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Abstract: Hippophae rhamnoides L. leaves possess a remarkable amount of polyphenols that could
serve as a natural remedy in various applications. In comparison, numerous techniques, such
as conventional and high-pressure techniques, are available for extracting the bioactive fractions
from sea buckthorn leaves (SBL). However, enzyme-assisted extraction (EAE) of SBL has not been
comprehensively studied. The aim of this study was to optimize critical EAE parameters of SBL
using the cellulolytic enzyme complex, Viscozyme L, to obtain a high-yield extract with a high
concentration of bioactive compounds. In order to determine the optimal conditions for EAE,
the study employed a central composite design and response surface methodology to analyze the
effects of four independent factors (pH, temperature, extraction time, and enzyme concentration)
on two different responses. Our findings indicated that under optimal conditions (3:15 h extraction,
temperature 45 ◦C, pH 4.9, and 1% Viscozyme L v/w of leaves DW), EAE yielded 28.90 g/100 g
DW of the water-soluble fraction. Furthermore, the EAE-optimized liquid extract was continuously
fermented using an ancient fermentation starter, Tibetan kefir grains, which possess lactic acid
bacteria (LAB) and have significant potential for use in biopreservation. Interestingly, the results
indicated various potential prebiotic characteristics of LAB. Additionally, alterations in the cell wall
morphology of the SBL residue after EAE were examined using scanning electron microscopy (SEM).
This study significantly optimized EAE parameters for sea buckthorn leaves, providing a promising
natural source of bioactive compounds for various applications, such as nutraceuticals, functional
foods, and high-value products.

Keywords: sea buckthorn leaves; Hippophae rhamnoides L.; fermentation; enzyme-assisted extraction;
optimization; central composite design

1. Introduction

Sea buckthorn (Hippophae rhamnoides L.) belongs to the family Elaeagnaceae [1]. It is a
hardy shrub that grows in harsh environments, such as high altitudes and sandy soil, and it
is widespread in various locations in Europe and Asia [1–3]. It is an essential plant used for
centuries by many cultures as a traditional medicine and food source [3,4]. Sea buckthorn is
well-known for its fruits, which are rich in bioactive compounds such as vitamins, phenolic
acids, flavonoids, carotenoids, and tocopherols [5].
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Recently, increased focus has been placed on exploring the bioactive compounds, an-
tioxidant benefits, and potential applications of sea buckthorn leaves (SBL) as a by-product
of fruit harvesting and processing [6,7]. It is important to mention that the leaves of the
sea buckthorn plant contain a substantial quantity of bioactive compounds, including
phenolic acids, flavonoids, carotenoids, and vitamin C [7–9]. According to scientific re-
search, these compounds have been found to possess remarkable antioxidant, antiviral,
antitumor, anti-inflammatory, and antimicrobial properties [4,10,11]. SBL is a promising
potential ingredient due to its nutritional and medicinal components, which offer numerous
health benefits to humans. These compounds make SBL a potential ingredient for various
applications [11,12].

There is enormous potential in effectively utilizing food waste and by-products to
obtain functional ingredients [13]. The efficient extraction of these ingredients through
methods such as enzyme-assisted extraction (EAE) presents promising opportunities [14].
Briefly, enzymatic technology utilizes enzymes as catalysts to break down plant cell wall
components by binding the desired substrate to the enzyme’s active site, which increases
accessibility to carbohydrates, proteins, and phenolic compounds and their nutritional
value [15,16]. For instance, EAE has the ability to extract pectin from waste and by-products
by enhancing the permeability of the plant cell wall [13,17,18]. By implementing this tech-
nique, it is possible to increase the yields of extracts within a shorter extraction time and
reduce solvent use while simultaneously enhancing the concentration of bioactive com-
pounds such as various phenolic compounds, including flavonoids and anthocyanidins [19].
This approach also minimizes production costs and time requirements while ensuring that
environmental sustainability is prioritized throughout the process [15].

However, in order to obtain extracts that have increased yields and improved proper-
ties, it is necessary to have a comprehensive understanding of the hydrolytic properties
of the enzymes used and their physicochemical interactions with the raw materials [15].
Therefore, it is essential to optimize critical parameters of the EAE process, such as pH,
temperature, and enzyme concentration, for every plant material and its morphological
part being extracted. Due to different ratios of specific glycoside, sulfur, and other bonds in
plant cell walls, the chosen enzymes significantly impact the release of bioactive substances.

