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Abstract: Ehrlichia canis, a prominent tick-borne pathogen causing canine monocytic ehrlichiosis
(CME), is one of the six recognized Ehrlichia species worldwide. Despite its widespread presence
in ticks and host dogs in China, comprehensive genomic information about this pathogen remains
limited. This study focuses on an in-depth analysis of E. canis YZ-1, isolated and cultured from
an infected dog in China. The complete genome of E. canis YZ-1 was sequenced (1,314,789 bp,
1022 genes, 29% GC content, and 73% coding bases), systematically characterizing its genomic
elements and functions. Comparative analysis with representative genomes of Ehrlichia species,
including E. canis strain Jake, E. chaffeensis, Ehrlichia spp., E. muris, E. ruminantium, and E. minasensis,
revealed conserved genes, indicating potential evolutionary connections with E. ruminantium. The
observed reduction in virulence-associated genes, coupled with a type IV secretion system (T4SS),
suggests an intricate balance between pathogenicity and host adaptation. The close relationship
with E. canis Jake and E. chaffeensis, alongside nuanced genomic variations with E. ruminantium and
E. mineirensis, underscores the need to explore emerging strains and advancements in sequencing
technologies continuously. This genetic insight opens avenues for innovative medications, studies on
probiotic resistance, development of new detection markers, and progress in vaccine development for
ehrlichiosis. Further investigations into the functional significance of identified genes and their role
in host–pathogen interactions will contribute to a more holistic comprehension of Ehrlichia’s biology
and its implications for pathogenicity and transmission.
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1. Introduction

Ehrlichiosis, attributed to a cluster of emerging rickettsial tick-borne pathogens, com-
prises Gram-negative obligate intracellular bacteria within the genus Ehrlichia. The six
recognized species within this genus include E. canis, E. chaffeensis, E. ewingii, E. muris, E.
minasensis, and E. ruminantium [1–3]. Of particular significance is E. canis, the causative
agent of canine monocytic ehrlichiosis (CME), also known as canine rickettsiosis, canine
typhus, canine hemorrhagic fever, tropical canine pancytopenia, and tracker dog disease.
This disease targets platelets, monocytes, and granulocytes, gaining widespread recognition
in the 1970s when significant mortalities were observed in German Shepherd dogs during
the Vietnam War, despite its initial description in Algeria in 1938 [4–6].

While most dogs with CME recover through treatment with doxycycline or rifampicin,
alongside appropriate supportive care, chronic cases leading to fatalities are not uncom-
mon [4,7]. Notably, E. canis infections have also been reported in humans [8,9].

Despite several decades of study, genetic resources for E. canis remain sparse, with
only one complete genome of E. canis strain Jake, initially isolated in North America
and published in 2005 [10,11], and some from Australia [12]. The challenges of in vitro
cultivation of E. canis and the complexities of obtaining genomes from their intracellular
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locations contribute to this scarcity [4,13]. To address this, we include representative
genomes of all six Ehrlichia species [14]. Typically, Ehrlichia genomes range from 1.2 to
1.5 Mbp, containing approximately 1000 genes, making them relatively small compared
with most bacteria [14,15].

In light of these challenges, we embarked on a genomic analysis of E. canis isolated
and cultured in the laboratory from an infected dog during an ehrlichiosis epidemiological
investigation in China. Our primary objective was to acquire genomic data specific to
the Chinese strain, enabling comparative analyses with other publicly available Ehrlichia
genomes. This genomic dataset and analysis aim to enhance our understanding of the
relatedness and evolution of E. canis in China, providing valuable insights into potential
molecular markers for detection, treatment, and vaccination against CME.

