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Abstract: Purulent vulvar discharge is a clinical sign of genitourinary tract infections, which are a
significant concern in swine facilities, leading to sow culling and mortality. Escherichia coli is one
of the main agents involved in these diseases. This study aimed to characterize the virulence and
antimicrobial resistance profiles as well as the phylotype of Escherichia coli strains isolated from sows
with purulent vulvar discharge. The results showed that at least 2 of the 29 tested virulence genes
related to extraintestinal pathogenic E. coli were present in all strains tested. The most frequent gene
was iutA, present in all strains, followed by the genes iucD, csgA, iss2, and irp2. Associations between
iron uptake genes, genes related to adhesion, attachment, and serum resistance, as well as genes
related to toxin release and bacteriocin, were frequent. The most prevalent phylotype was B1 (40.0%),
followed by A (18.5%), D (11.9%), C (9.6%), B2 (7.4%), E (4.4%), F (1.5%), and Clade I (0.7%), with
B2 being related to highly virulent traits. The strains presented elevated resistance to antimicrobials
such as ciprofloxacin, streptomycin, cephalexin, florfenicol, and ampicillin. More than 90% of the
strains were identified as multidrug-resistant, indicating the selection that is induced by the high use
of antimicrobials in swine farming.

Keywords: urogenital infections; sows; Escherichia coli virulence; antimicrobial resistance

1. Introduction

Escherichia coli is a commensal agent that can acquire certain virulence attributes
and become associated with a wide range of diseases in domestic animals. Based on the
presence of these distinct attributes and the location of infection, these strains have been
classified into pathotypes [1]. These strains can impair production due to mortality and
morbidity and also incur direct financial losses from treatment costs. Furthermore, they
may also compromise food quality, representing a one health issue [2].

In swine, E. coli is one of the primary agents isolated in cases of genitourinary infection
and vulvar discharge [3,4]. Therefore, several studies have related the virulence factors
associated with infections affecting sites other than the intestine, such as the reproductive
tract, designating this pathotype as ExPEC (extraintestinal pathogenic Escherichia coli).
Morbidity and mortality in human cases caused by ExPEC are increasing globally [5],
and the importance of swine ExPEC is also being recognized [6–8]. However, few studies

Microorganisms 2024, 12, 123. https://doi.org/10.3390/microorganisms12010123 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms12010123
https://doi.org/10.3390/microorganisms12010123
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0003-0134-9741
https://orcid.org/0000-0002-1949-6697
https://orcid.org/0000-0003-2300-6678
https://orcid.org/0000-0001-9205-2382
https://orcid.org/0000-0003-2085-9894
https://orcid.org/0000-0001-7107-7927
https://orcid.org/0000-0002-3290-566X
https://doi.org/10.3390/microorganisms12010123
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms12010123?type=check_update&version=1


Microorganisms 2024, 12, 123 2 of 12

have comprehensively characterized the virulence factors of E. coli isolated from the geni-
tourinary tract of female pigs. In Brazil, studies that characterized the virulence factors of
uropathogenic E. coli found that genes for P fimbriae, type 1 fimbriae, and iron acquisition
systems are among the most prevalent [9,10].

The phylogenetic characterization proposed by Clermont et al. [11,12] has been applied
to several E. coli isolated from animal hosts and human clinical cases. In human virulent
strains, the phylogenetic groups B2 and D are more frequent, whereas group A is more
related to commensal strains [2].

In this study, E. coli strains isolated from sows with purulent vulvar discharge were
evaluated for the presence of ExPEC virulence genes, had their phylogenetic group deter-
mined, and were assessed for their resistance profile to antimicrobials commonly used in
pig farming.

2. Materials and Methods
2.1. Ethics Committee Approval

The Animal Use Ethics Committee (CEUA) of the School of Veterinary Medicine and
Animal Science, University of São Paulo, approved this study under the CEUA Process
Number 1875170317.