As mentioned, hydrolytic enzymes cleave lignocellulose material, releasing trapped
molecules in the cell wall such as reducing sugars and oligosaccharides of various
lengths [20]. Current articles describe increasing the prebiotic and probiotic potential
of foods and beverages using different plant materials and starter cultures, respectively.
Spontaneous or mixed-culture fermentation is gaining popularity due to its symbiotic and
complex beneficial outcomes that contribute to health [21–24]. The best-known mixed-
culture starters include Medusomyces gisevii pellicle, kefir grains, and birch sap, which imple-
ment bacterial and yeast symbiosis [25]. Although scientific investigations of mixed-culture
starters are limited, the highest LAB content was identified for kefir grains, especially
Tibetan kefir grains (TKG) [26–30].

TKG is a traditional symbiotic culture of bacteria and yeast [31]. It has been used for
centuries to produce kefir [26,32] and is currently introduced in various fermented plant-
based beverages [33]. An investigation of grain-based beverages fermented with Tibetan
kefir grains conducted by Streimikyte et al. in 2022 identified LAB commonly used in yogurt
production for growth and possible prebiotic potential. The results showed that the LAB
content was higher than the Codex Alimentarius recommendation of 107 CFU mL−1, which
describes a dairy yogurt standard. The same paper identified the antimicrobial properties of
plant-based fermented beverages, which had variable pathogenic strains. These variations
suggest a possible differentiation in the metabolomics of fermented products and their
pathways in pursuing biopreservation characteristics [20,34–36].

This study aimed to optimize the bioactive compound content and yield of SBL extract
using EAE with the cellulolytic enzyme mixture, Viscozyme L. Viscozyme L can effectively
disintegrate plant matrices, resulting in a higher extraction yield and increased levels
of phenolic compounds. Additionally, the study aimed to determine the optimal EAE
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conditions using a central composite design (CCD) and response surface methodology
(RSM). The study aimed to obtain a high-concentration and high-yield extract of bioactive
compounds that could be used in various applications, such as nutraceuticals, functional
foods, and high-value products. Additionally, the study investigated alterations in the cell
wall morphology of the residue before and after EAE, as well as the feasibility of fermenting
the optimized extract using Tibetan kefir grains for potential use in biopreservation and its
prebiotic potential, which is described in the graphical overview shown in Figure 1.
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2. Materials and Methods
2.1. Plant Material

Sea buckthorn plants were grown in the experimental fields of the Institute of Horti-
culture, Lithuanian Research Centre of Agriculture and Forestry (55◦08′ N, 23◦80′ E). Fresh
SBL was harvested in 2021. The collected leaves were immediately frozen at −35 ◦C and
then freeze-dried. The samples were freeze-dried using a Zirbus lyophilizer (Zirbus Tech-
nology GmbH, Bad Grund, Germany) at 0.01 mbar pressure and a condenser temperature
of −85 ◦C. The freeze-dried samples were ground to a powder using a Retsch 200 knife
mill (Haan, Germany) and stored in a sealed container until analysis.

2.2. Chemicals, Reagents, and Enzyme Products

Folin–Ciocalteu phenol reagent, gallic acid (3,4,5-trihydroxybenzoic acid, 99%) and
Na2CO3 were purchased from Sigma-Aldrich (Steinheim, Germany).

Viscozyme L is a cellulolytic enzyme complex derived from Aspergillus aculeatus. It
was purchased from Sigma-Aldrich (Steinheim, Germany). Furthermore, the manufacturer
states that the enzyme mixture contains a wide range of arabanase, cellulase, β-glucanase,
hemicellulase, and xylanase. The product is declared to have ≥100 FBGU/g.

