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Abstract: Oral potentially malignant disorders (OPMDs) are a group of conditions that carry a risk of
oral squamous cell carcinoma (OSCC) development. Recent studies indicate that periodontal disease-
associated pathogenic bacteria may play a role in the transition from healthy mucosa to dysplasia and
to OSCC. Yet, the microbial signatures associated with the transition from healthy mucosa to dysplasia
have not been established. To characterize oral microbial signatures at these different sites, we
performed a 16S sequencing analysis of both oral swab and formalin-fixed, paraffin-embedded tissue
(FFPE) samples. We collected oral swabs from healthy mucosa (from healthy patients), histologically
normal mucosa adjacent to dysplasia, and low-grade oral dysplasia. Additionally, FFPE samples
from histologically normal mucosa adjacent to OSCC, plus low grade and high-grade oral dysplasia
samples were also collected. The collected data demonstrate significant differences in the alpha and
beta microbial diversities of different sites in oral mucosa, dysplasia, and OSCC, as well as increased
dissimilarities within these sites. We found that the Proteobacteria phyla abundance increased,
concurrent with a progressive decrease in the Firmicutes phyla abundance, as well as altered levels
of Enterococcus cecorum, Fusobacterium periodonticum, Prevotella melaninogenica, and Fusobacterium
canifelinum when moving from healthy to diseased sites. Moreover, the swab sample analysis
indicates that the oral microbiome may be altered in areas that are histologically normal, including
in mucosa adjacent to dysplasia. Furthermore, trends in specific microbiome changes in oral swab
samples preceded those in the tissues, signifying early detection opportunities for clinical diagnosis.
In addition, we evaluated the gene expression profile of OSCC cells (HSC-3) infected with either
P. gingivalis, T. denticola, F. nucelatum, or S. sanguinis and found that the three periodontopathogens
enrich genetic processes related to cancer progression, including skin keratinization/cornification,
while the commensal enriched processes related to RNA processing and adhesion. Finally, we
reviewed the dysplasia microbiome literature and found a significant decrease in commensal bacteria,
such as the Streptococci genus, and a simultaneous increase in pathogenic bacteria, mainly Bacteroidetes
phyla and Fusobacterium genus. These findings suggest that features of the oral microbiome can serve
as novel biomarkers for dysplasia and OSCC disease progression.
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1. Introduction

Oral potentially malignant disorders (OPMDs) are a group of oral lesions that “carry a
risk of cancer development in the oral cavity, whether in a clinically definable precursor
lesion or in clinically normal mucosa” [1]. Oral dysplasia is the most common subset of
OPMD [2,3], and risk factors include tobacco (either smoking and smokeless), betel quid
nut, and alcohol use [4]. Dysplastic cells are characterized by hyperchromasia; enlargement
of nuclei and, subsequently, decreased nuclear–cytoplasmic ratio; mitoses in suprabasal
layers; loss of differentiation of keratinocytes towards the surface [5]; and, specifically
for dysplasia of the upper aerodigestive tract, keratinization/cornification [6]. Based on
histopathological grading of oral dysplasia, it is estimated that severe dysplasia has a
malignant transformation rate of 7–50%, followed by moderate dysplasia (3–15%) and
mild dysplasia (<5%) [7], with both moderate and severe dysplasia having a significant
increased risk (OR 2.4 99% CI 1.5–3.8) of malignant transformation compared to mild
dysplasia [8]. Despite these numbers, oral dysplasia grading does not reliably predict its
clinical behavior and is by nature imprecise, with a high intra- and inter-observer variability
in diagnosis [9,10], making it currently impossible to predict accurately which dysplastic
lesions will progress to oral squamous cell carcinoma (OSCC) [11]. Thus, more accurate
markers predicting oral dysplasia progression to cancer would enable better targeting
of these lesions for closer follow-up, especially in the early stages of the disease [11].
Importantly, recent studies indicate that periodontal disease-associated pathogenic bacteria
may have a role in neoplastic progression [12].

The human oral cavity harbors a complex and dynamic array of over 1000 “core” and
“variant” microbial taxa that together constitute the oral microbiome [13,14]. Recent evi-
dence from our group and others indicates that the oral microbiome, particularly its bacteria,
plays a critical role in oral cancer pathogenesis [12,13,15–22]. Although the oral microbiota
has evolved commensally to protect humans against foreign pathogens, its community
becomes imbalanced (“dysbiotic”) throughout a person’s lifetime due to genetic risk factors
and lifestyle behaviors, such as dietary intake, tobacco and alcohol use, and poor dental
hygiene, thus pre-disposing the individual to oral pathology [23,24]. Dysbiosis is often
characterized by a combination of reduced overall microbial diversity and negative changes
in the relative abundances of beneficial and pathogenic microbes/bacteria [13,25]. Thus far,
studies have demonstrated for dysplasia, in particular, a significant decrease in commensal
bacteria, such as the Streptococci genus, and an simultaneous increase in pathogenic bacteria,
mainly Bacteroidetes phyla and the Fusobacterium genus [26,27]. Moreover, epidemiologic
studies have further demonstrated an association between periodontal disease/periodontal
pathogens and oral and orodigestive cancers [15,28–30]. These changes suggest that the
oral microbiome could have diagnostic or therapeutic potential for OSCC management,
although it has not yet been explored for these applications.

In addition, it has not yet been established whether areas of histologically “normal”
mucosa in patients with dysplasia have an oral microbiome composition more closely re-
lated to healthy mucosa (i.e., without dysplasia) or to dysplasia. Most studies in the field
compare the oral microbiome of oral dysplasia tissues to either histologically normal adja-
cent/contralateral tissues or to whole mouth rinses or saliva from healthy patients [31–36].
Moreover, a recent meta-analysis specifically on oral dysplasia [26] indicates a high-risk of
bias due to non-negligible heterogeneity of specimen types.

Understanding the potential microbial biomarkers involved during the transition
from healthy mucosa to oral premalignant lesions (more specifically dysplasia) and to
malignancy will be important for identifying novel diagnostic and therapeutic targets and
ultimately improving oral cancer outcomes. Although the oral microbiome and its dysbiosis
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have been implicated in the pathogenesis of oral cancer, the microbial signatures associated
with the transition from health to carcinogenesis have not been established [15,16,30,35–43].
Therefore, the objective of this pilot study was to determine the oral microbial signatures
associated with healthy oral mucosa, oral dysplasia, and oral cancer.

2. Materials and Methods
2.1. Ethics Statement

Approval to conduct human subjects’ research, including protocols for the collection
and use of human tissues (IRB# 19-29366; Reference #284015) and oral swab samples (IRB#
14-15342 and CC#15205 SPORE (Specialized Program of Research Excellence) in Head
and Neck Cancer) were obtained from the University of California, San Francisco (UCSF)
Institutional Review Board (IRB). Per IRB guidelines, patient consent was not required for
archival (previously collected) formalin-fixed, paraffin-embedded (FFPE) specimens, but it
was obtained for the collection of oral swab samples.

2.2. Inclusion Criteria

The inclusion criteria encompassed adults aged 18 or older with a biopsy-proven
diagnose of oral dysplasia.

2.3. Oral Swab Sample Collection

Oral swab samples were collected in 2021 from 4 patients from areas of histologically
normal oral mucosa adjacent to oral dysplasia and from the site of biopsy-proven low-grade
oral dysplasia. Additionally, samples of histologically normal/healthy oral mucosa from
the mandibular gingiva were collected from 4 patients with no history of oral dysplasia
or OSCC as a control group. A total of 8 samples were collected by swabbing 10 times in
a repeated motion over the mucosa with sterile cotton swabs. After collection, all swabs
were immediately placed in RNA stabilization solution (RNALater, Millipore-Sigma, St.
Louis, MO, USA) and stored at −80 ◦C until further processing.

