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Abstract: Salmonella spp., a leading cause of foodborne illness, is a formidable global menace due to
escalating antimicrobial resistance (AMR). The evaluation of minimum inhibitory concentration (MIC)
for antimicrobials is critical for characterizing AMR. The current whole genome sequencing (WGS)-
based approaches for predicting MIC are hindered by both computational and feature identification
constraints. We propose an innovative methodology called the “Genome Feature Extractor Pipeline”
that integrates traditional machine learning (random forest, RF) with deep learning models (multilayer
perceptron (MLP) and DeepLift) for WGS-based MIC prediction. We used a dataset from the National
Antimicrobial Resistance Monitoring System (NARMS), comprising 4500 assembled genomes of
nontyphoidal Salmonella, each annotated with MIC metadata for 15 antibiotics. Our pipeline involves
the batch downloading of annotated genomes, the determination of feature importance using RF,
Gini-index-based selection of crucial 10-mers, and their expansion to 20-mers. This is followed by an
MLP network, with four hidden layers of 1024 neurons each, to predict MIC values. Using DeepLift,
key 20-mers and associated genes influencing MIC are identified. The 10 most significant 20-mers
for each antibiotic are listed, showcasing our ability to discern genomic features affecting Salmonella
MIC prediction with enhanced precision. The methodology replaces binary indicators with k-mer
counts, offering a more nuanced analysis. The combination of RF and MLP addresses the limitations
of the existing WGS approach, providing a robust and efficient method for predicting MIC values in
Salmonella that could potentially be applied to other pathogens.

Keywords: Salmonella; antibiotics; MIC; machine learning

1. Introduction

Salmonella spp., one of the leading causes of foodborne illness all around the world, can
contaminate a wide range of food products including meat, poultry, eggs, dairy, fruits, and
vegetables. When consumed, contaminated food can cause salmonellosis and gastroenteri-
tis with symptoms such as nausea, diarrhea, abdominal pain, and fever. According to the
Centers for Disease Control and Prevention (CDC), Salmonella is responsible for an alarming
global toll, causing an estimated 150 million cases of illness and resulting in 60,000 fatalities
annually [1]. In the United States alone, salmonellosis accounts for more than one million
illnesses and approximately 420 deaths each year [2]. While many cases of foodborne
illnesses may naturally resolve or, in severe instances, can be treated with antibiotics, the
emergence of AMR poses a significant challenge to effective therapeutic strategies.

Due to the concerted efforts of the National Antimicrobial Resistance Monitoring Sys-
tem (NARMS, [3]), a collaborative effort between the United States Department of Agricul-
ture (USDA), CDC, and Food and Drug Administration (FDA) since 2002, comprehensive
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surveillance has been in place. Surveillance focuses on tracking the prevalence of pathogens
responsible for foodborne illnesses, including Salmonella, Campylobacter, Escherichia, and
Enterococcus. NARMS assesses foodborne pathogen susceptibility to 40 antibiotics (15 for
both Salmonella and Escherichia, 9 for Campylobacter, and 16 for Enterococcus), resulting in
a wealth of MIC information for these pathogens. The available MIC data are critical for
effectively inhibiting the growth of these pathogens. In addition to determining the MICs,
NARMS has also been actively expanding its data collection efforts by gathering WGS from
randomly selected isolates of foodborne pathogens.

The NARMS program has achieved considerable success by delivering timely insights
into the trends of antibiotic resistance [4,5]. However, there is a concerning trend showing
that AMR in Salmonella has shown a steady increase since 2015, especially in poultry chick-
ens (ceca during slaughtering, chicken carcass/parts during processing and inspection, and
even sampled retail chickens that have been sold to the public) [3]. The reports have gone a
step further in pinpointing recent resistance trends, particularly regarding ciprofloxacin,
which is among the first-line antibiotics for treating Salmonella infections [6–8], and some
other antibiotics such as chloramphenicol, trimethoprim-sulfamethoxazole, sulfisoxazole,
nalidixic acid, streptomycin, and tetracycline. Determining the MIC quickly with minimal
lab testing, while making accommodations for the genetic diversity within pathogenic
strains, is essential to ensure that treatments can be customized, timely, and effective.

