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Abstract: Pseudomonas aeruginosa is a high-priority bacterial agent that causes healthcare-acquired
infections (HAIs), which often leads to serious infections and poor prognosis in vulnerable patients.
Its increasing resistance to antimicrobials, associated with SPM production, is a case of public
health concern. Therefore, this study aims to determine the antimicrobial resistance, virulence, and
genotyping features of P. aeruginosa strains producing SPM-1 in the Northern region of Brazil. To
determine the presence of virulence and resistance genes, the PCR technique was used. For the
susceptibility profile of antimicrobials, the Kirby–Bauer disk diffusion method was performed on
Mueller–Hinton agar. The MLST technique was used to define the ST of the isolates. The exoS+/exoU−

virulotype was standard for all strains, with the aprA, lasA, toxA, exoS, exoT, and exoY genes as the most
prevalent. All the isolates showed an MDR or XDR profile against the six classes of antimicrobials
tested. HRC ST277 played a major role in spreading the SPM-1-producing P. aeruginosa strains.

Keywords: Pseudomonas aeruginosa; SPM-1; northern region; virulence; resistance

1. Introduction

Pseudomonas aeruginosa is a high-priority bacterial agent that causes healthcare-acquired
infections (HAIs), which often lead to serious infections and poor prognosis in vulnerable
patients, such as those who are in intensive care units (ICUs); those who have weakened
immune systems, have undergone surgery, or have a history of inappropriate antibiotic
use or severe burns; and those who have cystic fibrosis (CF), causing chronic lung col-
onization [1–4]. Globally, multi-drug and extensively resistant (MDR/XDR) strains of
P. aeruginosa posing a difficult-to-treat resistance (DTR) phenotype have emerged in dif-
ferent clinical, hospital, and even environmental settings. These strains are of particular
concern due to difficulties and limitations in treatment and their association with a high
virulence potential, which can lead to severe and prolonged infections, and increased
treatment costs, length of hospital stay, and patient mortality [5–7].

As a versatile opportunistic pathogen, P. aeruginosa is capable of causing both acute
and chronic infections. Its pathogenic profile stems from the large and variable arsenal
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of virulence factors and antibiotic resistance determinants contained in the P. aeruginosa
genome of several strains, with remarkable metabolic flexibility and the ability to adapt
to multiple conditions, including the host immune response [8–10]. Virulence products
passively produced and secreted by bacterial cells are generally associated with adhesion,
nutrient acquisition, and regulation, including pigments with siderophore activity and
O-polysaccharide (OPS), whereas products actively secreted by secretion systems, such as
the type I secretion system (T1SS), type II secretion system (T2SS), and type III secretion
system (T3SS), are associated with tissue invasion and evasion of host defenses [11–13].
Among these, the virulotyping of P. aeruginosa strains by detecting exoS/exoU genes and
OPS serotyping has been widely applied and recommended due to its association with the
clinical progress of patients, antimicrobial resistance (AMR), and vaccine targets [14–17].

Concerning AMR, the production of carbapenemases has been pointed out as one of
the main causes of carbapenem resistance among several bacterial pathogen species. Indeed,
carbapenem-resistant P. aeruginosa (CR-PA) has been described as a priority pathogen by the
World Health Organization (WHO) and several other health agencies [1,18–20]. Among the
carbapenemases, metallo-β-lactamases (MβLs) are of particular interest and concern due
to several factors, such as their ability to hydrolyze and provide resistance to virtually all
β-lactam antibiotics, the limitations and unavailability of clinically useful MβLs inhibitors,
the rapid rate at which new variants are isolated, the transferability of their coding genes,
and their ubiquity, as there are reports of isolates from both hospitals and environmental
sources [21,22]. The São Paulo metallo-β-lactamase (SPM-1) is an important determinant
of carbapenem resistance and non-susceptibility phenotypes in P. aeruginosa isolates in
Brazil. In different Brazilian geographic regions, the dissemination of SPM-1-producing
P. aeruginosa is associated with the endemic clone, ST277, which may be related to the high
and increasing rates of carbapenem resistance reported [23–26].