2.4. Tissue Sample Collection

Samples from histologically normal oral mucosa adjacent to OSCC (n = 8), oral dyspla-
sia (n = 13), and OSCC (n = 8), both matched and unmatched, were collected between 1999
and 2017 according to the approved protocol. All samples were from patients seen at UCSF
for clinically detectable oral cavity lesions or cancer and were derived from archival FFPE
tissue blocks collected for non-research purposes (medical treatment or diagnosis) at the
UCSF Departments of Pathology and Oral Pathology.

2.5. DNA Extraction

Tissue samples were deparaffinized using the QIAamp DNA FFPE Tissue Kit (Qiagen,
Germantown, MA, USA), according to the manufacturer’s instructions. Total DNA was
extracted from both tissue and swab samples using a QIAamp DNA Mini Kit (Qiagen, USA),
according to the manufacturer’s instructions. Next, the total DNA content for each sample
and its overall quality was assessed using a Nanodrop One UV-Vis Spectrophotometer
(ThermoFisher Scientific, Waltham, MA, USA), and the DNA samples were kept at −80 ◦C
until 16S sequencing (Novogene Corp Inc., Sacramento, CA, USA). Insufficient DNA was
recovered for sequencing from 2 of the histologically normal adjacent FFPE specimens and
1 of the dysplasia swab samples.

2.6. 16S Amplification and Sequencing

The DNA purity of the samples was first monitored with 1% agarose gels using DNA
diluted to 1 ng/µL in sterile water. Then, the 16S rRNA genes of the V4 region were
amplified using 515F-806R primers and Phusion High-Fidelity PCR Master Mix (New
England Biolabs, Ipswich, MA, USA). Next, the PCR products were mixed (1:1 v/v) with 1X
loading buffer (containing SYBR green) and loaded onto a 2% agarose gel for electrophoresis
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detection. Samples with bright single bands between 400 and 450 bp were chosen and
purified with a Qiagen Gel Extraction Kit (Qiagen, Hilden, Germany) for further analysis.
Finally, the 16S libraries were generated using the NEB Next Ultra DNA Library Preparation
Kit (New England Biolabs, USA) and analyzed via Illumina NovaSeq 6000 platform by
Novogene Corp Inc. (Sacramento, CA, USA).

2.7. Sequencing Data Processing

Paired-end reads were merged via FLASH [44], a fast and accurate analysis tool
designed to merge overlapping paired-end reads (raw tags). Quality filtering on the raw
tags was performed under specific filtering conditions to obtain high-quality clean tags [45]
using QIIME’s quality-controlled process [46]. Next, the raw tags were compared to the
SILVA reference database via the UCHIME algorithm [47] to detect and remove chimera
sequences [48], thereby obtaining the effective tags.

2.8. Operational Taxonomic Unit (OTU) Cluster and Taxonomic Annotation

All 16S effective tags were analyzed using UPARSE software (v. 7.0.1090) [49]. Sequences
with≥97% similarity were assigned to the same OTUs, obtaining the representative sequences.
Each representative sequence was then compared against the SSUrRNA database of the latest
version of SILVA Database [50] at each taxonomic rank (i.e., kingdom, phylum, class, order,
family, genus, and species) using a threshold of 0.8–1 [51] via QIIME [46]. Then, MUSCLE [52]
was used to obtain the phylogenetic relationship of all OTUs’ representative sequences.
Finally, all the OTUs’ abundances were normalized using a standard of sequence number
corresponding to the sample with the least sequences. Subsequent analyses of alpha diversity
and beta diversity were all performed based on this generated normalized data.

2.9. Alpha Diversity

Alpha diversity indices represent the diversity of species in an ecosystem, summariz-
ing the structure of that particular ecological community. Many perturbations can affect
a community’s alpha diversity, especially in microbial communities. Thus, comparing
community structure via alpha diversity is an initial step to analyze how the microbial
community changes under different conditions. To do this, several metrics are used to
establish the community richness (i.e., the number of taxonomic groups in the samples), its
evenness (i.e., the distribution of taxonomic groups within the community), or both [53].

Three indices of alpha diversity were computed in this study: the observed number of
species (i.e., the count of unique OTUs found in the sample, estimating its richness), the
Shannon diversity (which estimates both species richness and evenness), and the Chao1
diversity (which estimates total species richness in the sample). All indices were calculated
using the QIIME Software [54].

2.10. Beta Diversity

While alpha diversity is the representation of species in a particular ecosystem, beta
diversity is the measure of the differences in species composition between two or more
local communities or even between local and regional ecosystems [55,56]. In this study, the
beta diversity was measured via unweighted UniFrac with the QIIME software [54]. Then,
principal coordinate analysis (PCoA) was performed on UniFrac estimates to visualize
complex and multidimensional data. Unweighted Pair-group Method with Arithmetic
Means (UPGMA) Clustering was performed as a type of hierarchical clustering method
to interpret the distance matrix using average linkage and was conducted with QIIME
software [54].

2.11. HSC-3 Cell Culture

Oral cancer (HSC-3) cell line was maintained as previously described [17,57,58]. Briefly,
cells were grown in DMEM medium supplemented with 10% FBS and 1% penicillin and
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streptomycin under a humid atmosphere at 37 ◦C and 5% CO2. Cells were subcultured
with trypsin/PBS every 2 or 3 days.

2.12. Bacterial Culture

Treponema denticola (ATCC 35405), Porphyromonas gingivalis (FDC 381), Fusobacterium
nucleatum (ATCC 10953), and Streptococcus sanguinis (S160) were anaerobically grown
as described previously [59–62]. Briefly, T. denticola was cultured in Oral Treponeme
Enrichment Broth (OTEB); P. gingivalis and F. nucleatum were culture in Brain Heart Infusion
(BHI) broth supplemented with 5 µg/mL of hemin and 1 µg/mL vitamin K; and S. sanguinis
was cultivated using plain BHI broth. Anaerobic conditions were obtained by placing
bacterial samples into sealed anaerobic jars that underwent five cycles of depressurization
(vacuum formation) and nitrogen (N2) pressurization (1 ATM) and kept at 37 ◦C in an
Isotemp Incubator (Thermo-Fisher Scientific, USA). The bacteria were split every 2–3 days
(except for T. denticola, which was split every 7 days).

2.13. RNAseq

HSC-3 cells (106 cells per plate) were plated on 60 mm cell culture dishes (Corning,
Corning, NY, USA) and let adhere overnight. On the next day, cells were infected with either
P. gingivalis, T. denticola, F. nucleatum, or S. sanguinis (at 50 MOI) and incubated for 2 h. Then,
the cells were washed with PBS three times for bacterial removal and incubated for another
24 h after the addition of fresh media. Finally, their RNA was extracted using RNeasy mini
kit (Qiagen, USA) and samples were submitted to Novogene Corp Inc. (Sacramento, CA,
USA) for RNAseq.

2.14. Statistical Analyses

Parametric statistical analyses were performed via GraphPad Prism (v. 10, San Diego,
CA, USA), whereas non-parametric analyses were performed via R Software (v. 2.15.3,
USA). OTU (i.e., phyla, class, family, and genus), as well as alpha diversity rarefaction
are reported as means ± SD, and their statistical analyses were performed via Two-Way
ANOVA, as described in their respective figure legends. Alpha and beta diversity indices
are reported as medians ± min and max, and their statistical analyses were performed
using Wilcoxon signed-rank test.