2.2. Animal Sampling

Samples were collected from the deep region of the vaginal canal of animals with
vulvar discharge from four commercial breeding systems situated in the Brazilian states of
São Paulo, Paraná, Minas Gerais, and Mato Grosso, which had a recent history of increased
rates of metritis and abortions. A total of 107 hybrid commercial females (Landrace × Large
White) were collected, with parity ranging between 1 and 10, with an average of 3.6. All
farms perform artificial insemination of sows. The sample collection was carried out
using a sterile and disposable vaginal speculum; sows were evaluated in the pregnancy or
lactation periods, usually three days after farrowing. Herds were initially screened based
on the presence of purulent material on the females’ enclosures. To minimize the risk of
external contamination, two veterinarians conducted the sampling—one was responsible
for exposing the vaginal canal while the other carried out the speculum and swab handling.

Only animals presenting purulent secretions in the deep region of the vaginal canal
were sampled, which ruled out the possibility of vulvar lesions or vaginitis. In addition,
only exclusively purulent secretions, strongly suggestive of infectious processes, were
collected, while normal-appearing secretions and lochia were not included in the sampling.
Similarly, sows that had recently urinated were not sampled. The swabs were placed in
Stuart’s transport medium and kept refrigerated at 4 ◦C until they arrived at the laboratory
for further processing.

2.3. Bacterial Isolation and Identification

For E. coli isolation, swabs were streaked on MacConkey agar and Chromagar™ Ori-
entation (Difco, Sparks, MD, USA) and incubated at 37 ◦C for 24 h under aerobic condi-
tions. Suspected bacterial colonies were sub-cultured in 3.0 mL of Brain Heart Infusion
(BHI) broth (Difco, Sparks, MD, USA), and aliquots were taken from this culture for
DNA extraction and strain identification using Matrix Associated Laser Desorption-Ioniza-
tion—Time of Flight (MALDI-TOF) mass spectrometry.

For MALDI-TOF MS, ribosomal protein extraction was performed as described by
Hijazin et al. [13]. The Microflex™ mass spectrophotometer (Bruker Daltonics, Inc., Billerica,
MA, USA) from the Environmental Company of the State of São Paulo (CETESB) was used.
The protein spectra were captured by the FlexControl™ (Bruker Daltonics, Inc., Billerica,
MA, USA) using the MTB_autoX method. The spectrophotometer was externally calibrated
using the Bacterial Test Standard (BTS—Bruker Daltonics, Inc., Billerica, MA, USA). The
microbial identification was performed by BioTyper™ 3.0 (Bruker Daltonics, Inc., Billerica,
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MA, USA) using the following manufacturer criteria: species were assigned log score
values ≥ 2.0, while scores between ≥ 1.7 and <2.0 determined only genus identification.

2.4. DNA Extraction and Polymerase Chain Reactions (PCRs) for Phylogenetic Characterization
and ExPEC Virulence Gene Screening

The bacterial DNA was extracted according to Boom et al. [14] protocol and maintained
at −20 ◦C until processing. The E. coli phylogenetic characterization was performed as
described by Clermont et al. [11,12], enabling the strain classification into eight phylogenetic
groups (A, B1, B2, C, D, E, F, and Escherichia crypt Clade I). A total of 29 genes were
evaluated that encode virulence factors associated with ExPEC, as described in different
studies [7,15–27]. The primers for each gene and the references are described in Table S1.

The PCRs (50 µL) used 5 µL of genomic DNA, ultrapure water, 10X PCR buffer,
1.5 mM MgCl2, 200 µM of dNTPs, 20 pmol of each primer, and 1 U of HOT FIREPol
DNA-polymerase (Solis BioDyne, Tartu, Estonia). The PCR cycles followed the respective
protocol reference. Amplicons were detected by agarose gel electrophoresis (1.5%) stained
with BlueGreen® (LGC Biotecnologia, Cotia, SP, Brazil). Images were captured under UV
illumination by the Gel Doc XR system (Bio-Rad Laboratories, Hercules, CA, USA), and
the 100 bp DNA Ladder molecular weight marker (New England BioLabs Inc., Ipswich,
MA, USA) was used for further band analysis.