MIC values for bacterial strain and antibiotic pairs are traditionally determined using
agar or broth dilution methods, described by the Clinical and Laboratory Standards Insti-
tute [9–12]. However, traditional methods for determining the MIC of antimicrobial agents
are hindered by time-consuming processes, posing challenges in promptly addressing
serious infections [10] as they often involve substantial hands-on labor, involving tasks like
plate preparation and serial dilutions, increasing the risk of errors and operator-dependent
variability. Publicly available WGS data, paired with clinical AMR metadata, has enabled
the use of machine learning (ML) to predict MIC values and track temporal trends, elim-
inating sole reliance on AMR databases. Using short nucleotide sequences (referred to
as k-mers or genomic features interchangeably henceforth, where k denotes the sequence
length) as features and laboratory-derived MIC values as labels, precise predictions of
susceptibility or resistance to antibiotics are made, even without prior genetic information
about the organisms [13–17]. The WGS data from NARMS has been used to predict the MIC
values of 15 commonly monitored antibiotics for Salmonella using XGBoost [18,19], with
an average accuracy of 95% within a ±1 2-fold dilution step of the laboratory-determined
values. However, the study identified k-mers that play a crucial role in MIC prediction
only by using a subset of the samples owing to computational limitations. A random
forest and a neural network model in parallel were used to predict susceptibility/resistance
in Mycobacterium tuberculosis, Escherichia coli, Salmonella enterica, and Staphylococcus au-
reus [20], while Adaboost was used to predict resistance to carbapenem, methicillin, and
beta-lactam in Acinetobacter baumannii, Staphylococcus aureus, and Streptococcus pneumoniae,
respectively [21], using data from the PATRIC database [22]. Similarly, random forest, sup-
port vector machine, and XGBoost were used to predict cefoxitin resistance in S. aureus [23]
and logistic regression was used to predict resistance to ethambutol, ethionamide, isoniazid,
kanamycin, ofloxacin, rifampicin, and streptomycin in M. tuberculolis and S. aureus [24]. The
existing approach, which employs WGS to predict MIC, has made significant strides. How-
ever, it still faces some limitations. One of these limitations is the substantial computational
memory required for processing WGS data and making MIC predictions. For example,
Nguyen et al. successfully predicted MIC using 10-mers and analyzed 4500 genomes.
However, when attempting to identify crucial k-mers through BLAST searches, their scope
was limited to 15-mers and 1000 genomes [19]. Furthermore, the current approach faces
challenges in distinguishing whether the identified k-mers are associated with low or high
MIC values. These challenges highlight the need for more efficient and precise methods to
address these shortcomings and enhance our understanding of MIC prediction.



Microorganisms 2024, 12, 134 3 of 15

In this study, we have developed the “Genome Feature Extractor Pipeline” to address
challenges associated with using 10-mers for MIC prediction. Our pipeline transforms
approximately one million possible 10-mers into a more manageable set of a few tens
of thousands 20-mers, effectively capturing genomic regions influencing MIC values. It
distinguishes the contributions of essential 20-mers and genes, crucial for understanding
susceptibility and resistance in a dataset of 4500 genomes. Many of the predictive k-
mers and genes align with known resistance mechanisms. Additionally, our model
reveals potential antibiotic resistance-related genes, although these require validation
through experiments.