3. Results
3.1. Demographics of Study Patients

Oral swab samples were collected from four patients from the surface of oral leukoplakia
lesions with histologic evidence of oral epithelial dysplasia. For matched internal controls, oral
swab samples were collected from the surface of clinically normal appearing tissue adjacent
to the oral dysplastic lesions. As additional controls, we collected oral swab samples from the
mandibular gingiva of four healthy subjects with no history of oral dysplasia or OSCC and
with no other oral mucosal lesions. The demographics for these groups are summarized in
Table 1, and no significant differences were found between groups.

In addition to the oral swabs, 30 archival FFPE tissue specimens of histologically
normal mucosa adjacent to OSCC, oral dysplasia, and OSCC were obtained from 17 patients.
The demographics for these patients are summarized in Table 2. Dysplasia samples were
subdivided into low-grade (mild or moderate dysplasia) or high-grade (severe dysplasia
or squamous cell carcinoma in situ (SCCIS)). Samples were analyzed in two separate
cohorts. The first cohort consisted of 13 specimens from 11 patients, including 2 samples of
histologically normal mucosa adjacent to OSCC, 7 low-grade dysplasia, and 4 high-grade
dysplasia. One patient in this group had two synchronous biopsies demonstrating different
dysplasia grades, and a second patient had two biopsies showing low-grade dysplasia
collected three years apart. The second cohort consisted of six patients with matched
samples from the same resection specimen: four patients had matched histologically normal
adjacent, low-grade dysplasia, and OSCC; one patient had matched histologically normal
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adjacent, low-grade dysplasia, and high-grade dysplasia; and one patient had matched
histologically normal adjacent and high-grade dysplasia with possible microinvasion. HPV
testing was not performed on all these cases, as only a small fraction (<4%) of OSCC
has been reported as HPV-positive [63,64] and the specific lesions tested did not show
the typical HPV basaloid histomorphology. No significant demographic differences were
found across groups.

Table 1. Patient demographics—oral swab samples.

Variable Healthy Mucosa
(No Dysplasia)

Histologically Normal Adjacent/Low
Grade Dysplasia (Matched)

Age (Years ± SD) 50.67 ± 13.58 67.50 ± 9.98

Sex
Male 2 1

Female 2 3

Swab Collection Location
Left Tongue 0 1

Right Lingual Gingiva 0 0
Left Lingual Gingiva 0 1
Mandibular Gingiva 4 2

Dysplasia diagnosis - Mild to moderate

Smoking Status
Current 0 0

Past 0 0
Never 4 2
N/A 0 2
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Table 2. Patient demographics—archival FFPE tissue specimens.

Year Site Diagnosis Age Sex HPV Status Smoking Status Alcohol Use Other Relevant History

U
nm

at
ch

ed
Ti

ss
ue

Sa
m

pl
es

2015 Left posterior floor of
mouth Mild dysplasia 60 M Negative Never smoker One standard

drink per week

History of dysplasia and
squamous cell carcinoma in the

left posterolateral tongue

2010 Gingiva, between 1st
and 2nd premolars

Squamous cell
carcinoma in situ 82 F Negative n/a n/a History of squamous cell

carcinoma in Gingiva, #7–9

2013
Left tongue, posterior

dorsal mucosal
margin

Histologically
normal adjacent

tumor
76 M Negative Never smoker 2 standard

drinks per week

Negative margin in a patient
with left tongue squamous

cell carcinoma

2005 Left lateral tongue Low-grade
dysplasia 33

F Negative Never smoker None

2005 Left lateral tongue High-grade
dysplasia 33

2012 Left lateral tongue Mild dysplasia 60
M Negative Former smoker (0.25 packs

per day, 1.5 pack-year)
12 standard

drinks per week
History of left tongue

squamous cell carcinoma
in situ2015 Left soft palate Moderate

dysplasia 63

2012 Right base of tongue
mucosal margin Carcinoma in situ 54 F Negative

Former smoker
(1 pack-year, 15 pack-years,

quit 25 years prior)

<1 standard
drink per day

Margin in a patient with oral
tongue multifocal squamous

cell carcinoma

2009 Right tongue Moderate
dysplasia 53 M Negative n/a n/a

History of right lateral tongue
squamous cell carcinoma

and HIV+

2017 Right tongue Severe dysplasia 60 M Negative Daily tobacco chew user for
22 years

Longtime
drinker

Adjacent to right tongue
squamous cell carcinoma in

resection specimen

2013 Gingiva, lower left
2nd premolar region

Atypical papillary
verrucous

proliferation
70 F Negative

Former smoker (1 packs
per day, 24 pack-years, quit

26 years prior)
None History of proliferative

verrucous leukoplakia

2015 Right ventral
lateral tongue

Moderate
dysplasia 95 F Negative

Former smoker (0.25 packs
per day, 10 pack-years, quit

35 years prior)
None History of right

tongue leukoplakia

2014 Left tongue
Histologically

normal adjacent
tumor

66 F Negative Never smoker None
Adjacent to left tongue

squamous cell carcinoma in
resection specimen
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Table 2. Cont.

Year Site Diagnosis Age Sex HPV Status Smoking Status Alcohol Use Other Relevant History

M
at

ch
ed

Sa
m

pl
es

2011 Anterior dorsal
tongue

Histologically
normal adjacent

(margin in
resection)

60 M Negative Former smoker (2 packs
per day, 68 pack-years)

≥15 standard
drinks per week

History of other recreational
drug useMild to moderate

dysplasia (margin
in resection)
Moderately

differentiated SCC

2011 Left posterior ventral
tongue

Histologically
normal adjacent

(margin in
resection)

45 M Negative Never smoker
One standard

drink per week
History of non-Hodgkin
lymphoma, esophageal

squamous cell carcinoma, and
thyroid cancer

Mild to moderate
dysplasia (margin

in resection)
Moderately

differentiated SCC

2009 Anterior dorsal
tongue

Hyperkeratosis,
no dysplasia

(margin in SCC
resection)

41 M Negative n/a n/a History of proliferative
verrucous leukoplakiaMild dysplasia

(adjacent to SCC)
Moderately

differentiated SCC

2009 Ventral tongue,
anterior margin

Histologically
normal adjacent

(margin in
resection)

57 M Negative Former smoker (60
pack-years)

One standard
drink per day

Moderate
dysplasia (margin
in SCC resection)

Moderately
differentiated SCC
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Table 2. Cont.

Year Site Diagnosis Age Sex HPV Status Smoking Status Alcohol Use Other Relevant History

M
at

ch
ed

Sa
m

pl
es

1999 Left lateral tongue

Histologically
normal adjacent

(to SCCIS)
76 M Negative Former smoker (25 years

prior)
<2 standard

drink per day
Squamous cell

carcinoma in situ
with possible

superficial
microinvasion

2010 Left lateral tongue

Histologically
normal adjacent

(to SCCIS)
77 M Negative None NoneMild to moderate

dysplasia
Squamous cell

carcinoma in situ
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16S sequencing of all the samples yielded an average of 148,446 reads per sample,
totaling 5,640,949 pre-processing sequences. For two of the histologically normal adjacent
and one of the low-grade dysplasia swab samples, insufficient DNA was recovered for
sequencing. These sequences were binned into a total of 9158 OTUs.