2.5. Antimicrobial Resistance Characterization

The characterization of the antimicrobial resistance profile was performed by a broth
microdilution test according to the standards defined in the VET01 document [28]. For the
inoculum preparation, strains were cultured in BHI broth (Difco, Sparks, MD, USA) and
incubated at 37 ◦C for 24 h. The turbidity of the culture was adjusted with sterile saline
solution (0.9%) to obtain an optical density comparable to that of the 0.5 McFarland standard
solution and confirmed by spectrophotometer (0.150 to 600 nm). This adjusted bacterial
suspension had approximately 1.0 to 2.0 × 108 CFU/mL, which was further diluted by
1:1000 in Mueller–Hinton II broth (Difco, Sparks, MD, USA) to obtain a final concentration
of approximately 5.0 × 105 CFU/mL. Subsequently, 50 µL of this final suspension was
distributed in each well of the microplate, which was sealed, incubated at 37 ◦C, and
assessed within 18 h of incubation. The minimum inhibitory concentration (MIC) of each
antimicrobial was assessed visually and was established as the lowest concentration of
antimicrobial without button formation.

Staphylococcus aureus ATCC 29213 and Escherichia coli 25922 strains were used as quality
controls. The MIC50 and MIC90 were determined as described by Schwarz et al. [29].

2.6. Statistical Analysis

The statistical analyses were performed with R-Studio software (version 2023.12.0) [30].
The Fisher’s exact test (two-tailed) and the Chi-square test were performed using a statistical
significance level of p ≤ 0.05, adjusted with Bonferroni correction for multiple tests.

The upset plots were generated for the representation of the virulence profiles of
Escherichia coli strains using the Complex Heatmap package [31]. Correspondence anal-
ysis and heatmaps were performed using factoextra, FactoMineR, and ggplot2 [32–34].
Comparisons were performed between virulence gene groups and resistance groups. The
gene groups were divided according to the number of virulence genes present in the
strains: between two and four genes, between five and seven genes, between eight and
ten genes, and more than ten genes. The resistance groups were divided as resistance to
one to three antimicrobials, four to six antimicrobials, seven to ten antimicrobials, and
resistance to more than ten of the tested antimicrobials. Phylotypes were also compared
with virulence groups.



Microorganisms 2024, 12, 123 4 of 12

3. Results
3.1. Phylogenetic Characterization

A total of 135 E. coli strains were selected from 107 positive animals and identified
using MALDI-TOF MS, which were submitted to phylogenetic characterization and further
screening for virulence genes related to extraintestinal infection.

From the 135 E. coli strains obtained, it was possible to classify most strains (94.1%)
within the eight phylotypes; only eight strains (5.9%) could not be classified. Most of the
strains were classified as belonging to the B1 group (40%), followed by group A (18.5%).
The rest of the strains were divided into groups D (11.9%), C (9.6%), B2 (7.4%), E (4.4%),
F (1.5%), and Clade I (0.7%). Phylotype B1 exhibited a higher prevalence when compared
to all other phylotypes (p < 0.05, Chi-square test), except when compared to phylotype A.

3.2. ExPEC-Associated Virulence Gene Screening

The tested virulence genes and their frequencies are presented in Table 1. The most
frequent gene was iutA, present in all strains, followed by iucD, csgA, iss2, and irp2 genes.
The fyuA, afa, afaBC, papE, and kpsMTIII genes were not detected. At least 2 of the 29 tested
genes were detected in all tested strains, and a maximum of 14 genes were detected in one
strain. The median was seven virulence genes harbored by the strains. Figure 1 presents
the UpSet plot for the virulence gene association detected in the strains. Iron uptake (iutA,
iucD, irp2, iroN), genes related to adhesion and attachment (csgA, fimH, papC), and genes
related to serum resistance, toxin release, and bacteriocin (iss2, hlyF, cvi/cva) were the most
prevalent in these associations.

Table 1. Frequency of positive strains for genes encoding virulence factors for extraintestinal infection.