2. Materials and Methods
2.1. Data Curation and Analysis Pipeline

The NARMS dataset used in this study has 4500 assembled and annotated genomes
(used to identify features) of nontyphoidal Salmonella along with their associated MIC meta-
data information (labels). We identified genomic features that are most predictive of MIC
for the 15 antibiotics, listed in Table 1, for Salmonella [3]. We used the frequencies (number
of occurrences) of a specific subset of 20-mer to predict MICs. With 420 (≈1012) possible
20-mers, and a dataset of Salmonella genomes with an average of 5 × 106 base pairs, the
search to obtain occurrence frequencies or counts of the k-mers is almost impossible. Thus,
we identified the subset of k-mers using the 4-step process, in the genome feature extraction
pipeline depicted in Figure 1. The first step was to batch-download the annotated genomes
from the Bacterial and Viral Bioinformatics Resource Center [22]. In the second step, we
chose the set of “important” 10-mers. The total number of possible 10-mers is only of the
order of a million (410 = (210) ≈ (103)2), and for each sample genome sequence, we extracted
the 10-mer counts, creating a count data of size 4500 × 106. Counts of k-mer occurrences,
though easy to calculate, have shown promise in MIC predictions [25], although other
features such as the individual or joint (co-occurrence) positional behavior of k-mers are
slightly more computationally intensive, and may provide further biological insights.

Table 1. Antibiotics and their known biological target, and the associated group of resistance genes.

Antibiotic Target Resistance Genes Group

Ampicillin Cell Wall β-lactam

Amoxicillin-clavulanic acid Cell Wall β-lactam

Ceftriaxone Cell Wall β-lactam

Azithromycin Protein Macrolide

Chloramphenicol Protein Phenicol

Ciprofloxacin DNA Quinolone

Trimethoprim-
Sulfamethoxazole DNA Sulfonamide

Sulfisoxazole DNA Sulfonamide

Cefoxitin Cell Wall β-lactam

Gentamicin Protein Aminoglycoside

Kanamycin Protein Aminoglycoside

Nalixidic acid DNA Quinolone

Streptomycin Protein Aminoglycoside

Tetracycline Protein Tetracycline

Ceftiofur Cell Wall β-lactam
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based on a model that chooses a subset of important 10-mers. (3) The 10-mer expander: generates 
20-mers from 10-mers. (4) The 20-mer handle: creates the dataset and performs training and extrac-
tion of important 20-mers from the extended dataset. 

The RF (additional details in Section 2.2) is a collection of decision trees that learn 
both individual and joint feature interactions and is nonparametric and computationally 
efficient. This prediction problem fits the limited sample sizes (4500) and high-dimen-
sional (106 for 10-mers) feature space case, where the RF is a better choice than a deeper 
neural network. Feature selection or dimensionality reduction approaches explicitly cal-
culate a subset of input features that best describe (or estimate) the target variable (MIC). 
We compute each feature’s contribution, called “feature importance”, based on the Gini 
index [26]. Figure 2 shows an example plot of the feature importance values of 10-mers 
for the antibiotic ‘AMP’. An inflection point or “elbow point” is the point at which we 
observe the shift in the gradient of the importance values from a large negative value to 
smaller ones, indicating the saturation of the representation. We chose the 10-mers corre-
sponding to the indices with importance values above the elbow points, as depicted for 
ampicillin in Figure 2, and chose the important 10-mers for all 15 antibiotics. Expanding 
these 10-mers to 20-mers, though not exhaustive, is computationally efficient and is also 
sufficient for achieving good prediction accuracy, thereby validating the approach. 

 
Figure 2. Filtering 10-mers based on feature importance plot and the elbow point, shown here for 
Ampicillin. 

Figure 1. The four step genome feature extractor pipeline. (1) Downloader: batch-downloads the
annotated genome dataset. (2) The 10-mer handle: creates 10-mer count vectors from each sample
based on a model that chooses a subset of important 10-mers. (3) The 10-mer expander: generates
20-mers from 10-mers. (4) The 20-mer handle: creates the dataset and performs training and extraction
of important 20-mers from the extended dataset.