Several recent reports have described an increase in MDR/XDR organisms during
the COVID-19 pandemic [27,28]. In the current pandemic healthcare emergency, sentinel
reports have shown that secondary infections were present in up to 30% of critically ill
patients, and these infections were shown to markedly decrease the survival of patients with
COVID-19. MDR/XDR-CR-PA was one of the most commonly reported antibiotic-resistant
bacterial species in COVID-19 patients admitted to the ICUs [29,30]. The production of
SPM-1 has been proven as a key antimicrobial mechanism in Brazilian P. aeruginosa strains,
and with the pandemic situation of COVID-19 and rampant use of antibiotics for the
treatment of secondary infections, a relevant increase in CR-PA isolates harboring the
blaSPM-1 gene has been observed in health institutions in northern Brazil. Additionally,
previous reports in the state of Pará by our research group have revealed the presence
of P. aeruginosa harboring the blaSPM-1 gene, which causes complicated infections and is
a genotypic marker of high virulence [31,32]. Thus, this study aims to explore the AMR,
virulence, and genotypic features of SPM-1-producing P. aeruginosa recovered from the
pre-pandemic period in healthcare institutions in the states of Pará (PA) and Acre (AC), in
the northern Brazilian Amazon region.

2. Materials and Methods
2.1. Bacterial Isolates

This is a cross-sectional and descriptive study aiming to provide data on the SPM-1-
producing-P. aeruginosa isolates received at a reference center—the Special Pathogens Labo-
ratory, Bacteriology and Mycology Evandro Chagas Institute (LabPate/SABMI/IEC)—for
the routine surveillance of antimicrobial resistance. Since mid-2017, LabPate/SABMI/IEC
has been acting in the antimicrobial resistance surveillance flow routine by confirming and
detecting AMR mechanisms in bacterial isolates from public and private hospitals in the
states of Pará (PA) and Acre (AC), northern Brazil. For the present study, 34 non-repeatable
isolates of P. aeruginosa were obtained from various biological sample sources of patients
admitted to healthcare services from 2018 to 2021, with suspected infection and/or col-
onization by MDR/XDR microorganisms and production of carbapenemases (resistance
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to carbapenems). All the isolates were identified using the Vitek-2 automated system at
a routine hospital (BioMérieux). Subsequently, the isolates were sent to Evandro Chagas
Institute for further analysis.

2.2. Phenotypic and Molecular Assays Associated with Antimicrobial Susceptibility and Genetic
Variant Definition of blaSPM-1

Antimicrobial susceptibility testing (ATS) was performed by applying the Kirby–Bauer
disk diffusion method on Mueller–Hinton Agar (MHA) for 12 antimicrobials belonging to
six (06) different classes: piperacillin, piperacillin + tazobactam, and ticarcillin/clavulanic
acid (penicillin + β-lactamase inhibitor class); ceftazidime and cefepime (cephalosporins
class); aztreonam (monobactams class); imipenem (carbapenems class); gentamicin, to-
bramycin, and amikacin (aminoglycosides class); and ciprofloxacin and ofloxacin (fluoro-
quinolone class). The results were interpreted according to the criteria and breakpoints of
Clinical and Laboratory Standards Institute, where isolates were classified as susceptible
(S), intermediate (I), and resistant (R) [33,34]. Additionally, P. aeruginosa isolates were
phenotypically classified based on their propensity to be MDR when they were resistant to
≥1 drug in ≥3 antimicrobial classes; XDR when they were not susceptible to 1 agent in all
antimicrobial classes tested, except ≤2, according to the criteria described by Magiorakos
et al. [35] and Mulet et al. [36]; and DTR based on the susceptibility results with ceftazidime,
cefepime, imipenem, ciprofloxacin, and ofloxacin, as described by Kadri et al. [7].

Bacterial genomic DNA was obtained from a single overnight grown colony of
P. aeruginosa cultures via the boil-and-freeze method and using the commercial Pure-
Link™ Genomic DNA Mini Kit (Thermo Fisher Scientific, São Paulo, Brazil), following
the manufacturer’s recommendations. The genomic DNA obtained was quantified using
a Picodrop PICO100 spectrophotometer (Picodrop Limited, Hinxton, UK) and concentra-
tions set between 25–50 ng/µL were used for all molecular assays. The detection of AMR
genes encoding carbapenemase blaSPM, blaIMP, blaVIM, blaNDM, blaKPC, and blaOXA-48 was
performed via PCR in a Veriti thermal cycler (Applied Biosystem, Foster City, CA, USA) as
described [37]. Visualization of PCR products was performed via electrophoresis in a 1.5%
agarose gel at 110 V for 45 min in TAE 1× buffer (89 nM Tris-borate and 2 mM EDTA pH
8.0). DNA ladder 1 Kb (Invitrogen™, Carlsbad, CA, USA)) was used as molecular weight
marker, gel stained with SyberSafe (Invitrogen™, Carlsbad, CA, USA)), and differentiation
of bands visualized under ultraviolet light.