2. Materials and Methods
2.1. Preparation of E. canis for Sequencing

The canine monocytic cell line DH82 (ATCC CRL-10389, ATCC, Manassas, VA, USA)
was cultivated in Minimum Essential Medium Eagle (MEM) (Sigma-Aldrich, Saint Louis,
MO, USA) medium, supplemented with 10% fetal bovine serum (Gibco, Billings, MT, USA)
as described before [4]. The E. canis strain YZ-1 used in this study was isolated from an
adult female beagle dog (Canis lupus familiaris) living in a commercial canine facility in
Taizhou, Jiangsu, China. This strain was maintained in our laboratory by continuous
passage for more than 20 passages in DH82 cells [15]. For propagation, the E. canis was
inoculated onto a monolayer of DH82 cells and incubated for six days at 37 ◦C under 5%
CO2. Subsequently, the culture medium and cells were harvested using a 23 cm cell scraper
(Thermo Fisher Scientific, Waltham, MA, USA) and preserved at −80 ◦C until nucleic
acid extraction.

2.2. Nucleic Acid Purification

The suspension of pathogens and cells was centrifuged at 500× rpm, 25 ◦C for 5 min
to remove the cell debris. Then, the supernatant was transferred to a new tube, followed by
centrifugation at 14,000× rpm, 25 ◦C for 15 min. The supernatant was removed, and the
pellets were resuspended with a sucrose–phosphate–glutamate (1:1:1) solution. The DNAs
were extracted from the suspension with a High Pure PCR Template Preparation Kit per
the manufacturer’s description [3,16,17].

2.3. Whole Genome Sequencing and Assembly

Total DNA obtained for WGS underwent quality control, involving the electrophoretic
separation of 1 µL of DNA on an agarose gel and quantification using the Qubit system.
The genome of E. canis YZ-1 was sequenced utilizing Single-Molecule, Real-Time (SMRT)
technology on the 3rd generation PacBio platform, conducted at Beijing Novogene Bioin-
formatics Technology Co., Ltd. (Beijing, China). The SMRT Analysis 2.3.0 software was
employed to filter low-quality reads and assemble them into a single, gap-free contig using
the filtered reads. Subsequently, the genome underwent de novo assembly through the
SMRT portal software, guided by the valid sequencing data. The automatically annotated
E. canis YZ-1 genome draft was generated using the NCBI Prokaryotic Genomes Annota-
tion Pipeline (NCBI_PGAP). The complete genome sequence was deposited in the NCBI
database with the GenBank accession number CP025749 [15].

2.4. Ehrlichia canis YZ-1 Genome Analysis
2.4.1. Genomic Components Analysis

Following the acquisition of the complete genome of E. canis YZ-1, various genomic
components, including coding genes, repeats, noncoding RNA (ncRNA), and genomic
islands (GIs), were predicted utilizing specialized software. Coding genes were identified
and analyzed using GeneMark, a widely employed tool for gene prediction in bacteria,
archaea, and metagenomics [18]. The analysis of repeats, encompassing tandem repeats (TR)
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and interspersed repeats (IR), was conducted through the Tandem Repeats Finder (TRF)
and RepeatMasker software 4.1.6, respectively [19,20]. The prediction of ncRNA, crucial
in life activities without transcription, involved rRNA database blasting or RNAmmer
software for rRNA, tRNAscan software for tRNA location and structure, and Rfam software
for sRNA [21–23]. Indicative of horizontal origins with potential involvement in symbiosis
or pathogenesis, genomic islands were predicted using IslandPath-DIMOB software.

2.4.2. Genomic Function Annotation

The annotation of genes in E. canis YZ-1 was carried out using multiple databases, in-
cluding Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), the
Cluster of Orthologous Groups of Proteins (COG), the Non-Redundant Protein Database
(NR), and Swiss-Prot. The GO knowledgebase [24] encompasses three main categories—cellular
component, molecular function, and biological process—providing comprehensive bioinfor-
matics information on gene functions. KEGG [25,26], a comprehensive database, facilitated
the systematic analysis of cellular metabolic pathways and gene expression functions in or-
ganisms. COG, NR, and Swiss-Prot [27] are protein-specific annotation databases focusing
on different protein functions, such as nonredundant protein information in NR.