The RF (additional details in Section 2.2) is a collection of decision trees that learn both
individual and joint feature interactions and is nonparametric and computationally efficient.
This prediction problem fits the limited sample sizes (4500) and high-dimensional (106 for
10-mers) feature space case, where the RF is a better choice than a deeper neural network.
Feature selection or dimensionality reduction approaches explicitly calculate a subset of
input features that best describe (or estimate) the target variable (MIC). We compute each
feature’s contribution, called “feature importance”, based on the Gini index [26]. Figure 2
shows an example plot of the feature importance values of 10-mers for the antibiotic ‘AMP’.
An inflection point or “elbow point” is the point at which we observe the shift in the
gradient of the importance values from a large negative value to smaller ones, indicating
the saturation of the representation. We chose the 10-mers corresponding to the indices
with importance values above the elbow points, as depicted for ampicillin in Figure 2, and
chose the important 10-mers for all 15 antibiotics. Expanding these 10-mers to 20-mers,
though not exhaustive, is computationally efficient and is also sufficient for achieving good
prediction accuracy, thereby validating the approach.
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While considering the identification of antibiotic responsive genes using k-mers, we
know that shorter k-mers, such as those of length 10, may present challenges when attempt-
ing to perform BLAST searches for the identification of such resistant genes. Therefore, we
made the decision to increase the k-mer length to enhance our ability to accurately identify
antibiotic responsive genes. To achieve this, in the third step of the algorithm pipeline, we
equally expanded each 10-mer on either side to obtain the 20-mer, as shown in Figure 3. We
also experimented with all 11 extending options, but the improvement in MIC prediction
accuracy was minimal from choosing the 10-mer in the center. This extension allowed
us to significantly improve the specificity and sensitivity of our approach. As a result,
when we expanded the 1352 ‘important’ 10-mers into 20-mers, we obtained 27,932 unique
20-mers from the database, which is a far smaller number than all possible (≈109 in our
case) 20-mers. This approach provides a more comprehensive representation of potential
antibiotic resistance gene sequences, addressing the limitations of shorter k-mers for this
specific purpose.
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generate 20-mers.

In this last (fourth) step, we repeat the dimensionality reduction by using feature
importance, similar to the second step. The expanded 20-mer data were trained in an
MLP regressor instead of the RF (additional details in Section 2.2), with the MIC values
used as target labels. After training the model, we used DeepLift [27] to extract features
(specific 20-mers and the genes that they aligned to; see more details of individual results in
Section 3.1) that contribute to the MIC in a positive or negative manner. We have only listed
the 10 most significant 20-mers (genes) for each of the antibiotics. We integrated traditional
machine learning (RF) as well as a Multilayer Perceptron (MLP) sequentially to select and
refine the important genomic features that affect the MIC prediction of Salmonella in this
dataset. We are using the counts of the k-mers in our algorithm rather than just binary
presence–absence indicators, as reported earlier [19].

2.2. RF and MLP

Random forest [28,29] is a powerful ensemble algorithm, which is a collection of
individual decision trees that collaborate to improve the classification or regression task.
Decision-tree-based algorithms are sensitive to the training data [30] and have low bias
but a high variance [31]. In a random forest, this sensitivity is addressed by constructing
multiple decision trees from random samples selected from the dataset, often with replace-
ment. Predictions (regression) are then derived through a majority vote (average) from the
ensemble of trees. In our analysis, we utilized 100 trees in the RF, using the Scikit-learn
library (v 1.2.2).

The MLP network had 4 hidden layers, and each layer had 1024 neurons. Since the
network’s aim is to obtain a regression on the MIC value, which is a positive variable with
gaps in its range, (1) the final output layer had only one neuron with a linear activation
function, while the other layers used a ReLU activation, and (2) the loss function used was
MSE with an ADAM optimizer. For regularization, we used both batch normalization (BN)
and dropout (DR). BN adjusts the values of units individually for each batch using their
respective mean and standard deviations, while DR randomly deactivates a fraction (0.3)
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of units within the network. BN and DR help control scaling and overfitting, respectively.
For both the RF and the neural network, we used an 80–20% train-test split and estimated
test accuracy.

3. Results and Discussion
3.1. MIC Prediction Accuracy

For advancing personalized and effective antibiotic treatments, two notable limitations
are (1) that the laboratory determination of MIC, crucial for tailored treatment, often takes
a substantial amount of time, usually 3 to 5 days [32], and (2) that the MIC values exhibit
natural variability, mainly due to genetic differences among pathogenic strains [33]. Genetic
makeup significantly influences pathogen susceptibility to antibiotics.