For determination of the blaSPM variant, the PCR products were direct sequenced
bidirectionally using the Big Dye Terminator v3.1 kit on the ABI Prism 3100 or 3500XL
Genetic Analyzer platform (Applied Biosystems, Foster City, CA, USA), and the sequences
obtained were compared with those available in the BLAST database (https://blast.ncbi.
nlm.nih.gov/Blast.cgi (accessed on 6 June 2023)).

2.3. Molecular and Phenotypic Detection of Virulence-Related Factors

The detection of invasion-related genes belonging to the T1SS, T2SS and T3SS was
performed via PCR in a Veriti thermal cycler (Applied Biosystem, Foster City, CA, USA)
according to the protocol described by Rodrigues et al. [32]. Visualization of PCR products
was performed via 1.5% agarose gel electrophoresis at 110 V for 45 min in TAE 1× buffer
(89 nM Tris-borate and 2 mM EDTA pH 8.0). As molecular weight marker, 1 Kb DNA ladder
(Invitrogen™) was used, gel stained with SyberSafe (Invitrogen™, Carlsbad, CA, USA))
and differentiation of bands visualized under ultraviolet light. In addition, the pigment
production and mucoid phenotype of P. aeruginosa isolates were verified by observing
bacterial growth on MHA agar plates and slants.

2.4. Molecular Typing by Multilocus Sequencing Typing–MLST

The MLST genotyping procedure followed the protocol outlined by Curran et al. [38],
with modifications by using new design primers, except for aroE gene
(Supplementary Table S1). In brief, the Veriti thermocycler (Applied Biosystems, Fos-

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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ter City, CA, USA) was used to amplify via PCR the seven housekeeping genes constituting
the scheme (acsA, aroE, guaA, mutL, nuoD, ppsA, and trpE). The resulting reaction products
were sequenced bidirectionally using Big Dye Terminator v3.1 chemistry on the ABI Prism
3100 or 3500XL Genetic Analyzer platforms (Applied Biosystems, Foster City, CA, USA).
The obtained results were compared and matched to the data available at the PubMLST
database (http://pubmlst.org/paeruginosa (accessed on 6 June 2023)) to determine the
allelic profiles and sequence types (STs).

2.5. Whole-Genome Sequencing (WGS) and Bioinformatics Analysis

Libraries were prepared from the previously extracted DNA using the Nextera XT kit
(Illumina, San Diego, CA, USA) with the addition of I5 and i7 indexes, according to the
manufacturers’ protocol. The quality of the libraries was verified using the Bioanalyzer
High Sensitivity DNA Analysis kit (Agilent™, Santa Clara, CA, USA) and quantified using
the High Sensitivity Double Strand DNA Quibit kit (Invitrogen™, Carlsbad, CA, USA)).
Subsequently, the libraries were added into a pool and sequenced with the 2 × 151 paired-
end protocol on Illumina nextseq 550 using Mid Output (Illumina™) reagent cartridges
and flow cells at the Arbovirology section of the Instituto Evandro Chagas.

The quality of the reads was checked using the fastqc v0.11.9 tool, treated using the
fastp v0.23.2 tool to remove low quality reads and remove adapters. Subsequently, genome
assembly was performed using the spades tool v3.15.3 based on the reference strains for
P. aeruginosa CCBH4851 (NZ_CP021380.2), which belongs to clone ST277 reported as cause
of endemic outbreak in Brazil in 2008 [39]. After assembly, the scaffolds were evaluated
using the quast software (v 5.2.0) and submitted to the bactopia v2.2 pipeline for annotation
using the prokka tool v1.14.6, resistance prediction using amrfinder v3.10.45. The modular
tools of the bactopia pipeline were also used for downstream analysis: abricate for search-
ing resistance genes, amrfinderplus for predicting resistance and proteins, MLST typing
was predicted by searching for sequence in the PubMLST database, pasty for predicting
P. aeruginosa serogroup, and plasmidfinder for predicting plasmid presence in sequencing.
Finally, the annotated genomes produced by Bactopia were finally submitted type Strain
Genome Server (TGYS) [40] web server for whole-genome similarity, clusterization and
phylogenetic inference.