Additionally, pathogenesis and antibiotic resistance genes were analyzed using the
E. canis YZ-1 genome. The PHI (Pathogen–Host Interactions) database [28] annotated
interactions between E. canis and hosts by blasting target amino acid sequences with
reference sequences in PHI. SignalP software 5.0 [29] was employed for the recognition
of secretion proteins, while EffectiveT3 software was utilized for the type recognition
of the secretion system [30]. Simultaneously, the VFDB (Virulence Factors of Pathogenic
Bacteria) database [31] was used to identify virulence factors in E. canis YZ-1, and the ARDB
(Antibiotic Resistance Genes Database) was consulted for antibiotic resistance analysis [32].

2.5. Macroscopic Comparative Genomic and Phylogenetic Analysis

The genome content of E. canis YZ-1 (CP025749) underwent a thorough comparison
analysis against the reference genome of E. canis strain Jake (NC_007354) and other
publicly available ehrlichial species, including E. chaffeensis (CP000236), Ehrlichia spp.
(NZ_CP007474), E. muris (CP006917), E. ruminantium (CR767821), and E. minasensis
(NZ_CDGH01000070). Pairwise genomic comparisons were conducted using the Artemis
Comparison Tool (ACT) [33] and Geneious 9 [34] with alignments produced by progressive
Mauve [35] and MAFFT [36]. Whole genome comparisons were performed with Blastn and
tBlastx algorithms using BRIG [37] and Easyfig [38]. The graphical representation of the E.
canis YZ-1 genome and its components was achieved using DNA-Plotter [39], providing a
visual overview of the genomic landscape and facilitating a comprehensive understanding
of genomic variations and relationships among the studied Ehrlichia species.

3. Results
3.1. E. canis YZ-1 Genome Assemblies and Characteristics

Utilizing next-generation sequencing technologies, we successfully sequenced, as-
sembled, and characterized the whole genome of E. canis strain YZ-1 [4]. This enabled
a comprehensive pairwise comparison with other E. canis and Ehrlichia strains available
in publicly accessible databases. The whole genome of E. canis YZ-1 spans 1,314,789 bp,
harboring 1022 genes, exhibiting an overall GC content of 29%, and comprising 73% coding
bases (Table 1, Figures 1 and S1). In our comparative analysis, 900 out of 1022 genes demon-
strated identical sequences to those of E. canis, albeit with little similarity to other species,
including E. chaffeensis (6/1022), E. muris (2/1022), Wolbachia WPWAU_1221 (1/1022),
Ehrlichia spp. (1/1022), and Bacillus sp. (1/1022) (Figure S1).
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Table 1. Basic information on the Ehrlichia strains used for analysis in this study.

Organism Name GenBank # No. of Genes %G + C No. of Bases No. of Coding
Bases

Coding Bases/Total
Bases

Ehrlichia canis YZ-1 CP025749 1022 29.00 1,314,789 956,238 72.73
Ehrlichia canis str. Jake NC_007354 985 28.96 1,315,030 959,246 72.94

Ehrlichia chaffeensis str. Arkansas NC_007799 1158 30.10 1,176,248 945,019 80.34
Ehrlichia spp. HF NZ_CP007474 988 29.65 1,148,904 879,236 76.53

Ehrlichia muris AS145 NC_023063 964 29.66 1,196,717 904,005 75.54
Ehrlichia ruminantium Welgevonden NC_005295 976 27.48 1,512,977 959,837 63.44
Ehrlichia minasensis strain UFMG-EV NZ_CDGH01000070 1119 29.89 1,366,818 982,241 71.86

Data obtained from IMG (v1.1; http://img.jgi.doe.gov accessed on 1 December 2023).
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Figure 1. The complete genome of Ehrlichia canis YZ-1 from Yangzhou, China. As indicated in the 
right panel of the figure, there are six tracks of the E. canis YZ-1 genome from inside to outside: gene 
coding sequences in 1000 bp windows, COG annotation, KEGG annotation, GO annotation, noncod-
ing (nc) RNA location, percentage of nucleotides G + C in the genome, and G + C skew values. Each 
piece of genomic information was shown in forward (upside) and reverse (downside) directions. 
Moreover, the color map of the GO, COG, KEGG, and ncRNA was included in the figure. 