3.2. Oral Dysplasia and OSCC Microbiome Communities Are Distinct from Those in Healthy and
Histologically Normal Adjacent Communities

We started by analyzing the microbial communities via principal coordinate analysis
(PCoA). Figure 1 shows the results of the three groups of samples—oral swabs (Figure 1A),
matched FFPE tissues (Figure 1B), and unmatched FFPE tissues (Figure 1C).
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In PCoA, sample groups that are closer to one another are more similar than those
positioned further away [56]. In the current study overall, the sample groups exhibited areas
of ellipse overlap and therefore similarity, especially when analyzing the matched samples
(Figure 1B). For example, the low-grade dysplasia specimens were more similar to the
histologically normal adjacent specimens than to high-grade dysplasia/OSCC (Figure 1B).
Regarding the oral swab samples (Figure 1A), a larger degree of dissimilarity was observed
amongst the healthy (no dysplasia) samples, whereas the histologically normal adjacent
and the dysplasia communities had less variance across patients. The dysplasia community
partially overlapped as a subset within the healthy community. Finally, unmatched tissue
samples (Figure 1C) indicate comparable dissimilarities between low- and high-grade
dysplasia compared to histologically normal adjacent control.

Additionally, ellipsis overlap can also indicate dissimilarity among sample groups
they are not overlapping with other sample group’s ellipses. In the current study, among
the unmatched samples (Figure 1C), both low-grade and high-grade dysplasia specimens’
ellipses were distinct (i.e., have no overlap) to histologically normal adjacent specimens and,
therefore, dissimilar to it. In the current study, this dissimilarity to histologically normal
adjacent control can indicate that both low- and high-grade dysplasia may be associated
with distinct microbiomes, compared to the histologically normal adjacent tissues [65].

Beta diversity measures the total effective number of species in a group of samples
divided by the effective number of species in each sample [56]. The results for the three
groups can be seen in Figure 2.
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Beta diversity among oral swab samples (Figure 2A) showed that histologically nor-
mal adjacent to dysplasia specimens were significantly different from low-grade dysplasia
(p < 0.0001) and from healthy mucosa from other patients (p = 0.007). Additionally, low-
grade dysplasia specimens showed a significant lower UniFrac Index (p = 0.008) compared
to healthy mucosa (no dysplasia). In contrast, among matched FFPE tissues (Figure 2B),
low-grade dysplasia showed no significant differences from histologically normal adjacent
mucosa (p = 0.080) despite showing a trend toward higher levels, and the only significant
difference was between OSCC and histologically normal adjacent samples (p = 0.015).
Among the unmatched samples (Figure 2C), beta diversity in both low- and high-grade
dysplasia was significantly higher (p = 0.004; p < 0.0001, respectively) compared to histolog-
ically normal adjacent to tumor specimens. Furthermore, the beta diversity of high-grade
dysplasia was also found to be significantly higher compared to low-grade dysplasia
(p = 0.0003).

In addition to the PCoA results, the beta diversity results provide an additional level
of information for evaluating dysplasia (i.e., for distinguishing between low-grade and
high-grade dysplasia samples) that may be helpful for elucidating the microbiome shifts
underlying transitions from health to dysplasia and cancer.

As previously described, our oral swab data further showed that the beta diversity of
the “healthy” (no dysplasia) microbiome is significantly different from that of histologically
normal adjacent to dysplasia specimens, indicating that microbiome shifts may have taken
place in the histologically normal adjacent tissues. This highlights the potential need
for future studies to evaluate the microbiome of healthy tissues (with no history of oral
dysplasia or OSCC) as a control group, in addition to histologically normal adjacent tissues.

3.3. High-Grade Dysplasia and OSCC Alpha Diversities Are Significantly Different from Those in
Histologically Normal Adjacent Specimens

Alpha diversity summarizes the structure of an ecological community in the context
of its richness (i.e., the number of observed species) and/or evenness (i.e., the distribution
of abundances of the species) [53]. As an initial step, we rarefied the observed species, and
the results can be seen in Figure 3.
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The results showed that all rarefaction curves converged into a horizontal asymptote,
indicating that further observations (i.e., more sequence reads) would have little or no effect
on the observed species metrics subsequently analyzed. Thus, we proceeded to evaluate
alpha diversity. The results for the observed species and the Shannon and Chao1 Indices
can be seen in Figure 4.

Regarding the observed species in the oral swab samples (Figure 4A), the results showed
significant differences between low-grade dysplasia and healthy (no dysplasia) (p = 0.012), as
well as compared to clinically normal adjacent to dysplasia samples (p = 0.011). Significant
differences between histologically normal (no dysplasia) and histologically normal adjacent
to dysplasia was also found (p = 0.029). In the matched FFPE tissues samples (Figure 4B), a
downward trend was seen in the mean observed species from the clinically normal adjacent
to tumor to low-grade dysplasia and high-grade dysplasia/OSCC samples, although no
statistically significant difference was found. Within the unmatched FFPE tissues (Figure 4C),
high-grade dysplasia (p < 0.0001) and low-grade dysplasia (p = 0.001) were both significantly
different from the histologically normal adjacent specimens.

An analysis using the classic alpha diversity index—the Shannon Index (Figure 4D–F)—
showed that diversity in oral swabs (Figure 4D) was significantly increased in histologically
normal adjacent to dysplasia samples, compared to both healthy (no dysplasia) (p = 0.07)
and matched low-grade dysplasia (p = 0.012) specimens. The data also showed a significant
difference in low-grade dysplasia compared to histologically normal adjacent to tumor for
both matched (Figure 4E—p = 0.011) and unmatched tissue samples (Figure 4F—p = 0.020),
although in opposing directions. Moreover, the unmatched tissue samples (Figure 4F) also
indicated a significant decrease in diversity for high-grade dysplasia (p = 0.001) compared
to histologically normal adjacent to tumor specimens. No significant differences were found
between low-grade and high-grade dysplasia for both matches (Figure 4E) and unmatched
(Figure 4F) tissue samples.

Finally, the non-parametric Chao1 index (Figure 4G) for the oral swab specimens indi-
cated a significant difference (p = 0.027) between histologically normal adjacent to dysplasia
and healthy (no dysplasia) specimens, while no significant differences were found between
low-grade dysplasia and histologically normal adjacent to dysplasia. In the matched tissues
(Figure 4H), there was a significant decrease in the high-grade dysplasia/OSCC (p = 0.002)
compared to histologically normal adjacent to tumor samples, while no significant differ-
ences were found between low- and high-grade dysplasia. Corroborating the data of the
other two indexes, the Chao1 data for the unmatched specimens (Figure 4I) also indicated
a significant decrease for low- and high-grade dysplasia specimens (p = 0.004 and p < 0.001,
respectively) compared to the histologically normal adjacent to tumor specimens. Addition-
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ally, our results showed that the observed species in the histologically normal adjacent oral
swab samples were not significantly different from those found in the histologically normal
adjacent matched (p = 0.8959) and unmatched (p = 0.8827) tissue samples (Supplemental
Materials, Figure S1), validating what other studies have found thus far [66]. Moreover,
Villa, and Gohel [67] have shown that out of more than 3100 patients screened, only 27
(0.9%) of them presented with OPMDs and only 3 (0.09%) specifically exhibits dysplasia.
Thus, sampling the oral microbiome via oral swabs may be an useful method for capturing
microbiome data comparable to tissue sampling, especially in hard-to-obtain samples, such
as OPMDs and oral dysplasia tissues.
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3.4. Significant Increases in Proteobacteria and Decreases in Firmicutes as well as Expansion of
Fusobacteria Are Noted When Moving from the Clinically/Histologically Normal Oral Mucosa to
Dysplasia and to Cancer

Next, we analyzed the relative abundance of the top 10 taxa in the oral swab and FFPE
tissue samples at the phylum and class levels (Figure 5).
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Figure 5. A significant increase in Proteobacteria and a decrease in Firmicutes phyla as well as
expansion of Fusobacteria characterized the changes from health to disease (dysplasia and OSCC).
Phylum relative abundance for oral swab samples (A), matched tissue (B), and unmatched tissue
samples (C). * means p ≤ 0.05 between the marked sample and histologically normal adjacent
dysplasia; **** means p ≤ 0.0001 between the marked sample and histologically normal adjacent to
tumor; and * means p ≤ 0.05 between the marked sample and healthy (no dysplasia).

