U2-Net Is More Suitable for Locating the Edges of Petri Dishes and Extracting Bacterial
Colony Areas Compared to Threshold Segmentation

U2-Net has been successfully applied in complex biomedical images [37] and is utilized
to generate the density map for counting microbiological objects in images [38]. In this
study, the task of U2-Net is to identify the Petri dish edges and then extract colony regions
in images, while traditional algorithms, such as k-means [39] and Otsu’s binarization [40],
typically employ thresholding methods. We compared the impact of U2-Net with that
of k-means and Otsu’s image processing methods on the colony counting performance
of ResNet50. Consequently, ResNet50 achieved recovery of 99.29%, 87.87%, and 42.98%
on the validation dataset, respectively. It is evident that images processed with U2-Net
yielded better colony counting results. Furthermore, when compared to the results obtained
using the traditional watershed algorithm and a proposed CNN algorithm [19], ResNet50
demonstrated superior precision and recall in counting aggregated colonies (Table S3).

4.2. The ResNet50 Model in Our Proposed Method Functions as an Interchangeable Module

In our proposed counting process, ResNet50 is tasked with colony counting. We
conducted training and validation on ResNet50, ResNet_wide [41], VGG19 [42], and Effi-
cientNet [43], employing identical parameters. After 200 epochs of training, the accuracy
for each model is as follows: 96.24% for ResNet50, 96.35% for ResNet_wide, 96.05% for
VGG19, and 96.45% for EfficientNet, suggesting negligible distinctions. Consequently, the
ResNet50 module is an interchangeable constituent in our colony counting methodology.

4.3. Our Method Surpasses YOLO, the Segment Anything Model, and OpenCFU in Performance

YOLO is a single-stage object detection architecture known for its simplicity and speed.
With S. aureus images from the AGAR dataset, YOLOv5 achieved a mAP@0.5 of 99.1% [44].
We trained an official open-source YOLOv5 model (https://github.com/ultralytics/yolov5
/tree/master, accessed on 22 November 2022) and evaluated its performance using the
same datasets that ResNet50 used. The performance of colony counting was assessed
based on three metrics: recovery, the number of false-positive colonies, and the number of
false-negative colonies. On the validation set (36 images with a total of 1410 colonies), our
model counted a total of 1420 colonies with a recovery of 99.29%, 20 false-positive colonies,
and 19 false-negative colonies. In contrast, YOLOv5 counted a total of 1394 colonies with a
recovery of 98.87%, 48 false-positive colonies, and 120 false-negative colonies. Additionally,
using adaptive thresholds and a target maximum diameter, with a minimum diameter set
at 15 pixels, OpenCFU 3.8-BETA [45] counted a total of 1116 colonies with a recovery of
79.29%. In summary, in terms of colony counting, our method outperforms the YOLOv5
model and OpenCFU.

Currently, artificial intelligence technology is advancing rapidly, with the emergence of
advanced segmentation networks, such as the Segment Anything Model (SAM) [46,47]. For
a raw colony image (Figure S1A), the SAM model with default parameters fails to achieve
fine colony segmentation (Figure S1B). By adjusting the parameters, the SAM model can
relative accurately segment the colonies (Figure S1C); however, this also leads to an increase
in false positive colonies and a 13-fold increase in processing time. In comparison, we
obtain more accurate results on complex colonies (Figure S1D) with only 1/10th of the time
required, demonstrating the reliability of the automated counting process employed in
this study.

4.4. The Impact of Bacterial Colony Quantity and Size on the Performance of Our Method

The quantity and size of bacterial colonies in images may affect the performance of
colony counting. Evaluation of the validation dataset revealed that an increase in colony
aggregation tends to correlate with an increased MAE (MAE < 0.025) for U2-Net to identify
and extract colony regions (Figure S2A). Furthermore, an evaluation of the recovery metric

https://github.com/ultralytics/yolov5/tree/master
https://github.com/ultralytics/yolov5/tree/master
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for the entire colony counting process indicates that an increase in colony aggregation does
not significantly compromise the performance of colony enumeration (Figure S2B).

In Figure 3, the plates containing eight bacterial species can be categorized into Class A
(E. coli, S. typhimurium, Shigella, V. parahaemolyticus) and Class B (L. ivanovii, L. monocytogenes,
S. aureus, S. epidermidis) based on their morphological features. We assessed the performance
of colony counting for these two bacterial classes in the test set using recovery as the
evaluation metric. The average recovery for the images in Class A was determined to be
98.85%, while for Class B, it was 98.06%. Additionally, Table S4 presents the recovery of
our method for images of eight bacterial species. These findings suggest that the colony
size has a minor impact on colony counting in this context.

5. Conclusions

In this study, through improvements in hardware design and setup, the refinement of
image preprocessing and dataset preparation strategies, and the training of CNN models,
we present microbiologists with an accessible and reliable solution for automatic colony
counting in the laboratory. The proposed novel automatic pipeline for bacterial colony
counting, mainly consisting of “light intensity correction-based image preprocessing→U2-
Net segmentation for Petri dish edge→U2-Net segmentation for colony region→ResNet50-
based counting” demonstrates excellent performance (an overall recovery of 97.82% for
colony counting) and is capable of effectively separating the majority of complex colonies
into individual entities.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms12010201/s1, Figure S1: Comparison of the
proposed method and SAM. (A) A raw colony image; (B) The result taking 31 seconds based on default
parameters for SAM; (C) The result taking 411 seconds with carefully selected parameters for SAM; (D)
The result taking 38 seconds based on default parameters for our approach. The red arrows represent
identification of non-target objects, missed colony recognition, and inability to classify adhesive
colonies. The default parameters for SAM are as follows: points_per_side: 32; points_per_batch: 64;
pred_iou_thresh: 0.88; stability_score_thresh: 0.95; stability_score_offset: 1.0; box_nms_thresh: 0.7;
crop_n_layers: 0; crop_nms_thresh: 0.7; crop_overlap_ratio: 0.3413; crop_n_points downscale_factor:
1; point_grids: None; min_mask_region_area: 0; output_mode: "binary_mask". To enhance the
accuracy of SAM in recognizing colonies, we modified the following parameters: points_per_side:
128; crop_n_layers: 3; Figure S2: Increase in colony aggregation or the size of the colonies has a
minor impact on colony counting. (A) Comparison of the MAE performance of U2-Net on images
with different colony quantity ranges. (B) Comparison of the recovery performance of the entire
counting process on images with different colony quantity ranges. The sample sizes for each colony
quantity range are annotated on the bars in the histogram; Table S1: CMOS parameters; Table S2: Len
parameters; Table S3: Comparison of colony counting between ResNet50, Watershed, and a reference
CNN algorithm [19]; Table S4: Recovery of our approach on the colony counting of eight different
bacterial species.
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