Figure 1. The complete genome of Ehrlichia canis YZ-1 from Yangzhou, China. As indicated in the
right panel of the figure, there are six tracks of the E. canis YZ-1 genome from inside to outside:
gene coding sequences in 1000 bp windows, COG annotation, KEGG annotation, GO annotation,
noncoding (nc) RNA location, percentage of nucleotides G + C in the genome, and G + C skew values.
Each piece of genomic information was shown in forward (upside) and reverse (downside) directions.
Moreover, the color map of the GO, COG, KEGG, and ncRNA was included in the figure.

Repetitive sequences, and interspersed and tandem repeats, are vital in genome
structure maintenance. For E. canis YZ-1, we identified 34 long-terminal repeats with a total
length of 2405 bp, 14 transposons with a combined size of 1339 bp, and 105 tandem repeats,
constituting approximately 2.6% of the entire genome (Table 2) [40].

We thoroughly analyzed noncoding RNA, specifically rRNA, which is essential for
ribosome composition and protein translation. Our analysis identified one 16S rRNA
(2738 bp), one 5S rRNA (115 bp), and one 23S rRNA (2791 bp), along with 36 tRNA
species totaling 2794 bp (Figure 1). Additionally, a genomic island spanning 44,886 bp was
identified at positions 283,341 bp to 328,226 bp in the E. canis YZ-1 genome (Figure 1).

http://img.jgi.doe.gov
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Table 2. Nuclear repeats analysis on the Ehrlichia canis YZ-1.

Repeat Type Number Total Length (bp) Percentage in the Genome (%)

Interspersed repeats

Long-terminal repeats 34 2405 0.1829
DNA transposons 14 1339 0.1018
Long interspersed nuclear elements 8 808 0.0615
Short interspersed nuclear elements 4 225 0.0171
Rolling circle 3 288 0.0219
Unknown 2 152 0.0116

Tandem repeats

Tandem repeats 105 33,841 2.5739
Minisatellite DNA 52 2500 0.1901
Microsatellite DNA 1 28 0.0021

DNA methylation, a crucial biological process involving adding methyl groups to
DNA molecules, can influence the activity of DNA segments without altering the se-
quence. In E. canis YZ-1, we identified 3730 DNA methylation locations, including 205
(5.5%) N6-methyladenine (6 mA), 391 (10.5%) N4-methylcytosine (4 mC), and an over-
whelming majority of unknown methylation patterns (84.0%, 3134/3730) (Figure S1).
Notably, 5-methylcytosine (5 mC) was not detected in the analyzed methylation types.
(Figure S1) [41–43].

3.2. Genomic Functional Analysis

The Gene Ontology (GO) project offers structured, controlled vocabularies classifying
molecular and cellular biology into three nonoverlapping domains: molecular function,
cellular component, and biological process, with further subdomains. In our analysis
of 1022 genes from E. canis YZ-1, 2959 annotations were obtained through GO analysis
(Figure 2A). Notably, a substantial number of genes were associated with cellular processes
(450 genes) and metabolic processes (453 genes) within the biological process domain.
Similarly, the cellular component domain revealed a predominant presence of genes related
to cell (268) and cell part (268) (Figure 2A). In the molecular function domain, the most
represented functions were binding (333) and catalytic activity (399) (Figure 2A) [44].

KEGG, a database integrating genomic and higher-order functional information, pro-
vides graphical representations of cellular processes. More than half of the genes in E. canis
YZ-1 (537 out of 1022) were associated with 97 pathways in KEGG. Further analysis of
subpathways revealed categories with over 50 genes, including translation-related path-
ways (74 genes) in genetic information processing, nucleotide metabolism (50 genes), and
metabolism of cofactors and vitamins (59 genes) in metabolism (Figure 2B) [45].