2.6. Ethical Considerations

The present study is in accordance with the principles of the Declaration of Helsinki
and the terms of the CNS Resolution No. 466/2012 of the National Health Council. Since
this is an experimental study, which used stored and provided samples by the institu-
tions involved, without any contact and possibility of identifying the respective patients,
the project did not need to be referred to the Ethics Committee on Research Involving
Human Beings.

3. Results
3.1. Antimicrobial-Susceptibility-Related Features

The AST results revealed that all included P. aeruginosa isolates were resistant to
carbapenems (IMP, 34/34–100.0%), followed by significant non-susceptibility to antipseu-
domonal fluoroquinolones (OFX, 33/34–97.1%; CIP, 31/34–91.7%), antipseudomonal peni-
cillin + β -lactamase inhibitors (PRL and TTC, 32/34–94.1%), antipseudomonal
cephalosporins (CAZ and FEP 31/34–91.7%), and aminoglycosides (GEN, 32/34–94.1%;
TOB, 30/34 and AMK 30/34–88.2%). Antagonistically, ATM and TZP were considered to be
the most effective antimicrobials with 61.7% (21/34) and 26.5% (9/34) of sensitive isolates,
respectively. According the susceptibility classification, 64.7% (22/34) were phenotypically
classified as MDR, 35.3% (12/34) as XDR, and 26.5% (9/34) as DTR (Table 1).

http://pubmlst.org/paeruginosa
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Table 1. Antimicrobial susceptibility phenotypes of SPM-1-producing P. aeruginosa isolates in
northern Brazil.

ID PRL TZP TTC CAZ FEP ATM IMP GEN TOB AMK CIP OFX Susceptibility Phenotype

46586 I I I R R R R R R R R R XDR #
46716 I S R R R S R I S S R R MDR
54178 S S I R R S R R R R R R MDR
56158 I R I R R S R R R R R R MDR
56572 R S S S S R R S R S S R MDR
57415 I S S S S S R S S R R R MDR
57508 R S I I S I R R S S S R XDR
57564 I I R R R S R R R R R R MDR
57568 R R R R R I R R R R R R XDR #
57654 R I R R R S R R R R R R MDR
57716 I R R R R S R R R R R R MDR
57729 R I R R R S R R R R R R MDR
57863 R I R R R S R R R R R R MDR
57877 I S R R R I R R R R R R XDR #
57884 R I R R R S R R R R R R MDR
57989 R I R R R I R R R R R R XDR #
58005 R I R R R S R R R R R R MDR
58007 I I R R R I R R R R R R XDR #
58111 R I R R R I R R R R R R XDR #
58218 I I R R R S R R R R R R MDR
58276 R I R R R S R R R R R R MDR
58479 R S R R R R R R R R R R XDR #
58482 I I R R R S R R S S R R MDR
58608 R R R R R S R R R R R R MDR
58739 S R R S R S R R S R S S MDR
58798 R R R R R S R R R R R R MDR
58820 I I R R R S R R R R R R MDR
58835 I S R R R R R R R R R R XDR #
58924 R I R R R S R R R R R R MDR
59035 R I R R R R R R R R R R XDR #
59183 R I R R R S R R R R R R MDR
59202 R I R R R R R R R R R R XDR #
59233 I S R R R S R R R R R R MDR
59329 R I R R R R R R R R R R XDR #

PRL (piperacillin); TZP (piperacillin + tazobactam); TTC (ticarcillin-clavulanic Acid); CAZ (ceftazidime);
FEP (cefepime); ATM (aztreonam); IMP (imipenem); GEN (gentamicin); TOB (tobramycin) AMK (amikacin);
CIP (ciprofloxacin); OFX (ofloxacin); # DTR isolates.

Molecular detection of carbapenemase genes and sequencing confirmed that all in-
cluded CR-PA harbored the blaSPM-1 variant (34/34–100%). The blaIMP, blaVIM, blaNDM,
blaKPC, and blaOXA-48 genes were not detected (Tables 1 and 2).
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Table 2. AMR, virulence and genotypic features of SPM-1-producing P. aeruginosa isolates in northern Brazil.