In this study, we used integrated traditional machine learning (RF) and deep learning
(multilayer perceptron—MLP) to predict Salmonella MIC values based on 20-mer counts
in data from WGS. We reduced the dimension of a million 10-mers to produce 27,932
unique 20-mers, and we identified the top 10 20-mers that are predictive of the increase
and decrease in MIC using our innovative Genome Feature Extractor Pipeline. The average
prediction accuracy of MICs for 15 antibiotics over the entire 4500 genomes dataset is >96%
(Table 2). The lowest accuracy (89.67) was obtained with sulfisoxazole, which had the
largest range of MIC values, and that probably caused a large mean square error (MSE)
in the predictor outputs. The MIC prediction for at least 10 of the 15 antibiotics was at
≥96.4% prediction accuracy and low MSE. These results underscore the importance of the
dimension reduction and filtering of k-mers as critical steps in optimizing the performance
of MIC prediction models.

Table 2. Multilayer perceptron prediction accuracy of MIC for 15 antibiotics.

Antibiotic Prediction Accuracy MSE for Prediction MIC Range

1 Ampicillin 96.89 0.54 1–32

2 Amoxicillin-
clavulanic acid 97.44 0.35 1–32

3 Ceftriaxone 97.46 0.17 0.25–64

4 Azithromycin 96.37 0.28 1–16

5 Chloramphenicol 97.44 0.21 2–32

6 Ciprofloxacin 98.20 0.16 0.01–2

7 Trimethoprim-
Sulfamethoxazole 98.56 0.16 0.12–4

8 Sulfisoxazole 89.67 0.48 16–2048

9 Cefoxitin 93.00 0.33 1–32

10 Gentamicin 92.33 0.64 0.25–16

11 Kanamycin 97.5 0.23 8–64

12 Nalixidic acid 95.78 0.27 1–64

13 Streptomycin 94.14 0.47 2–64

14 Tetracycline 99.11 0.21 4–32

15 Ceftiofur 96.67 0.18 0.25–8

Considering potential sequencing variations, it has been recommended to construct
prediction models based on well-controlled experiments using WGS data sourced from
the same laboratories [34]. The study achieved an average prediction accuracy of 92% for
24 antibiotics, with 321 WGS as predictors. In contrast, our approach, leveraging 4500 WGS,
demonstrated an accuracy exceeding 96%. This suggests that variation in WGS originating
from different labs could be less critical when there are ample data points, allowing machine
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learning models to learn more effectively. Furthermore, from a prediction perspective,
lower variability in data can enhance accuracy but may compromise the model’s robustness
by increasing sensitivity to variations. While WGS is effective for predicting AMR, the
presence of a heteroresistant subpopulation in Salmonella enterica, exhibiting variability in
sensitivity to an antimicrobial agent, could lead to an incorrect indication of an absence
of resistance [35]. This introduces a notable limitation in machine learning, as the models
might struggle to decipher the presence of heteroresistance when making MIC predictions.
However, the results of our study align with previous predictive learning models that
utilized 10-mer counts from the PATRIC database data. The earlier models, utilizing deep
learning (neural network) [36] and traditional machine learning (XGBoost) [19], achieved
prediction accuracies within the range of 85% to 95%. In our study, we employed both
deep learning and random forest approaches for comprehensive analysis. Furthermore, in
contrast to the XGBoost feature importance analysis that identified important k-mers for
MIC prediction [19], our study employs the DeepLift technique to categorize the identified
k-mers as specifically crucial for either high or low MIC values. Detailed discussions of
these observations are included in the following sections.