The COGs database, based on the orthology concept, classifies proteins from com-
pletely sequenced genomes. In the E. canis YZ-1 genome, proteins were classified using the
COG database, enhancing the genome sequence’s utility for functional and evolutionary
analysis. The highest enrichment was observed in genes coding for proteins related to trans-
lation, ribosomal structure, and biogenesis (138 genes), followed by energy production and
conversion (70 genes), coenzyme transport and metabolism (63 genes), post-translational
modification, protein turnover, and chaperones (61 genes), and replication, recombination,
and repair (53 genes) (Figure 2C) [46,47].

As a zoonotic pathogen, E. canis threatens animals, humans, ecosystems, and regional
economies. The PHI database was consulted to understand the dynamic interactions
between pathogens and their hosts. In E. canis YZ-1, 25 genes were related to reduced
virulence, the most prevalent among identified PHI phenotypes (Figure 2D). Additionally,
four genes related to increased virulence (hypervirulence) were identified, showing varying
similarities to genes from other organisms (Figure 2D, Supplementary Table S1).
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Figure 2. Genomic functional analysis of Ehrlichia canis YZ-1. (A) The functional analysis of genes,
both number (Y-axis on the right) and percentage of total genes (Y-axis on the left), from E. canis YZ-1
was performed using the GO database (X-axis), which is established based on the biological process.
(B) The number of genes (X-axis) from the E. canis YZ-1 in each metabolic pathway (Y-axis) was
analyzed using the KEGG database. (C) The number of genes (Y-axis) of E. canis YZ-1 in biological
functions (X-axis) was shown based on the COG database. (D) The number of genes from E. canis
YZ-1 in each Pathogen–Host Interactions (PHI) category was shown here.

Moreover, six genes in E. canis YZ-1 were associated with virulence genes CcmC,
Hsp60, ClpC, SodB, LPS, and ClpP, albeit with low similarity percentages ranging from 40.8%
to 58.4%. Analyzing the SignalP server and TMHMM revealed 35 signal peptides and
300 transmembrane helices proteins. Interestingly, 35 of these proteins possessed signal
peptides but lacked transmembrane helices. VirB genes related to the type IV secretion sys-
tem were identified, consisting of two clusters containing virB8/virB9/virB10/virB11/virD4
and virB3/virB4/three large virB6, along with three virB9, virB8, and virB4 located sep-
arately (Supplementary Table S2). Unfortunately, no gene related to antibiotic resistance
was found in E. canis YZ-1 [48].

3.3. Similarity between E. canis YZ-1 and Other Ehrlichia Species/Strains
3.3.1. Synteny Comparative Genome Analysis

Synteny analysis, employing orthologous genes with similar functions, elucidates ho-
mologous gene conservation and order across genomes. In our study, we conducted a com-
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prehensive synteny analysis comparing E. canis YZ-1 with various Ehrlichia species/strains,
including E. chaffeensis, Ehrlichia spp., E. muris, E. ruminantium, E. mineirensis, and E. canis
Jake [49] (Table 1, Supplementary Table S3).

When aligned with E. chaffeensis strain Arkansas (CP000236), which was isolated
from a patient resident in Arkansas [10,11], there were 76.7% (1,008,696/1,314,789 bp) of E.
canis YZ-1 and 85.9% (1,010,920/1,176,248) of E. chaffeensis involved in both bidimensional
(Figure S2) and parallel (Figure 3) comparative analysis. In all the 337 collinear alignment
blocks, there were 309 collinearities with a similarity between 48.8% and 91.1%, nine
inversions with a similarity between 70.0% and 84.3%, 12 translocations with a similarity
between 47.9% and 81.8%, and six inversions/translocations with a similarity between
64.5% and 87.8% (Figures 3A and S2A).

When aligned with Ehrlichia spp. HS strain (Ehrlichia japonica) (NZ_CP007474) [50],
there were 77.48% (1,018,665/1,314,789 bp) of E. canis YZ-1 and 89.0% (1,022,729/1,148,904)
of Ehrlichia spp. involved in this analysis. In all the 294 collinear alignment blocks, there
were 183 collinearities with a similarity between 45.6% and 90.8%, nine inversions with
a similarity between 75.0% and 86.8%, 12 translocations with a similarity between 59.0%
and 82.6%, and 92 inversions/translocations with a similarity between 54.2% and 88.1%
(Figures 3B and S2B).