The results for the phyla analysis for the oral swab samples (Figure 5A) revealed a
significant increase in the Proteobacteria phyla (p = 0.025; p = 0.047) and a decrease in the
Firmicutes phyla (p = 0.047; p = 0.028) in both the low-grade dysplasia and histologically
normal adjacent to dysplasia samples, respectively, compared to healthy (no dysplasia)
samples. A similar trend was observed in the high-grade dysplasia in the unmatched tissues
(Figure 5C)—a significant increase in Proteobacteria (p < 0.0001) and significant decrease in
Firmicutes (p = 0.0184) phyla compared to histologically normal adjacent samples. In the
oral swab samples, we further found a non-significant tendency of increased Bacteroidetes
from healthy normal to histologically normal adjacent, followed by significant decrease
in the low-grade dysplasia samples compared to matched histologically normal adjacent
specimens (p = 0.032) (Figure 5A). However, in the unmatched tissue samples, the low-
grade dysplasia specimens (Figure 5C) showed a significant increase in Bacteriodetes phyla
(p = 0.041) and a non-significant tendency to decrease on high grade dysplasia. Additionally,
a significant decrease in the Firmicutes phyla (p = 0.0119) compared to histologically normal
adjacent to tumor specimens were also detected. No significant differences were found
among the matched FFPE tissue samples (Figure 5B).

Next, we evaluated the class analysis for the swab samples and tissue samples (Figure 6).
For oral swab samples (Figure 6A), the relative abundance data revealed a significant

increase in the Bacilli class (p = 0.0010) and a significant decrease in the Bacteroidia class
(p = 0.0284) in the low-grade dysplasia compared to their matched histologically normal
adjacent to dysplasia samples. The oral swab samples also indicated a significant increase
in the Gammaproteobacteria class (p = 0.0213) and a significant decrease in the Bacilli
class (p = 0.0134) in the histologically normal adjacent samples compared to their relative
abundance in the healthy (no dysplasia) samples.
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Figure 6. Significant increases in Gammaproteobacteria and decreases in Bacilli classes characterized
the changes when moving from histologically normal oral mucosa to dysplasia to OSCC. Class
relative abundance for oral swab samples (A), matched tissue samples (B) and unmatched tissue
samples (C). * means p≤ 0.05; *** means p≤ 0.001; **** means p≤ 0.0001 between the marked sample
and histologically normal adjacent; and * means p ≤ 0.05 between the marked sample and healthy
(no dysplasia).

For the unmatched tissue samples (Figure 6C), the data indicated a significant increase
in the Gammaproteobacteria (p < 0.0001) and a significant decrease in the Bacilli (p = 0.0335)
classes in the high-grade dysplasia/OSCC, compared to histologically normal adjacent
to tumor. Contrary to the swab samples, a significant expansion of the Bacteroidia class
was seen in the low-grade dysplasia, compared to histologically normal adjacent to tumor
specimens (Figure 6C). No significant differences were found among the matched tissue
samples (Figure 6B), although there was a tendency toward increased levels of Fusobac-
teriia classes and decreased levels of Bacilli in the high-grade dysplasia compared to the
low-grade dysplasia. There was also a tendency toward decreased levels in Bacteroidia,
unidentified Cyanobacteria and Fusobacteriia classes, and increased levels of Bacilli and
unidentified Actinobacteria classes in the low-grade dysplasia compared to histologically
normal adjacent to tumor.

In family OTU analysis (Figure S2) for the oral swab samples, we found the Pasteurel-
laceae (p = 0.024) family to be significantly increased in the low-grade dysplasia compared
to the healthy (no dysplasia) specimens. On the other hand, in the unmatched tissue
samples, we found the Burkoholdericeae (p = 0.0013) family significantly increased in the
high-grade dysplasia specimens compared to histologically normal adjacent to tumor spec-
imens (Figure S2C). Notably, the most dominant family in the unmatched tissue samples
(i.e., Burkholderiaceae family) was missing in the oral swab samples (Figure S2).

In the genus OTU analysis (Figure S3), we found the Streptococci genus (p = 0.0065)
to be significantly reduced in the histologically normal adjacent to dysplasia specimens
compared to healthy (no dysplasia) oral swab samples (Figure S3A). Combined with the
phyla level data, these results reiterate the possibility that the histologically normal adjacent
samples may exhibit a shift in their microbiome composition compared to healthy tissues.

In species OTU analysis (Figure 7), we found five bacterial species with significantly
different abundances in different sites. For swab samples, Neisseria baciliformis was found
to be significantly elevated in histologically normal adjacent to dysplasia compared to both
healthy (no dysplasia) (p = 0.318) and low-grade dysplasia (p = 0.0265). For the matched
tissue samples, Enterococcus cecorum was found to be significantly lower in low grade
dysplasia (p = 0.0092) and high-grade dysplasia/OSCC (p = 0.0371). For the unmatched
tissues, Fusobacterium periodonticum and Prevotella melaninogenica was significantly lower
in both low-grade (p = 0.0007 and p = 0.0118) and high-grade dysplasia (p = 0.0002 and
p = 0.0025) compared to histologically normal adjacent to tumor sites, while Fusobacterium
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canifelinum was found to be significantly higher compared to both histologically normal
adjacent to tumor (p < 0.0001) and low-grade dysplasia (p < 0.0001).
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Figure 7. Neisseria baciliformis (A), Enterococcus cecorum (B), Fusobacterium periodonticum (C), Prevotella
melaninogenica (D), and Fusobacterium canifelinum (E) are significantly different when moving from
histologically normal to low- and high-grade dysplasia. * means p ≤ 0.05; ** means p ≤ 0.01; *** means
p ≤ 0.001; and **** means p ≤ 0.0001 between the marked samples.

Finally, we evaluated the effects of four bacterial species on the gene expression of
an OSCC cell line (HSC-3). Two of these species (i.e., Fusobacterium nucleatum and Porphy-
romonas gingivalis) were identified as significantly increased in dysplasia and OSCC in the
focused literature review (Section 4): one species which has been recently specifically impli-
cated with development and progression of OSCC (i.e., Treponema denticola) and one species
(i.e., Streptococcus sanguinis) representing Streptococcus genus, which has been identified
as significantly decreased in dysplasia and OSCC (by both current results and literature
reviews) [12,17,57,68]. The results (Figure 8) show that the three periopathogens (i.e., P.
gingivalis, T. denticola, and F. nucleatum) significantly changed the gene expression profile
compared to the control and S. sanguinis (Figure 8A). Next, we performed a gene ontology
enrichment profile on the data (Figure 8B–E). The three periopathogens significantly en-
riched processes related to cancer progression, such as positive regulation of cell migration
and cell motility, angiogenesis, regulation of vasculature development, regulation of leuko-
cyte migration, and cytokine activity processes compared to the control. Additionally, these
pathogens also enriched processes related to the cell keratinization and differentiation, such
as skin and epidermis development, epidermal and keratinocyte differentiation, as well as
cornification and cornified envelope processes. On the other hand, S. sanguinis significantly
enriched processes related to the ribosome, such as ribosome biogenesis, non-coding RNA
(ncRNA), and rRNA metabolic processing, as well as significantly enriched focal adhesion
and cell–substrate junction processes compared to the control.
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Figure 8. P. gingivalis, T. denticola, and F. nucleatum significantly shifts the gene expression profile of
the host cell (HSC-3 cell line) compared to S. sanguinis and the control. (A) Gene expression profile
heatmaps of HSC-3 cells exposed to P. gingivalis, T. denticola, F. nucleatum, and S. sanguinis; Gene
ontology enrichment analysis for (B) P. gingivalis, (C) T. denticola, (D) F. nucleatum, and (E) S. sanguinis.
* means processes significantly different (p < 0.05) compared to control.