Gene Frequency (%)

iutA 100.0
iucD 92.6
csgA 64.4
iss2 58.5
irp2 57.8
iroN 54.1
astA 44.4
crl 38.5

hlyF 37.8
fimH 37.0

cvi/cva 28.9
papC 25.9
sat 20.0

focH 12.6
kpsMTII 9.6

sfa 9.6
usp 9.6
iss1 8.1
ibeA 3.7
neuS 3.7
vat 3.7

cdtB 1.5
cnf1 0.7
hlyA 0.7
fyuA 0.0
afa 0.0

afabc 0.0
papE 0.0

kpsMTIII 0.0
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Figure 1. UpSet plot for the number of occurrences of main virulence profiles of Escherichia coli strains
isolated from females with purulent vulvar discharge (n = 135). The numbers above the bars show
the number of strains in which genes, indicated by the filled dots, were detected in association.

Figure 2 shows the correspondence analysis between phylotypes and the number of
virulence genes. The most prevalent phylotype (B1) does not appear to be associated with
any virulence trait. On the other hand, B2 seems to have a strong positive association with
strains of high virulence (between eight and ten virulence genes), which is corroborated by
the Chi-square test between B2 and other phylotypes for some virulence factors (Supple-
mentary Table S2). The C and F phylotypes also seem to have a positive relationship with
strains of very high virulence (more than 10 genes). Phylotype A and untyped strains are
related to lower virulence, while phylotypes D, E, and Clade I seem to be associated with
medium virulence (five to seven genes).
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3.3. Antimicrobial Resistance Profile

Table 2 presents the assessed concentrations, cut-off points, and resistance rates for
each tested antimicrobial. The strains presented a high resistance rate to several classes
of antimicrobials. Higher resistance rates, around 80%, were observed for ciprofloxacin,
streptomycin, cephalexin, florfenicol, ampicillin, and oxytetracycline. A high resistance
rate was also observed for the amoxicillin-clavulanic acid association (63.0%). Except
for streptomycin, the aminoglycoside class (gentamicin, neomycin, and spectinomycin)
showed good action against E. coli strains, along with colistin, fosfomycin, trimethoprim-
sulfamethoxazole, and ceftiofur. The strains showed intermediate resistance rates to en-
rofloxacin, marbofloxacin, sulfamethoxazole, and azithromycin, ranging from 36.3% to
53.3% of resistance. There was a wide distribution of resistance rates among phylogroups
(Figure 3). However, higher resistance rates are noted for groups A and B1 when com-
pared to most other phylotypes. Nontypeable strains also showed high rates of resistance.
Correspondence analysis between resistance and virulence traits (Figure 4) showed that
strains with more than ten virulence genes were associated with the low resistance trait,
while strains classified as medium groups for virulence (five to seven genes) did not show
a strong association with any resistance traits.
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Table 2. Distribution of strains according to MIC values, respective MIC50 and MIC90 values, and resistance rates for assessed antimicrobials. The vertical black bars
indicate the cutoff points for bacterial resistance classification.

Antimicrobial
MIC (µg/mL) MIC50

(µg/mL)
MIC90
(µg/mL)

Resistance
(%)≤0.06 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 >512

Ceftiofur 108 17 2 0 0 1 7 ≤0.25 0.5 5.9
Ampicillin 4 17 6 4 2 1 0 101 >64 >64 75.6
Cephalexin 2 0 0 27 73 16 5 12 8 32 78.5

Oxytetracycline 27 5 0 0 0 103 >32 >32 76.3
Florfenicol 1 0 3 25 13 93 >8 >8 78.5

Marbofloxacin 4 0 0 19 21 18 7 7 59 2 >4 48.9
Enrofloxacin 16 20 20 7 7 65 4 >4 53.3
Ciprofloxacin 4 13 19 99 >4 >4 87.4
Gentamicin 86 17 4 2 5 9 12 ≤0.5 16 15.6
Neomycin 119 1 4 11 ≤4 16 11.9

Spectinomycin 59 48 14 6 5 3 16 64 5.9
Streptomycin 1 10 14 1 4 105 >16 >16 81.5

Sulfamethoxazole 49 37 47 2 256 512 36.3
Azithromycin 39 33 8 9 10 36 8 >64 40.7

Colistin 58 71 3 0 0 3 2 2 4.4
Fosfomycin 119 5 0 1 2 1 1 6 ≤8 16 5.9

Antimicrobial
MIC (µg/mL) MIC50

(µg/mL)
MIC90
(µg/mL)