When aligned with E. muris strain AS145 (CP006917), which was isolated from a
wild mouse in Japan [51], there were 77.1% (1,013,862/1,314,789 bp) of E. canis YZ-1 and
85.0% (1,017,665/1,196,717) of E. muris involved in this analysis. In all the 317 collinear
alignment blocks, there were 201 collinearities with a similarity between 46.2% and 93.1%,
15 inversions with a similarity between 67.1% and 84.8%, ten translocations with a similarity
between 51.4% and 88.9%, and 91 inversions/translocations with a similarity between 54.8%
and 89.7% (Figures 3C and S2C).

When aligned with the E. ruminantium Welgevonden-type strain (CP006917), which was
isolated from cattle in Welgevonden, South Africa [52], there were 68.1% (895,013/1,314,789 bp)
of E. canis YZ-1 and 59.3% (898,925/1,516,355) of E. ruminantium involved in this analysis. In
all the 434 collinear alignment blocks, there were 241 collinearities with a similarity between
50.0% and 86.7%, 17 inversions with a similarity between 62.3% and 81.0%, 28 transloca-
tions with a similarity between 45.5% and 96.4%, and 148 inversions/translocations with a
similarity between 35.0% and 91.4% (Figures 3D and S2D).

E. mineirensis is a new Ehrlichia species isolated from Rhipicephalus (Boophilus) microplus
from Minas Gerais, Brazil, and has been molecularly characterized recently [14,53]. When
aligned with this strain (NZ_CDGH01000070), there were 95.9% (1,260,937/1,314,789 bp) of
E. canis YZ-1 and 89.1% (1,261,326/1,414,910) of E. mineirensis involved in this analysis. In
all the 335 collinear alignment blocks, there were 80 collinearities with a similarity between
62.8% and 92.9%, 13 inversions with a similarity between 46.6% and 90.6%, 114 transloca-
tions with a similarity between 56.7% and 96.1%, and 128 inversions/translocations with a
similarity between 39.5% and 93.3% (Figures 3E and S2E).

When aligned with E. canis strain Jake (NC_007354) [54], there were 99.3% (1,305,712/
1,314,789 bp) of E. canis YZ-1 and 99.3% (1,305,822/1,315,030) of E. canis Jake involved in
this analysis. In all the 38 collinear alignment blocks, there were 17 collinearities with a
similarity between 91.0% and 100%, five inversions with a similarity between 79.3% and
99.96%, zero translocation, and 16 inversions/translocations with a similarity between
77.7% and 100%, which again proved that our strain is Ehrlichia canis, not another Ehrlichia
species (Figures 3F and S2F).
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(NZ_CDGH01000070) (E), and E. canis (NC_007354) (F). The genomic differences/similarities in
collinearity, inversion, translocation, and translocation + inversion are shown in height and color, as
indicated at the top of the figure.

3.3.2. Insertion–Deletion Mutations Analysis

Indels, or insertion–deletion mutations, are the insertions and/or deletions of nu-
cleotides into and/or out of genomic DNA with less than 1kb length. They are supremely
critical in clinical next-generation sequencing, due to their driving mechanism underly-
ing many constitutional and oncological diseases [55]. We identified these mutations by
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comparing our E. canis strain YZ-1 to other Ehrlichia species or strains. The indels mainly
happened inside the CDS (coding sequencings), with a higher number in E. chaffeensis
(13 insertions; 20 deletions) and E. canis (17 insertions; 16 deletions) compared with the other
species/strains (Supplementary Figure S3 and Table S4). However, these insertion/deletion
mutations were extremely short (less than 1 bp) and mostly frameshift mutations or without
impacts on the open reading frame (Supplementary Figure S3 and Table S5).