ID Date at
LabPate/IEC Biological Source Origin Resistance Phenotype ST

bl
a S

P
M
−

1

bl
a I

M
P

bl
a V

IM

bl
a N

D
M

bl
a K

P
C

bl
a O

X
A
−

48

ap
rA

la
sA

la
sB

to
xA

ex
oS

ex
oU

ex
oT

ex
oY

M
uc

oi
d

Py
ov

er
di

ne

Py
oc

ya
ni

ne

46586 31 July 2018 Urine PI/AC XDR 277 * + − − − − − + + + + + − + + + + +
46716 8 August 2018 Urine PI/PA MDR 277 + − − − − − + + + + + − + + − − −
54178 6 November 2019 TS PI/AC MDR 277 + − − − − − + + + + + − + + − − −
56158 27 March 2020 TS PI/AC MDR 277 + − − − − − + + + + + − + + + + +
56572 21 May 2020 TS PI/AC MDR 277 + − − − − − + + + + + − + + + + +
57415 10 February 2021 Urine PR/PA MDR 277 + − − − − − + + + + + − + + − − −
57508 3 March 2021 TS PI/PA XDR 2711 *§ + − − − − − + + + + + − + + + + +
57564 22 March 2021 Urine PR/PA MDR 277 + − − − − − + + + + + − + + + + +
57568 22 March 2021 TS PR/PA XDR + − − − − − + + + + + − + + + + +
57654 6 April 2021 TS PR/PA MDR 277 + − − − − − + + + + + − + + − − −
57716 6 May 2021 TS NI MDR 277 + − − − − − + + + + + − + + − − −
57729 6 May 2021 TS NI MDR 277 + − − − − − + + + + + − + + + + +
57863 24 May 2021 Urine NI MDR + − − − − − + + + + + − + + − − −
57877 24 May 2021 Blood NI XDR + − − − − − + + + + + − + + − − −
57884 24 May 2021 TS NI MDR + − − − − − + + − + + − + + − − −
57989 16 June 2021 Blood NI XDR 277 * + − − − − − + + + + + − + + − − −
58005 16 June 2021 CT PI/PA MDR + − − − − − + + + + + − + + − − −
58007 16 June 2021 WS NI XDR 277 * + − − − − − + + + + + − + + + + +
58111 30 June 2021 TS NI XDR 277 * + − − − − − + + + + + − + + − − −
58218 15 July 2021 Urine PI/PA MDR + − − − − − + + + + + − + + − − −
58276 27 July 2021 Liquor PI/PA MDR + − − − − − + + + + + − + + − − −
58479 20 August 2021 Urine NI XDR 277 * + − − − − − + + + + + − + + + + +
58482 20 August 2021 Blood PR/PA MDR + − − − − − + + + + + − + + − − −
58608 10 September 2021 Urine PI/PA MDR + − − − − − + + + + + − + + + + +
58739 28 September 2021 MT PI/PA MDR + − − − − − + + + + + − + + + + +
58798 14 October 2021 TS PR/PA MDR + − − − − − + + + + + − + + − − −
58820 14 October 2021 WS PR/PA MDR + − − − − − + + + + + − + + − − −
58835 14 October 2021 IS PR/PA XDR 277 * + − − − − − + + + + + − + + + + +
58924 28 October 2021 Urine PI/PA MDR + − − − − − + + + + + − + + + + +
59035 18 November 2021 Blood PI/PA XDR 277 * + − − − − − + + + + + − + + + + +
59183 10 December 2021 Urine PI/PA MDR + − − − − − + + + + + − + + − − −
59202 10 December 2021 TS PI/PA XDR 277 * + − − − − − + + + + + − + + − − −
59233 16 December 2021 TS PI/PA MDR + − − − − − + + + + + − + + − − −
59329 5 January 2022 Urine PR/PA XDR 277 * + − − − − − + + + + + − + + + + +

MDR: multidrug resistant; XDR: extensively drug resistant; PI: public institution, PR: private institution, PA: Pará State; AC: Acre State; NI: not informed; TS: tracheal secretion, LAS:
lumbar abscess secretion; WS: wound secretion, IS: inguinal swab, MT: muscular tissue, CT: catheter tip; * defined by WGS; § defined by Sanger sequencing; +: positive; −: negative.
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3.2. Virulence-Related Features

Most of the T1SS, T2SS, and T3SS virulence genes (aprA, lasA, toxA, exoS, exoT,
and exoY) were homogenously detected among evaluated isolates (34/34–100.0%), while
a sample only (1/34–3.0%) was negative for the lasB gene. Additionally, all isolates
(34/34–100.0%) were related to the invasive virulotype (exoS+/exoU−), as the exoU gene
was absent. As for the mucoid characteristic and pigment production by the colonies,
44.1% (15/34) of the samples were presenting a mucoid-like feature, and positivity for both
pyocyanine and pyoverdine pigments (Table 2).