3.2. Identification of Genomic Features Predictive of Antibiotic Susceptibility/Resistance

A positive correlation between the presence of known antibiotic genes and laboratory-
determined MIC values was shown in [37]. Furthermore, additional investigations have
delved into the use of single nucleotide polymorphisms (SNPs) within known antibi-
otic genes to predict susceptibility and resistance [14,38,39]. However, these previous
approaches often overlooked the potential contribution of novel genes or k-mers to MIC
values. We hypothesized that the use of the frequencies (occurrence counts) of “important”
k-mers to predict MIC values could generate novel gene/k-mer relevance to MIC values.
Our analysis of the 15 antibiotics is categorized based on the set of known resistance genes
to which they belong, see Table 1, with visual representation of the results, identified kmers
and genes, in Figures 4–8.

3.2.1. β-Lactams (Ampicillin, Amoxicillin-Clavulanic Acid, Ceftriaxone,
Cefoxitin, Ceftiofur)

We observed that seven, seven, seven, seven, and two out of ten crucial 20-mers are,
respectively, associated with high ampicillin, amoxicillin-clavulanic acid, ceftriaxone, cefox-
itin, and ceftiofur. MICs are prominently located within the Class A and C β-lactamases,
as shown in Figure 4a–e. This finding is in alignment with the well-established associa-
tion of Class A and C β-lactamases with penicillin resistance [40]. Our model identifies
other genes encoding protein, such as mobile element protein and lipocalin that have been
implicated in antibiotic resistance. While lipocalin has been computationally predicted
to play an essential role in antibiotic resistance in Salmonella, as indicated by previous
studies [19,41], investigation through both in vitro and in vivo analysis has confirmed
that the presence of lipocalin extracted from Burkholderia cenocepacia can indeed induce
resistance to quinolone and β-lactam antibiotics [42]. Mobile elements, often called mobile
genetic elements, are segments of DNA that can move around in a genome. They can carry
genes, including antibiotic resistance genes, and facilitate their spread among bacteria. The
capability of these mobile elements to transport resistance genes within Salmonella has been
well-established [43]. While the direct roles of other important identified k-mers/genes in
β-lactam antibiotic resistance may not be evident, it is worth noting that D-alanyl-D-alanine
carboxypeptidase is known to be involved in cell wall synthesis in Streptomyces coelicolo [44].
Furthermore, exonuclease activity associated with DNA repair in Salmonella [45] may con-
tribute to its overall fitness and ability to withstand β-lactam antibiotics. Upon examining
the genes predicted to contribute to low values of β-lactam MIC, indicative of susceptibility,
our model identified AmpE, a well-known negative regulator of β-lactamase in E. coli [46]
and Pseudomonas aeruginosa [47]. These findings underscore the robustness and versatility
of our approach in antibiotic susceptibility and/or resistance prediction.
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3.2.2. Aminoglycosides (Gentamycin, Kanamycin, Streptomycin)

Aminoglycoside phosphotransferases and nucleotidyltransferase [48–50] are well-
established resistance genes emerging as the top predictors, seven, five, and four out of ten,
respectively, for high MIC values in streptomycin, kanamycin, and gentamicin, as shown in
Figure 5. This alignment between our predictions and established knowledge underscores
the reliability of our model in capturing essential antibiotic resistance mechanisms. While
the MIC dependence on heat shock proteins family genes may not be direct, they have been
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shown to be involved in protein folding and stability, as well as stress response [51,52] and
biofilm formation [53]. which could ultimately impact antibiotic resistance.
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3.2.3. Quinolones (Ciprofloxacin, Nalixidic Acid)

Using RF, mutations in DNA gyrase genes gyrA, parC, and quinolone resistance
gene qnrS have been identified as predictors of quinolone resistance in E. coli [54]. The
plasmid-mediated quinolone resistance gene B (qnrB) encodes proteins belonging to the
pentapeptide repeat family gene [55]. These proteins safeguard DNA gyrase and topoiso-
merase IV against inhibition by quinolone antibiotics. The pentapeptide protein, associated
with the high MIC values for ciprofloxacin and nalixidic acid, as illustrated in Figure 6, is
a well-established quinolone resistance determinant [56–58]. Furthermore, we observed
that the presence of the phage shock protein (PSP) operon, necessary to maintain mem-
brane integrity, contributes to high MIC values of quinolone antibiotics in this study. The
upregulation of PSP has been linked to quinolone resistance in E. coli in [59]. In addition,
significant upregulation of outer membrane protein genes is associated with resistance to
quinolones in Salmonella Typhi [60]. This study identifies outer membrane porin, a type of
outer membrane protein, as important for nalixidic (quinolone) resistance (Figure 6).
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3.2.4. Sulfonamides (Trimethoprim-Sulfamethoxazole, Sulfisoxazole)