4. Discussion

Oral dysplasia is defined as a lesion in which part of the lining mucosa shows varying
degrees of cellular atypia, maturation, and differentiation disturbances [4,69]. Tobacco
(either smoking and smokeless), betel quid nut, and alcohol use are known risk factors for
oral dysplasia [4], and therefore, preventive measures should include avoiding tobacco and
betel quid nut use and limiting alcohol intake.

To date, very few studies have specifically examined the microbiome signature in
dysplasia tissues (Table 3). The earliest study we found (Krogh et al. [70] from 1987)
analyzed Candida species infecting OPMD biopsies with and without dysplasia using basic
yeast culture. Out of 12 OPMD samples, only 5 (41.6%) were diagnosed with any degree
of dysplasia. Out of those five cases, the authors found five different strains of Candida
albicans, one strain of Candida parapsilosis. Interestingly, Candida strains found in dysplasia-
positive samples had lower nitrosation rate compared to the ones on dysplasia-negative
samples, although no statistical analysis was performed. This, however, may indicate that
other species, such as Phorphyromonas gingivalis, may be responsible for the production of
N-nitroso compounds, which have been associated with increased risk of OSCC [71].
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Table 3. Studies evaluating the oral microbiome signature in oral dysplasia tissues.

Author/Year Specimen Type Method Sample Size Group Comparison Microbiome Other Remarks

Shen et al. (2023) [26] - Systematic Review and
Metanalysis 802 -

Dysplasia—increase in phylum
Bacteroidetes

Dysplasia and OSCC—increase
in Fusobacterium and decrease

of Streptococcus

Analyzed studies presented a
high risk of bias due to

non-negligible heterogeneity
in the type and size of the

sample and inconsistent oral
microbiome composition,

strongly limiting the analysis.
However, only 6 out of

11 analyzed studies
histopathologically diagnosed

their OPMDs as dysplasia,
which could account for the

discrepancies found.

Wright et al.
(2023) [72] Oral Swabs 16S Sequencing 90

Progressing vs.
non-progressing

dysplasia

Increase in Campylobacter in
progressing dysplasia compared

to non-progressing ones

No significant differences
between progressing vs.

non-progressing dysplasia

Herreros-Pomares
et al. (2021) [73] Tissue 16S Sequencing 10 Healthy vs. Leukoplakia

+ Dysplasia

Leukoplakia +
dysplasia—increase in

Oribacterium sp. oral taxon 108,
Campylobacter jejuni, uncultured
Eubacterium sp., Tannerella, and

Porphyromonas

Authors have not controlled
for dysplasia and mixed no

dysplasia samples with mild,
moderate, and severe

dysplasia samples.

Sami et al. (2020) [74] - Reveiw - -

Fusobacterium nucleatum and
Candida species has been

associated with high-grade
dysplasia and its severity

-

Gopinath et al.
(2020) [41] Whole Mouth Fluid 16S Sequencing 74 Healthy vs. Leukoplakia

+ Dysplasia vs. OSCC

Leukoplakia +
dysplasia—increase in

Bacteroidetes and decrease in
Firmicutes

Leuloplakia + dysplasia and
OSCC—increase in

Actinobacteria

Shift in bacterial communities
of leukoplakia + dysplasia and

oral cancer patients; no
significant difference in
richness and diversity
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Table 3. Cont.

Author/Year Specimen Type Method Sample Size Group Comparison Microbiome Other Remarks

Al-Hebshi et al.
(2019) [42] - Review - -

Significantly increased
frequency and yeast colony

counts (predominantly Candida)
in dysplasia and OSCC;

significant yeast colony increase
correlated with

dysplasia severity

Some of the studies did not
have healthy controls, rather

compared to other OPMD

Ganly et al.
(2019) [27] Saliva 16S Sequencing 38 Healthy vs. Leukoplakia

+ Dysplasia vs. OSCC

Leukoplakia +
dysplasia—increase in

Fusobacterium and Veillonella
OSCC—increase in

Fusobacterium, Prevotella,
Alloprevotella; decrease in

Streptococcus

Significantly increase in
HSP90 gene and ligands for
TLRs 1, 2, and 4 along the

healthy→
leukoplakia/dysplasia→

OSCC progression

Lee et al. (2017) [75] Saliva 16S sequencing 376 Healthy vs. Dysplasia vs.
OSCC

Significantly different levels of
Bacillus, Enterococcus,

Parvimonas, Peptostreptococcus,
and Slackia in dysplasia

compared to cancer

-

Mok et al. (2017) [76] Oral Swabs 16S Sequencing 27 Healthy vs. Dysplasia vs.
OSCC

Dysplasia—increase in Neisseria
and Granulicatella; decrease

in Streptococcus

Analysis of Molecular
Variance (AMOVA) showed

no significant difference
between dysplasia and

other groups

Amer et al.
(2017) [39] Oral Swabs 16S Sequencing 6 Healthy vs. Leukoplakia

+ Dysplasia

Severe dysplasia was associated
with elevated levels of
Leptotrichia spp. and

Campylobacter concisus

-

Hebbar et al.
(2013) [77] Tissue and Oral Rinse Periodic Acid–Schiff

Staining 50 Healthy vs. Dysplasia vs.
OSCC

Significant increase in yeast
infection and colony number
with higher dysplasia grades

and OSCC

-
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Table 3. Cont.

Author/Year Specimen Type Method Sample Size Group Comparison Microbiome Other Remarks

Spolidorio et al.
(2003) [78] Tissue Periodic Acid–Schiff

Staining 832 Healthy vs. Dysplasia

27.2% of dysplasia samples were
PAS-positive; significant

association of yeast infection
and dysplasia

Tongue was the significant
most affected site by

yeast infection

McCullough et al.
(2002) [79] Tissue and Oral Rinse 223 Healthy vs. Dysplasia vs.

OSCC

Dysplasia and
OSCC—significantly higher

frequency of oral yeast carriage
and higher number of yeast
(>1000 cfu/mL) than control.

Correlation between dysplasia
degree and yeast amount in

oral cavity

Barrett et al.
(1998) [80] Tissue Periodic Acid–Schiff

Staining 4724 Healthy vs. Dysplasia

4.7% of the biopsies contained
PAS-positive fungi; significant
positive association of fungal
infection with moderate and

severe dysplasia

Significantly higher number of
males infected compared to

females; 21.9% of
fungi-infected dysplasia
worsened in histological

severity, compared to 7.6% of
non-infected dysplasia

Rindum et al.
(1994) [81] Tissue

Periodic Acid–Schiff
Staining and

Smear Culture
153

Healthy vs. Leuko-
plakia/erythroleukoplakia

+ Dysplasia

4 Candida albicans strains were
found in moderate and severe

dysplasia, but none on
mild dysplasia

-

Krogh et al.
(1987) [70] Swab over biopsy Yeast culture 12

Healthy vs. leuko-
plakia/erythroleukoplakia

+Dysplasia

4 different strains of Candida
albicans, one strain of Candida

parapsilosis found in
dysplasia samples

Samples positive for dysplasia
showed yeast strains with
lower nitrosation potential
compared to the ones on

samples negative for dysplasia
(no statistical analysis)
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In a recent study (2023), Shen et al. [26] systematically reviewed the literature on the
oral microbiome in dysplasia tissues and found that the analyzed studies presented a high
risk of bias due to non-negligible heterogeneity in the type and size of the sample and
inconsistent oral microbiome composition, strongly limiting the analysis. However, out
of the 11 selected studies, only 6 of those histopathologically diagnosed dysplasia in the
tissues, 1 of which (Herreros-Pomares et al. [73]) did not control for dysplasia and mixed
the non-dysplasia samples with mild, moderate, and severe dysplasia samples. These
discrepancies, nevertheless, may have accounted for the non-negligible inconsistencies and
heterogeneity found in the analysis.