3.3.3. Structural Variation (SV) Analysis

Structural variations (SVs) are generally defined as a region of DNA approximately
50 bp long or longer and can include inversions and balanced translocations or genomic
imbalances, such as insertions and deletions. These SVs often overlap with segmental
duplications, DNA regions present more than once, or copies of which more than 90%
of genes are identical [56–58]. Here, we performed the SVs analysis on our E. canis YZ-1
and the reference Ehrlichia species one-to-one to identify the regions and types of SVs
(Figure 4 and Supplementary Table S6). Compared with E. canis YZ-1, E. chaffeensis (334),
Ehrlichia spp. (393), E. muris (402), and E. ruminantium (525) have the most SVs, mainly
complex iIndels, which are not comparable due to the significant mutations that occurred
in that region (Figure 4A–D and Supplementary Table S6). Meanwhile, E. mineirensis
has 147 SVs, mainly insertions and inversions (Figure 4E and Supplementary Table S6).
However, the E. canis Jake strain only has 42 SVs, mainly insertions and deletions (Figure 4F
and Supplementary Table S6).
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4. Discussion

In this study, we conducted next-generation sequencing and comparative genomic
analysis on E. canis YZ-1, an isolate which was cultured from an infected dog from a
commercial canine farm. Our investigation aimed to unravel pathogenesis at the gene level
and establish genetic relatedness with other Ehrlichia species/strains. Notably, our findings
contribute to a deeper understanding of this zoonotic pathogen’s evolutionary dynamics
and functional aspects.

Our genomic analysis confirmed E. canis YZ-1’s identity, revealing substantial genomic
congruence with the E. canis Jack strain and a close relationship with E. chaffeensis and E.
ruminantium. Intriguingly, we observed a notable reduction in virulence-associated genes,
suggesting an adaptive strategy favoring prolonged survival within the host, aligning with
observations of asymptomatic infections in our experimental dog model [4]. The presence
of genes such as ClpP and ClpX, involved in protease activity and ATP-dependent processes,
underscores the pathogen’s intricate regulation of virulence [59].

Pathogen–host interactions revealed a plethora of genes with low similarity to those
in the database. While the mechanisms remain elusive, these findings align with our
previous observations of infected dogs recovering without treatment, indicating poten-
tial adaptations for a prolonged host survival period [4]. Identifying a type IV secre-
tion system (T4SS) suggests a role in translocating bacterial effectors into host cells, fur-
ther highlighting the intricate nature of E. canis YZ-1’s interactions with its host. Sim-
ilar to the E. canis reported before, we found two clusters of Vir homologous proteins
in E. canis YZ-1. One contains virB8/virB9/virB10/virB11/virD4, and one includes
virB3/virB4/virB6/virB6/virB6 [54]. But we also found virB9, virB8, and virB6 located
between and downstream of these two clusters, which was also reported in the Ehrlichia
spp. HF recently [60].

Comparative genetic analysis showcased E. canis YZ-1’s almost complete synteny
with the E. canis Jake strain, affirming its species identity, which was reported to be almost
identical to Ehrlichia ruminantium (Welgevonden and Gardel strains) before [54]. However,
E. canis YZ-1 has the lowest similarity with the E. ruminantium Welgevonden strain, with
only 68.1% of E. canis YZ-1 and 59.3% of E. ruminantium involved in the analysis. Instead,
E. canis YZ-1 is closer to E. mineirensis (95.9% of E. canis YZ-1 and 89.1% of E. mineirensis), a
new Ehrlichia strain reported recently [14,53], possibly influenced by host specificity and
environmental factors.
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One limitation of our analysis was not to include the first E. canis strain in Australia [12].
The genomic comparison in this study was conducted before we had access to the genome
sequences of the Australian strain. Notably, Neave et al. conducted a comprehensive
genomic analysis of the isolates from Australia, the Jake strain, and the YZ-1, and concluded
that the Australian E. canis genomes were highly conserved, and the Australian genomes
were most similar to E. canis YZ-1 from China [12].