Resistance
(%)≤1/0.5 1/0.5 2/1 4/2 8/4 16/8 32/16 64/32 >64/32

Amoxicillin/Clavulanic acid 2 0 2 12 14 20 74 8 3 32/16 32/16 63.0
≤1/19 1/19 2/38 4/76 >4/76 - - - -

Trimethoprim/Sulfamethoxazole 102 0 0 0 33 ≤1/9 >4/76 24.4
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different antimicrobials (red arrows). Resistance groups were divided into low (strains are resistant
to 1 to 3 of the antimicrobials tested), medium (resistant to 4 to 6 antimicrobials), high (resistant to
7 to 10 antimicrobials), and very high (resistant to 11 or more antimicrobials).

4. Discussion

E. coli is known to be a common cause of genitourinary infections and vulvar discharge
in swine, but its full impact, particularly concerning the ExPEC strains, is not yet fully
understood. Previous studies indicate that potential pathogenic E. coli strains in porcine
and humans are classified mainly in group B2, with a smaller proportion belonging to
group D. In contrast, commensal intestinal strains are predominantly classified in groups A
and B1 [35,36]. Another study also found similar data in E. coli strains isolated from the
reproductive tract of cows and sows, with the most prevalent phylotypes being A, followed
by B1 [2]. Our study is in line with this report, with phylotypes B1 and A being the most
prevalent. Nevertheless, we also detected the B2 and D phylotypes at a lower frequency in
our study, which is consistent with the fact that the samples were collected from females
with purulent vulvar discharge.

A higher proportion of strains belonging to intestinal commensal groups B1 and A
is expected. Modern sows are reared in intensive systems with cages or collective pens
that favor continuous contact of feces with the perineal region. Thus, it is to be expected
that the vaginal canal contains most of these groups. The presence of other phylotypes
considered to be of greater pathogenic risk, such as B2 and D, even if to a lesser extent,
provides significant epidemiological information regarding purulent vulvar discharges.
In fact, correspondence analysis in our study showed that phylotypes B2 and D were
associated with a greater number of virulence factors than phylotypes A and B1.

Additionally, studies have demonstrated that commensal strains in phylotypes A and
B1 exhibit a higher prevalence of drug resistance but fewer virulence genes. Conversely,
pathogenic strains in phylotypes B2 and D possess several pathogenicity-associated islands
and express several virulence factors [37]. This can also be seen in our resistance versus
phylotype heatmap, in which it is noted that A and B1 have higher rates of resistance when
compared to most other phylogroups, and to some extent, it is also seen in the second
correspondence analysis, in which strains with a very high presence of virulence genes
were associated with the characteristic low resistance.

The isolated E. coli strains showed many of the investigated extraintestinal virulence
genes, which may be important in the colonization and rise of the bacteria in the geni-
tourinary tract [38]. The association between the aerobactin operon (iucD and iutA) and
the iss gene, both present in most strains, is related to high levels of virulence, and even
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the possession of any of these genes is sufficient for intermediate levels of virulence in
APEC [39].

The cvi/cva genes and kpsMT2, related to the ability to overcome host defenses [26,40],
were also detected in the strains. The sat gene was also found with relevant frequency in
this study (20%). To a lesser extent, but still relevant, was the usp gene (9.6%). The sat gene
is related to the secretion of a protease with cytotoxic activity in renal and bladder cells [41],
while the usp gene (uropathogenic specific protein) is commonly found in uropathogenic
strains in humans [42]. The presence of these genes indicates that these strains may have a
more invasive and virulent trait.

Regarding the factors that encode important fimbriae in the adhesion and colonization
of the genital and urinary epithelium, focH, fimH, and papC genes were found at relevant
frequencies. The papC gene belongs to the pap operon that codes for the P fimbriae, which
is important in urinary tract infection and potential systemic infections in poultry [43,44].
Brito et al. [9] found that up to 54.8% of E. coli strains isolated from pigs with urinary tract
infections were pap-positive. Another study from Kassé et al. [45] showed that 89% and
9% of E. coli strains isolated from the uterus of cows with postpartum metritis possessed
the genes fimH and papC, respectively, showing the potential role of these factors in the
adherence of the reproductive tract by E. coli. Indeed, adhesion to endometrial cells is
partially mediated by fimH, as their adhesion can be reduced by D-Mannose, an inhibitor
of fimbrial adhesion [46].