Overall, those studies consistently found a significant decrease in commensal bacteria,
such as the Streptococci genus, and a simultaneous increase in pathogenic bacteria, mainly
Bacteroidetes phyla, and the Phorphyromonas and Fusobacterium genera. Additionally, the
literature also points out that this signature seems to follow a healthy→ dysplasia→ OSCC
progression [27], where less of the commensal and more of the pathogenic bacteria are found
in OSCC, compared to leukoplakia/dysplasia, highlighting that oral microbiome shifts in
dysplasia may be related to disease progression. Interestingly, a lack of significant changes in
malignant-progressing dysplasia microbiome compared to non-malignant progressing ones
have been reported [72], suggesting that the initial microbiome that precedes the development
of dysplasia may be more important in determining the fate of the tissue than that present
once the dysplasia has been established. Another hypothesis is that the difference may
actually stem from dysregulated molecular pathways in the dysplasia tissues triggered by
the microbiome. Ganly et al. [27] reported significant increases in the HSP90 gene and TLRs
1, 2, and 4 ligands along the progression from health to OSCC. Conway et al. [82] reported
167 differently expressed genes in dysplasia compared to healthy tissues, with a significant
increase in immune response, leukocyte, and lymphocyte activation genes. Interestingly, these
immune response genes were not significantly different when compared to OSCC. Similarly,
Abdalla et al. [83] demonstrated a significant loss of plasma membrane expression of both
E-cadherin and EMP-1 in patient biopsies from oral dysplasia, which were similar to that
seen in the T1 and T4 stages of OSCC. Taken together, these molecular changes in dysplasia
suggest that both immune response and adhesion/epithelial pathways may underlie early
carcinogenesis development in dysplasia. Therefore, more retrospective studies comparing the
microbiome of malignant-progressing vs. non-malignant-progressing dysplasia tissues, more
retrospective studies testing the microbiome in the transition state from health to dysplasia,
and further molecular studies on these tissues are needed.

In this context, the objective of this study was to evaluate the changes in the oral
microbiome signatures in the changes from health to dysplasia and to cancer. The transition
of the oral mucosa to dysplasia is particularly important as it may represent the earliest
stages in the disease process, and therefore, data from this transition step may be useful in
defining early microbial mediators or regulators of subsequent cancer development.

We showed that specific microbial and community composition shifts were present
when moving from histologically normal mucosa to dysplasia and to OSCC, indicating
robust and distinct signals during these shifts toward disease. Specifically, we found
significant differences in the alpha and beta diversities among healthy mucosa, histolog-
ically normal adjacent mucosa, low-grade dysplasia, and high-grade dysplasia/OSCC.
Additionally, we found that Proteobacteria and Fusobacteria phyla abundance increased,
concurrent with a decrease in the Firmicutes phyla abundance in the unmatched FFPE tis-
sue changes/transitions, but not in the matched samples. We also found significant altered
levels of Enterococcus cecorum, Fusobacterium periodonticum, and Prevotella melaninogenica
and when moving from histologic normal to low- and high-grade dysplasia. Fusobacterium
canifelinum levels were significantly higher in high grade dysplasia compared to both
histologically normal adjacent and low-grade dysplasia.

Our data contribute to the current literature by highlighting that there are robust
microbiome community changes present when moving from health to disease states and
by demonstrating that there are also oral microbiome changes present in oral dysplasia
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(from both FFPE tissues and oral swab samples) relative to healthy or histologically normal
adjacent mucosa. Moreover, our data further establish that sites with histological normal
mucosa in patients with dysplasia or OSCC show microbial alterations compared to those
of healthy sites with no history of oral dysplasia and OSCC. In fact, Babji et al. [84] has
demonstrated significant histomorphometric changes in basal cells of histologically normal
oral mucosa extracted from >1 cm away from OSCC compared to healthy oral mucosa
of patients with no history of OSCC undergoing tooth extraction. Remarkably, we found
significantly higher levels of Neisseria baciliformis, an opportunistic pathogen [85], in histo-
logical normal adjacent to dysplasia samples compared to patients with no history of oral
dysplasia. This species can be used as a potential biomarker of future dysplastic transfor-
mation in healthy patients with no history of dysplasia or OSCC. Given these findings, we
recommend the inclusion of sampling from healthy sites (with no history of oral dysplasia
and OSCC) in future studies that examine the contributions of the microbiome to disease.

The possibility of pathogenic bacterial growth in cancers has been attributed to unique
pathophysiologic features present in many cancers, which may benefit the growth of these
particular bacteria, such as impaired and abnormal vascular architecture, an enhanced
permeability and retention effect, low oxygen pressure/hypoxia, and extensive necro-
sis [12,86,87]. Specifically for OSCC, increased salivary bacterial counts of Lactobacillus
species, Capnocytophaga gingivalis, Prevotella melaninogenica, and Streptococcus mitis and loss
of Haemophilus, Neisseria, Gemella, and Aggregatibacter genera have been reported in oral can-
cer patients compared with matched histologically normal adjacent controls [30,36,87,88].
Our group previously identified a high Fusobacterial and low Streptococcal phenotype as part
of the transition from health to primary and metastatic oral and head and neck cancer [16].
Additionally, a recent metadata analysis on oral epithelial dysplasia indicates increases in
the Bacteroidetes phylum in dysplasia patients and increases in the Fusobacterium genus
in both dysplasia and OSCC patients [26]. Thus, this study complements previous findings
by showing that increases in Proteobacteria and Fusobacteria and decreases in Firmicutes
are associated with the changes from health to oral dysplasia and to carcinogenesis. We
also found progressive increases in Burkholderiaceae and Pasteurellaceae family abundance
through the changes from histologically normal adjacent to tumor to low- and high-grade
dysplasia. Further, we found significant lower levels of Enterococcus cecorum, Fusobacterium
periodonticum, and Prevotella melaninogenica when moving from histologically normal to
low- and high-grade dysplasia. On the other hand, Fusobacterium canifelinum levels were
significantly higher in high grade dysplasia compared to both histologically normal adja-
cent and low-grade dysplasia. The loss of the former three species and gain in Fusobacterium
canifelinum abundance can be used as potential biomarkers for oral dysplasia and OSCC. In
accordance with Amer et al. [39], our study also found a decrease in species abundance
from health to dysplasia and to cancer, with a lower level of similarity between species.

Next, we compared oral microbiome sampling methods, namely oral swabs and tissue
biopsies processed for FFPE. Similar amounts of sequences and OTUs were obtained using
both methods. Additionally, similar phyla and alpha and beta diversity trends were found
with the two methods, demonstrating the feasibility of using both methods for sampling
the oral microbiome for analysis. However, we observed some differences among the
species recovered using these two methods, including the absence of the Burkholderiaceae
family in the oral swab samples and different Bacteroidetes trends between the oral swabs
and the unmatched tissue samples. This suggests that either (1) these microbes may be
present in deeper tissues in the dysplasia specimens and the superficial swab sampling may
not recover them and/or (2) that these differences may be due to comparing histologically
normal tissues next to distinct lesions (i.e., comparing histologically normal adjacent
to dysplasia for the swab samples and histologically normal adjacent to OSCC for tissue
samples). If this is the case, then these differences might reveal possible progression changes
between dysplasia and OSCC and serve as novel biomarkers for disease progression, which
would be of significant clinical value from an early diagnosis perspective. In any case, it
may be necessary to extract tissue samples and to compare histological normal adjacent
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to dysplasia against histological normal adjacent to OSCC samples to truly confirm their
presence and trends. Therefore, these data indicate that oral swab sampling may be useful
as an initial probe of the microbiome composition, but to determine the complete microbial
signature present, tissue collection would be needed for confirmation.