Interestingly, our analysis revealed a closer relationship between E. canis YZ-1 and
E. canis strains from Australia than those from other regions. Phylogenetic analysis using
different genes demonstrated varying relationships, highlighting the importance of com-
prehensive analyses involving multiple genetic markers (Figure S4). Notably, the inclusion
of the variable trp36 gene pointed to the Australian strains belonging to the Taiwanese
genotype, emphasizing the need for a nuanced understanding of strain diversity [61].

This close relationship between E. canis YZ-1 and E. ruminantium may also be sup-
ported by the finding that multiple membrane transporter genes in our E. canis YZ-1 are
originally from E. ruminantium when the analysis was performed based on the Transporter
Classification Database, which is a database with a comprehensive IUBMB approved classi-
fication system for membrane transport proteins known as the transporter classification
(TC) system. There are 62 membrane transport proteins that were identified from E. canis
YZ-1, and 11 of them (accession #: Q5HB83; Q9R425) are from E. ruminantium (Supple-
mental Table S2). Interestingly, 10 out of the 11 proteins were major antigenic proteins
(Q9R425). However, the reason behind this is still unclear. One of the possibilities is that
both pathogens have infected the same host (ticks or animals) and shared their genomic
information. For instance, an Ehrlichia species close to E. canis and E. ruminantium has been
collected from the same host camel [62]. Moreover, there are 11 proteins in E. canis YZ-1
related to ubiquinone (ubiquitous or coenzyme Q in humans and animals, respectively)
biosynthesis. These proteins or coding genes were also reported as originally coming from
E. ruminantium and E. chaffeensis [58]. Further studies on the divergence or characterization
of these genes and proteins should be performed in establishing therapeutic interventions
in the ongoing battle against tick-borne pathogens. Moreover, a more in-depth explo-
ration of evolutionary history and potential reasons behind these observations requires
further studies.

5. Conclusions

The comprehensive genomic sequencing of E. canis YZ-1 has furnished essential
resources for an in-depth exploration of this pathogen, offering valuable insights into
host-pathogen interactions, potential evolutionary trajectories, and genetic distinctions
from globally prevalent E. canis strains. The abundance of genes associated with virulence
reduction, potentially aiding evasion of the host immune system, coupled with its close
relationship to E. ruminantium, presents intriguing avenues for future research and analysis.
Unraveling the mechanisms underlying these genetic attributes is imperative for a nuanced
understanding of E. canis YZ-1’s adaptive strategies. The proteins implicated in these
processes and those mediating pathogen-host interactions emerge as promising candidates
for developing vaccines and therapeutic interventions against ehrlichiosis. Further studies
are warranted to decipher these genes’ functional significance and role in the intricate
dynamics of host-pathogen relationships. By unraveling the molecular intricacies of E. canis
YZ-1, this study lays the groundwork for advancing our comprehension of ehrlichial patho-
genesis and enhancing disease prevention and control strategies. Continued investigations
into the multifaceted aspects of E. canis YZ-1’s biology will contribute to our understanding
of ehrlichiosis and offer potential avenues for targeted therapeutic interventions in the
ongoing battle against tick-borne pathogens.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms12010125/s1. Supplementary Table S1. Pathogen–
host interactions analysis of E. canis YZ-1; Supplementary Table S2. All the genes of E. canis YZ-1
identified in KEGG and TC system analysis; Supplementary Table S3. SNPs (single nucleotide
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polymorphisms) analysis of E. canis YZ-1 and related Ehrlichia strains; Supplementary Table S4.
Indels (insertions and deletions) analysis of E. canis YZ-1 and related Ehrlichia strains; Supplementary
Table S5. Mutation type caused by indels (insertions and deletions) in E. canis YZ-1 and related
Ehrlichia strains; Supplementary Table S6. The SV types of E. canis YZ-1 and related Ehrlichia strains;
Figure S1. The epigenetic modifications of Ehrlichia canis YZ-1; Figure S2. Bidimensional synteny
analysis of Ehrlichia canis YZ-1 with the reference sequences; Figure S3. The comparative analysis of
indels between Ehrlichia canis YZ-1 and reference sequences; Figure S4. Phylogenetic relationships of
Ehrlichia canis YZ-1 and references.
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