2.3. Central Composite Design (CCD) and Response Surface Methodology (RSM)

Central composite design (CCD) and response surface methodology (RSM) were used
to obtain the optimal enzyme-assisted extraction (EAE) conditions for yield and total
phenolic compounds of SBL. For data analysis and the established data, Design-Expert
7.0.0 software (Stat-ease, Inc., Minneapolis, MN, USA) was used to determine the models
and analyze the results. Four independent variables, time (1–4 h), temperature (40–60 ◦C),
pH (4.5–6), and Viscozyme L enzyme concentration (0.5–3%/g dry leaves), were examined
at three points (axial, center, factorial) with different levels (−α, −1, +1, +α), as shown in
Table 1. In addition, the desirability function was implemented to describe and obtain an
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optimized multiple-method response. All variables were chosen within the range, but yield
and total phenolic content (TPC) were selected as maximized goals. The model’s suitability
was assessed by analyzing the determination coefficient, adjusted R-squared value, and
anticipated R-squared value.

Table 1. Five levels of the four variables of the extraction process.

Variable Units Symbol
Coded Levels

−α −1 0 +1 +α

Time h A 1:00 1:45 2:30 3:15 4:00
Temperature ◦C B 40 45 50 55 60
Viscozyme L % C 0.5 1.0 2.0 2.5 3.0

pH - D 4.5 4.9 5.3 5.6 6.0

2.4. Enzyme-Assisted Extraction (EAE)

EAE was carried out as described by Streimikyte et al. [19], with minor adjustments.
SBL samples were extracted using hot water EAE at a 1:20 (w/v) ratio and mixed to obtain
a homogeneous suspension. The suspension pH (3.0–5.0) was adjusted using 6 M HCl and
0.5 M NaOH, and enzyme Viscozyme L (0.5–3% v/w) was added. EAE was carried out
at 40–60 ◦C in an incubator. After extraction, the enzyme was deactivated by heating the
hydrolyzed material at 95 ◦C for 10 min. Then, separation of the suspension into liquid
and solid fractions was accomplished using a filter (200 mesh). Samples were freeze-dried
and stored at room temperature. Afterward, the obtained extracts were re-extracted for
further analysis. All experiments were conducted in triplicate.

2.5. Spontaneous Fermentation Using Tibetan Kefir Grains

Following EAE, the liquid phase was used for further fermentation before freezing, as
previously described by Streimikyte [28]. Specifically, 10% Tibetan Kefir grains was added
to the liquid samples. The fermentation process was carried out in an incubator for four
days (96 h) while maintaining a consistent temperature of 28 ◦C. Upon completion, the
fermented samples were filtered and subsequently frozen at a temperature of −20 ◦C for
further analysis.

2.6. Measurement of pH

The pH was obtained using a model MW102 pH meter with an MA 920 electrode
(Milwaukee, Sat Baciu, Romania).

2.7. Determination of Total Phenolic Content

The total polyphenol content (TPC) in the hydrolyzed extracts after EAE was deter-
mined according to the Folin–Ciocalteu method [37], using gallic acid (GA) as the standard,
as described by Bobinaite et al. [38]. The reagent was prepared by diluting a stock solu-
tion with ultra-pure distilled water (1/10, v/v). Samples (1.0 mL, three replicates) were
introduced into test cuvettes, followed by 5.0 mL Folin–Ciocalteu’s phenol reagent and
4.0 mL Na2CO3 (7.5%). The system was then placed at ambient temperature for 1 h. The
absorbance of all samples was measured at 765 nm using a Cintra 202 spectrophotometer
(GBC Scientific Equipment, Knox, Australia). The total phenolic content was determined
from the calibration curve and expressed in mg gallic acid equivalents in 100 mL extract.

2.8. Scanning Electron Microscopy (SEM)

The ultrastructure and morphological alterations in the SBL residue before and after
EAE were analyzed using scanning electron microscopy (SEM). Freeze-dried SBL samples
before and after EAE were fitted on double-sided adhesive carbon tape (NEM tape; Nisshin,
Tokyo, Japan) mounted on SEM pins, sputter coated with gold/palladium (Polaron, Ger-
many), and visualized using a PhenomTM XL G2 SEM (Thermo Fisher Scientific, Eindhoven,
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The Netherlands). Analyses were performed at an accelerating voltage of 5 kV using a
secondary electron detector (SED).

2.9. Microbial Evaluation of Fermented Samples

To assess the growth of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus
thermophilus in spontaneously fermented samples with TKG, microbial evaluation was
performed using agar diffusion [28]. Wells 6 mm in diameter were punched in the agar
and filled with fermented extracts. The agar plates were incubated at 37 ◦C for 24 h, and
the colonies were counted and expressed in Log (CFU/mL). Viable mesophilic lactic acid
bacterial counts were also determined through serial dilution and plating.