Dihydrofolate reductase (four out of ten important genes) and dihydropteroate syn-
thase type-2 (seven out of ten of the important genes) (Figure 7) are the principal contribu-
tors to high MIC in trimethoprim-sulfamethoxazole and sulfisoxazole, respectively [61].
These genes are well known to confer resistance to sulfonamides in Salmonella genomes [62].
Mutations in both dihydrofolate reductase and dihydropteroate synthetase have been
demonstrated to elevate Plasmodium falciparum resistance to sulfadoxine-pyrimethamine, a
known sulfonamide antibiotic [61]. Furthermore, we observed that tetracycline resistance
genes, and transposase, linked to antibiotic resistance [63,64] appear to play a significant
secondary role in Salmonella resistance to sulfisoxazole and trimethoprim-sulfamethoxazole
in our dataset.
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3.2.5. Individual Antibiotic Class (Tetracycline, Chloramphenicol, Azithromycin)

Tetracycline, chloramphenicol, and azithromycin belong to the tetracycline, chloram-
phenicol, and macrolide class, respectively. In the case of tetracycline (Tet), all identified
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genes indeed encode essential components, including major facilitator superfamily (MFS)
efflux Tet (A) and Tet (B) resistance genes, as well as the tetracycline regulatory gene
involved in tetracycline resistance (Figure 8). Similarly for chloramphenicol, our model
identity the presence of chloramphenicol resistant genes, as expected. However, despite
the success of our model in identifying several established resistance genes in 14 different
antibiotics across six classes, it could only identify one resistance gene belonging to tetra-
cycline class in our azithromycin (macrolide) model. This may not be totally surprising
as macrolide resistance genes such as erythromycin ribosome methylation (erm) gene are
often carried on the extrachromosomal plasmid [65,66].
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In summary, we introduce the “Genome Feature Extractor Pipeline” as a novel solution
to the challenges posed by employing 10-mers for minimum inhibitory concentration (MIC)
prediction. While 10-mers serve well for predicting MIC values, their utility diminishes
when used in BLAST searches for pinpointing genomic regions influencing MIC values.
Our innovative pipeline addresses this issue by effectively reducing the dimensionality
of the massive pool of approximately one million 10-mers. It does so by transitioning
these 10-mers into a more manageable set of tens of thousands of 20-mers, specifically
tailored to encapsulate the genomic regions that exert a significant influence on MIC values.
This approach not only helps us to navigate the computational complexities associated
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with working with thousands of genomes, but also unveils a clear understanding of the
genomic features that drive antibiotic susceptibility and resistance. Moreover, our tool
exhibits a remarkable ability to discriminate the specific contributions of essential 20-mers
and the genes in which they are embedded. This level of discrimination is instrumental in
elucidating the roles these genetic elements play in determining low MIC values, indicative
of susceptibility, or high MIC values, indicative of resistance, within a dataset comprising
4500 genomes. Importantly, many of the k-mers and genes predictive of resistance to
β-lactam, aminoglycosides, quinolones, sulfonamides, chloramphenicols, and tetracyclines,
as identified by our learning model using a combination of random forest, multilayer
perceptron, and DeepLift techniques, are consistent with known resistance mechanisms
reported in the scientific literature. Finally, our model extends its contribution to the
identification of genes encoding various proteins, including lipocalin, heat shock protein,
mobile elements, phage shock protein, and several hypothetical proteins. These proteins
hold the potential to play a role in conferring antibiotic resistance in Salmonella. However,
their actual contribution needs validation through rigorous experimental studies, a scope
that extends beyond the focus of this study.
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