Lastly, we evaluated the gene expression profile of oral cancer host cells after exposure
to three species that are typically enriched in the diseased states (namely, P. gingivalis, T.
denticola, and F. nucleatum) and one species that is decreased (Streptococcus sanguinis). Not
only did the enriched species significantly upregulate gene processes related to cancer
progression but also, they upregulated gene expression for epidermal and kerotinecyte
differentiation and cornification/keratinization processes in the host cells. This finding
is noteworthy as the majority of the oral cavity mucosa is non-keratinized (i.e., the lining
mucosa) [89] and most dysplastic lesions of the upper aerodigestive tract are keratinized [6].
Additionally, lateral tongue and floor of the mouth dysplastic lesions (non-keratinized
mucosa) have higher risk of malignant transformation [90], thus further implicating P.
gingivalis, T. denticola, and F. nucleatum in the development of keratinized dysplasia and
progression to tumor, especially in non-keratinized mucosa.

Taken in aggregate (both literature reviews and the results presented here), we propose
a theoretical description of the oral microbiome signature from health to dysplasia to OSCC
(Figure 9).
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Figure 9. Proposed oral microbiome signature from oral health to dysplasia to OSCC.

In this theoretical signature the relative abundance of commensals, including strep-
tococci and bacilli strains decreases, while there is an increase in pathogens, including
Fusobacteria, Porphyromonas, Candida, and Gammaproteobacteria species in sites designated
as healthy, dysplasia, or OSCC. This model also highlights the significant alterations in
diversity found in our and previous reports, namely, the significant increased levels of
Bacteroidia strains in low-grade dysplasia, which revert to lower levels in high-grade
dysplasia and OSCC, and the disturbance in the histologically normal adjacent to dysplasia
specimens, although they revealed a slight increase in diversity compared to healthy (no
dysplasia) specimens.

Several clinical implications can be drawn when taking both current findings and
literature reviews into consideration. These include the following: (1) the loss of com-
mensals and expansion of pathogenic bacteria as one moves from oral health to dysplasia
to OSCC is a common finding in the literature and clinical samples may reveal this pat-
tern; (2) this pattern supports the use of potential microbial biomarkers, such as altered
levels of Neisseria baciliformis, Enterococcus cecorum, Fusobacterium periodonticum, Prevotella
melaninogenica, and Fusobacterium canifelinum, as a screening tool for states of health and
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disease in clinical settings; (3) in clinical settings, microbial screening with sterile cotton
swabs may be potentially used instead of using biopsies; (4) potential approaches focusing
on reducing pathogenic load and promoting commensal bacteria and their expansion,
including preventive oral hygiene, regular periodontal maintenance visits and addressing
oral biofilm related diseases may be useful to prevent and/or treat the progression from
oral health to dysplasia and to OSCC; and (5) the signaling molecules/processes further
enriched by pathogenic bacteria, especially the keratinization of the lining mucosa, may be
useful as potential dysplasia biomarkers, therapeutic targets, and prognostic markers.

One limitation of this study was the small sample size, which could result in het-
erogeneity in the study. Given that only 0.1% of screened patients are diagnosed with
OPMDs [67], oral dysplasia tissues are very limited and difficult to obtain. In this context,
collaboration with laboratories and institutions that currently have these samples and es-
tablishment of dysplasia sample banks are necessary for future studies with larger samples
sizes. Also, considering the small sample size, further stratification of the samples regarding
patient smoking status was not possible, limiting the analysis for this confounding factor.
However, no significant demographic differences were found (p = 0.5179 for oral swabs and
p = 0.8366 for tissue samples) across groups related to smoking status. Additionally, some
of the dysplasia and histologically normal adjacent tissues (especially the matched samples)
were collected at the margins of OSCC, which may have contributed to the heterogeneity
in the study. While it is known that some OPMD lesions can coexist at the margins of
overt OSCC [91,92], assessing sequential biopsies from the same patient over time as they
progress to OSCC would be the ideal approach. Another limitation of the study was that
DNA was not recovered from two of the histologically normal adjacent specimens and one
of the dysplasia oral swab samples. This, together with the missing bacteria (Burkholde-
riaceae family) in the oral swab samples, suggests that the oral microbiome may be more
deeply embedded within the tissues and a more vigorous swabbing technique (such as
a brush biopsy) may be necessary to collect enough material for analysis. Even though
more than three-quarters of the samples were collected from the tongue (tissue samples) or
mandibular gingiva (oral swab samples), our samples also contain other oral sites, such as
soft palate and floor of the mouth. Different oral sites are known to harbor a distinct oral
microbiome, forming different microbial niches in the oral cavity. For instance, the tongue
has a higher density and greater diversity of microorganisms compared to other mucosal
surfaces [93,94]. In this context, inclusion of different oral sites may have contributed to
microbial heterogeneity in the samples. Also, this study uses two different specimen types
(swab samples and tissue biopsy) and categorizes both histologically normal adjacent to
dysplasia and clinically normal with no history of dysplasia as control samples, which
could also contribute to heterogeneity in the study. To mitigate this, we directly compared
the results, thoroughly discussed the differences found and suggested the inclusion of
clinically normal (with no history of dysplasia) as a control standard for microbial analysis
for future studies. Finally, time [95] and formalin fixation [96] may have affected the genetic
material of the archival samples, decreasing the overall 16S rRNA library content, which
could impact the overall diversity of the samples, compared to fresh samples. Yet, we were
still able to generate more than 145,000 reads per sample on these FFPE archival samples,
and >100,000 reads per samples is commonly recognized as sufficient for metagenomic
surveys [97]. This study adds to the very limited data available in the literature on the
microbiome composition of oral dysplasia and sets a precedent that future oral microbiome
studies should address—whether the microbiome changes trigger gene expression changes
in the host cells and tissue and vice versa.

The next steps would be to further explore metagenomics and/or meta-transcriptomics
of dysplasia samples. We hope that these pilot results become the baseline for future
studies, upon which larger studies demonstrating the potential causal relationships and
mechanisms can be based on.
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5. Conclusions

Our data demonstrate significant differences in the microbiome alpha and beta diversi-
ties in healthy, dysplasia, and OSCC sites, as well as increased dissimilarities among them.
Moreover, we found that the Proteobacteria and Fusobacteria phyla abundance increased,
concurrent with a progressive decrease in the Firmicutes phyla abundance as well as altered
levels of Enterococcus cecorum, Fusobacterium periodonticum, Prevotella melaninogenica, and
Fusobacterium canifelinum when moving from health to dysplasia and OSCC. Additionally,
these data highlight that P. gingivalis, T. denticola, and F. nucelatum enrich genetic processes
related to skin keratinization/cornification and cancer progression, whereas S. sanguinis
enrich processes related to RNA processing and adhesion. These findings could represent
novel biomarkers for dysplasia and OSCC disease progression.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/microorganisms11092250/s1, Figure S1: observed species in the histologi-
cally normal adjacent oral swab samples are not significant different than histologically normal adjacent
matched and unmatched tissue samples. Figure S2: Pasteurellaceae and Burkoholdericeae families were
significantly increased in low- and high-grade dysplasia compared to histologically normal samples,
respectively. Figure S3: Streptococci genus is significantly reduced in the histologically normal adjacent to
dysplasia specimens compared to healthy (no dysplasia) oral swab samples.
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