2.10. Statistical Analysis

All analyses were performed in triplicate. MS Excel 2020 (Redmond, WA, USA)
was used to calculate mean values and standard deviations. One-way analysis of variance
(ANOVA) was performed on the response surface results using Design-Expert 7.0.0 software
(Stat-Ease Inc., Minneapolis, MN, USA). ANOVA followed by Turkey’s HSD test was
employed for statistical analysis at a probability level of p < 0.05.

3. Results and Discussion
3.1. Optimization of Enzyme-Assisted Extraction (EAE)

This study sought to assess and improve EAE as a productive method of valuing SBL.
SBL biomass is rich in bioactive compounds but is usually regarded as waste, although
obtained EAE extracts could be interesting in various sectors. The key benefits of EAE are
cost-effectiveness, environmental friendliness, and the ability to release phenolics from
their insoluble bonds as more bioactive components [14,19,39]. Multiple authors have
suggested RSM and CCD to assess and optimize enzymatic hydrolysis factors such as tem-
perature, time, enzyme concentration, and pH [19,40,41]. In this research, the effects of four
independent variables, including time (min.), enzyme concentration (% v/w), temperature
(C), and pH, on EAE extract yield (g/100 g DW) and TPC (mg GAE/100 mL extract) were
determined by applying RSM and CCD. The experimental conditions investigating the
independent variables were chosen based on an earlier publication [19].

The developed models were evaluated for adequacy using analysis of variance
(ANOVA). The results indicated that all of the proposed models were significant (p < 0.0001),
and there was no significant “lack of fit” relative to the pure error (p-value of 0.1045). The
determination coefficient R-squared value of 0.9251 indicated a good fit of the model to the
experimental data. In addition, the predicted R-squared value of 0.7657 was reasonably
consistent with the adjusted R-squared value of 0.8502. This level of precision suggested
that the models could be used to effectively navigate the design space. Additionally, the re-
producibility of the models could be considered reasonable, as evidenced by the coefficient
of variation (CV) value of 1.93%. The results suggested that the developed models were
suitable for further analysis and application. The polynomial regression model equations
provided the empirical relationships between the dependent and independent variables:

Yield = +25.22 + 0.86 × A + 0.30 × B + 0.29 × C − 0.49 × D − 0.54 × A × B − 0.22 × A × C − 0.13 × A × D − 0.019 ×
B × C + 0.049 × B × D + 0.53 × C × D − 0.38× A2 + 0.41 × B2 − 0.14 × C2 − 0.13 × D2

TPC = +254.10 − 2.94 × A − 14.49 × B + 5.09 × C − 17.87 × D − 24.10 × A × B + 5.75 × A × C − 27.41 × A × D −
2.07 × B × C − 24.17 × B × D + 7.28 × A2 − 2.15 × B2 + 1.26 × C2 + 0.91 × D2

where A = time (1–4 h), B = temperature (40–60 ◦C), C = enzyme concentration (0.5–3%
v/w), and D = pH (4.5–6).

The effects of four independent variables on extract yield and total phenolic content
are presented in Table 2.
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Table 2. Comprehensive central composite design matrix for the enzyme-assisted extraction of sea
buckthorn leaves and results on yield and total phenolic content.

Time Temperature Viscozyme L pH Yield TPC

Run min ◦C % g/100 g
DW

mg GAE/100 mL
Extract

1 2:30 50 3.0 5.3 25.80 258.30
2 1:45 55 2.5 5.6 25.75 266.67
3 2:30 50 2.0 5.3 25.86 257.30
4 2:30 50 2.0 5.3 25.72 261.90
5 3:15 45 2.5 5.6 26.17 296.00
6 1:45 45 1.0 4.9 23.86 237.23
7 1:45 45 2.5 4.9 23.19 224.30
8 2:30 50 2.0 4.5 25.66 286.05
9 2:30 50 2.0 6.0 23.71 214.55