Necrotizing cytotoxic factor 1 (cnf1) and α-hemolysin (hlyA) had a lower prevalence
in our study. Spindola et al. [10] found a higher prevalence of this gene in UPEC strains
isolated from pigs but a similar prevalence of hlyA.

Regarding the virulence profiles, it was observed that in the association of iron uptake
genes, genes related to adhesion and attachment, serum resistance, toxin release, and bacte-
riocin were the most prevalent when considering the median profile. Up to 14 associated
virulence genes were found (astA, iss1, iss2, irp2, iutA, iucD, iroN, sfa, hlyF, papC, focH, fimH,
cdtB, and csgA). This underscores the multifaceted nature of ExPEC virulence, which may
potentially facilitate the bacteria’s adaptability and persistence in the genital tract.

The tested strains of E. coli exhibited high resistance to several antimicrobials, including
ciprofloxacin, streptomycin, cephalexin, florfenicol, tetracycline, and ampicillin. Some of
these antimicrobials are commonly used in pig farming [47], including for the treatment
of genitourinary infections. Similar results were found by Spindola et al. [10], who also
observed high resistance of UPEC to tetracycline, florfenicol, and ampicillin, but sensitivity
to ceftiofur, gentamicin, spectinomycin, and amoxicillin and clavulanic acid. In contrast,
65% of the strains in this study were resistant to amoxicillin and clavulanic acid.

Among the 135 tested strains, 128 (94.8%) were classified as multidrug-resistant (MDR),
defined as resistance to at least one agent in three or more antimicrobial classes [48]. It is
important to highlight that some of these antimicrobials are considered critically important
in human medicine, such as cephalexin and ciprofloxacin [49]. In fact, people in the swine
chain production, such as farm or slaughterhouse workers and veterinarians, are under
greater exposure to pathogenic bacteria. Humans exposed to live animals were more
frequently positive for zoonotic bacteria [50], as well as for bacteria that carry elements of
resistance, such as β-lactam-resistant E. coli [51].

The presence of several tested virulence genes, some with high frequency, indicates
that the strains isolated from the vaginal canal of sows possess the factors that characterize
extraintestinal pathogenic E. coli (ExPEC) and have the potential to cause infection, partic-
ularly those belonging to phylotypes with a higher risk of pathogenicity, such as B2 and
D. However, more studies are needed to elucidate the precise roles and interrelationships
of these genes, as well as the relationship with other bacteria present in the genital tract
that could be pivotal in the emergence of urogenital infections. This will also help in the
development of specific strategies for the prevention and treatment of infections caused by
virulent strains of E. coli. The observed high levels of resistance, with over 90% of the strains
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classified as multidrug-resistant, strongly indicate the indiscriminate use of antimicrobials
in pigs housed on Brazilian farms.

5. Conclusions

E. coli strains isolated from the vaginal canal of sows with purulent vulvar discharge
harbor a notable array of extraintestinal virulence genes that facilitate their colonization
and potential infection in the genitourinary tract. The identification of genes related to
survival outside the gut, associated with genes that confer serum resistance and adhesion
to the genitourinary tract epithelium, indicates a propensity of these strains to circumvent
host defenses, marking them as potentially more invasive and virulent.

The detection of B2 and D phylotypes, known for their pathogenic potential, adds
substantial information to the epidemiology of purulent vulvar discharges and correlates
with a higher number of virulence factors compared to A and B1 groups, emphasizing their
potential role in infections. Furthermore, the alarming prevalence of multidrug resistance
seen in most of the tested strains calls for a critical review of the antimicrobial use in
pig farming, particularly to preserve the efficacy of drugs that are critically important in
human medicine.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/microorganisms12010123/s1. Table S1: Primers used to
amplify E. coli virulence genes related to extra intestinal infections; Table S2: p-values for Chi-square
or Fisher exact test for prevalence of virulence gene in B2 phylotype vs. other phylotypes.
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