10 2:30 50 2.0 5.3 25.27 258.13
11 1:45 55 2.5 5.6 25.29 264.43
12 2:30 40 2.0 5.3 26.23 267.05
13 3:15 45 2.5 5.6 25.61 299.50
14 3:15 55 2.5 4.9 25.79 304.80
15 1:45 55 1.0 5.6 23.87 250.05
16 3:15 45 1.0 5.6 25.05 220.80
17 1:00 50 2.0 5.3 21.87 281.65
18 2:30 60 2.0 5.3 27.43 209.10
19 2:30 50 2.0 5.3 24.41 261.15
20 2:30 50 2.0 5.3 24.84 232.00
21 4:00 50 2.0 5.3 25.42 269.90
22 3:15 55 1.0 4.9 26.58 283.60
23 1:45 45 1.0 4.9 23.82 216.35
24 2:30 50 0.5 5.3 23.49 245.10
25 3:15 55 1.0 4.9 27.03 291.80
26 3:15 45 1.0 5.6 24.89 302.20
27 1:45 45 2.5 4.9 23.90 221.20
28 3:15 55 2.5 4.9 25.30 291.95
29 1:45 55 1.0 5.6 24.20 271.10

In Figure 2, the 3D plots display the impact of the four variables and the interactions
between various tested factors. These plots provide insight into the significance of the four
factors on EAE extract yield and TPC (Figures 2 and 3).

The interaction contour plots revealed a notable impact of all independent variables
on the yield of the water-soluble fraction after EAE of SBL. As expected, there was a
clear and positive relationship between yield and longer extraction time, as well as lower
enzyme concentration and temperature (Figure 2). According to the results, the yield of the
water-soluble fraction varied significantly, ranging from 21.87 to 27.43 g/100 g of leaves
DW (Table 2).

In Figure 3, the 3D response surface plots depict TPC as a function of the different
independent variables. TPC was determined using the Folin-Ciocalteu assay and mea-
sured in mg of GAE/100 mL extract. Additionally, the TPC values ranged from 209.10 to
304.80 mg GAE/100 mL extract (Table 2).

The ANOVA results indicated that the suggested models for yield and TPC were
suitable for predicting the correlation between the extraction process parameters and the
different responses within the chosen experimental domain. EAE was meticulously fine-
tuned using numerical optimization and the desirability function within the selected range
of variables by thoroughly analyzing all responses. Design-Expert software was utilized
to consolidate the various responses and factors into a single desirability function, which
enabled numerical optimization to identify the optimal point that maximized overall de-
sirability while adhering to the specified constraints. The four experimental independent
variables, enzyme concentration, pH, temperature, and time, were set as “in range” for this
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study. In order to achieve optimal enzyme activity and specificity, it is imperative to con-
sider several critical factors, including temperature, pH, and the appropriate concentrations
of enzymes and substrates [42,43]. Based on the specified criteria, applying the desirability
function enabled the simultaneous optimization of all responses. The recommended opti-
mal extraction conditions were a temperature of 45 ◦C, pH of 4.9, extraction time of 3:15 h,
with an enzyme concentration of 1% v/w of leaves. Under these conditions, the overall
desirability was 0.978, with the highest water-soluble fraction yield (27.19 mg/100 g DW)
and total phenolic content (309.54 mg GAE/100 mL extract).
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3.2. Scanning Electron Microscopy Analysis of Plant Material before and after EAE

Scanning electron microscopy was employed to assess the impact of EAE on cell wall
degradation. As depicted in Figure 4, the microstructure of the plant material exhibited
distinguishable disparities following treatment with Viscozyme L. The control sample
(Figure 4a,b) portrayed a smooth surface without any ruptures or significant disruption to
the microstructure. After applying Viscozyme L, a significant amount of tissue fragments
was observed (Figure 4c,d), which were covered with numerous small particles. Regarding
the cell surface, partial exfoliation and altered morphology were detected. Following
fermentation, the surface displayed a rough, uneven texture and was prone to destruction.
Figure 4d shows the opening and formation of single particles, supporting the occurrence
of fermentation and the associated morphological alterations.
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Figure 3. Response surface 3D plots for total phenolic content (mg GAE/100 mL extract) showing
the effects of the four independent variables (temperature, time, enzyme concentration, and pH).

The complexity of plant cell walls plays a critical role in providing structural support
and protection against the release of intracellular components [44]. Bioactive compounds
can exist in both bound and free forms, and enzymatic breakdown of the cell wall can signif-
icantly increase the yield of these compounds and enhance the antioxidant capacity [45–47],
as evidenced by morphological changes (Figure 4). Previous studies of by-products have
demonstrated noticeable morphological alterations in cell walls following the enzymatic
hydrolysis process [48,49].

3.3. Microbial Count of Sea Buckthorn Leaves Extract Fermented with Tibetan Kefir Grains

Improving the nutritional value and sensory properties of fermented products is
crucial, and this can be achieved by producing metabolites such as organic acids (espe-
cially lactic acid). Additionally, microorganisms (particularly LAB) play a vital role in
extending the shelf-lives of products by reducing the pH value through their metabolic
activity [50,51]. The quality of a product is greatly influenced by the viability of microorgan-
isms, which significantly impacts gut colonization and microbiota development [52]. The
widely recognized yogurt starters, Streptococcus thermophilus and Lactobacillus delbrueckii
subsp. bulgaricus, are used in the fermentation of plant-based products [28,53,54]. In differ-
ent studies, these strains have been found to alleviate the symptoms associated with lactose
intolerance [55], which is related to the provision of β-galactosidase (lactase), a digestive
enzyme that aids in breaking down lactose [56,57]. This property confers strain-dependent
probiotic potential. These microbial strains represent a fraction of the LAB content.
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Following EAE, the hydrophilic extracts were gathered and prepared for further
fermentation with TKG. Accordingly, the fermentation was studied over time for five
days (0, 24, 48, 72, 98 h), during which time samples were filtered, the pH was measured
(Table 3), and the viable cell numbers of mesophilic lactic acid bacteria (Streptococcus
thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) were counted (Figure 5). During
the fermentation kinetics, the pH values decreased at 24 and 48 h with pH values of
4.68 ± 0.021 and 4.71 ± 0.041, respectively, and then remained stable (Table 3). The pH
level decreased because microorganisms produced organic acids that lowered the pH to
less than 4.0 [58,59]. The pH values were also in agreement with the viable cell numbers of
mesophilic lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii subsp.
bulgaricus) during fermentation (Figure 5).

Table 3. The pH results during EAE extract fermentation with TKG.

Time, h

0 24 48 72 98
pH 4.95 ± 0.020 c 4.68 ± 0.021 a 4.71 ± 0.041 a 4.81 ± 0.013 b 4.82 ± 0.042 b

Values represent mean ± standard deviation (n = 3). Different letters in the same column indicate significant
differences (one-way ANOVA and Tukey’s HSD test, p < 0.05).

The viability of mesophilic lactic acid bacteria (Streptococcus thermophilus and Lacto-
bacillus delbrueckii subsp. bulgaricus) in the fermented extracts is presented in Figure 5. The
highest viable cell numbers for total mesophilic lactic acid bacteria, as well as for Strepto-
coccus thermophilus, were obtained after four days of fermentation. On the other hand, the
growth of Lactobacillus delbrueckii subsp. bulgaricus was not statistically significant. It should
be pointed out that the total mesophilic lactic acid bacteria counts remained close to the
recommended levels for traditional kefir, i.e., >107 CFU/mL [60], which was in agreement
with previous reports of plant-based fermentation with TKG [50,61]. The reported bacterial
growth may be related to the prebiotic effect of polysaccharides and bioactive compounds
in SBL extract [62,63].
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Figure 5. Evolution of viable cell numbers of LAB in enzyme-assisted extracts fermented with TKG;
(A) mesophilic lactic acid bacteria; (B) Streptococcus thermophilus; (C) Lactobacillus delbrueckii subsp.
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p < 0.05).

4. Conclusions

This research aimed to obtain a high-concentration and high-yield extract of bioactive
compounds via EAE of SBL, which could be used in various applications, such as nutraceu-
ticals, functional foods, and high-value products. The optimized conditions identified the
highest desirability after 3:15 h of extraction, a temperature of 45 ◦C, pH of 4.9, and 1%
Viscozyme L (v/w). Moreover, SEM images identified successful cleavage and hydrolysis
by hydrolytic enzymes. Although further studies are needed, the results were promising for
total mesophilic LAB and Streptococcus thermophilus, identifying SBL extract as a potential
prebiotic for selected probiotic strains.
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