3.3. Genotyping by MLST Data

From the pool of P. aeruginosa isolates presenting MDR phenotypes, nine (9) randomly
selected isolates were subjected to molecular typing via MLST, revealing that all nine
MDR-P. aeruginosa isolates belonged to the high-risk clone (HRC) and endemic clone ST277
determined by the combination of the seven housekeeping genes used in the MLST scheme
for P. aeruginosa (acsA 39, aroE 5, guaA 9, mutL 11, nuoD 27, ppsA 5, and trpE 2) (Table 2).

3.4. WGS Data Results

From the pool of P. aeruginosa isolates presenting XDR phenotypes, 10 randomly
selected isolates were subjected to WGS analysis. Most of the XDR samples (9/10) presented
similarity (dDDH-d0) between 99.9–100% and had MLST associated with the HRC ST277.
The following set of antimicrobial resistance genes was detected: aac(6′)-Ib1, aadA7, aph(3′)-
IIb, blaOXA-494, blaOXA-56, blaPDC-374, blaSPM-1, catB7, cmx, crpP, fosA-354827590, rmtD1, and
sul, which indicated resistance to the multiple antimicrobial classes, such as: carbapenems,
cephalosporins, chloramphenicol, fluoroquinolones, fosfomycin, gentamicin, kanamycin,
streptomycin and sulfonamide. Interestingly, the sample, 57,508, presented similarity
between 99.1–99.5% when compared to the other nine samples, and 99.3% similarity when
compared to CCBH485 strain. This sample was also found to belong to ST2711 (MLST
confirmed via sanger sequencing). A similar set of resistance genes was found, however,
with presence of the blaOXA-50 gene instead of the bla-OXA494 (Figure 1). Via serotyping
prediction, all samples were related to the O2 serogroup.
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4. Discussion

Recently, the rapid emergence of CR-PA strains has become prominent in scientific
interest and epidemiological surveillance, mainly due to the dissemination of MβLs that
break down antibiotic compounds that are commonly used as a last-resort treatment to
serious infections, rendering penicillin, cephalosporins, and carbapenems ineffective. This
scenario is the result of several factors, including the overuse and misuse of antibiotics,
and the poor infection control practices in healthcare settings. Certainly, the COVID-19
pandemic has also placed a tremendous pressure on healthcare systems worldwide, as
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critically ill patients were at increased risk for secondary bacterial infections associated with
MDR/XDR/DTR strains, including MβL-producing-P. aeruginosa. In the present investi-
gation, we report the spread of SPM-1-producing-P. aeruginosa strains mostly associated
with the HRC ST277, and detected since the pre and early COVID-19 pandemic period in
healthcare institutions in northern Brazilian.

Worrying rates of AMR associated with XDR/MDR/DTR P. aeruginosa isolates have
been reported in the last decade, as demonstrated by Jean et al. [41] in Taiwan, where
the AMR rate in 2015 was less than 18.0%, while in the following years (2016 and 2018),
the rate increased to 19.7% and 27.5%, respectively. A study conducted in Spain reported
that 17.0% of P. aeruginosa infections were caused by XDR strains, and high rates of over
30.0% of CR-PA were linked to hospital-acquired pneumonia (HAP) as reported in many
European Union states since 2015 [42,43]. Additionally, DTR among P. aeruginosa were
related to almost 8.0% of isolates causing BSIs [44]. Despite this, there is still scarce global
information on the prevalence of MDR/XDR/DTR-P. aeruginosa [20]. Further, due to the
similarity of symptoms between hospitalized patients with SARS-CoV-2 infection and those
with hospital-acquired and ventilator-associated pneumonia, it is a common practice to
administer broad-spectrum antibiotics as empirical treatments [45]. According to a review
conducted by Fattorini et al. [29], 476 out of 539 patients (88.3%) diagnosed with COVID-
19 received broad-spectrum antibiotics, such as expanded-spectrum cephalosporins (e.g.,
ceftriaxone, ceftazidime, and cefepime), fluoroquinolones, and carbapenems. Consequently,
the use of antibiotics has significantly increased in many healthcare settings globally during
this period [46].

As per national data by the Brazilian National Health Surveillance Agency (ANVISA),
from 2018 to 2021 in adult ICUs, CR-PA was the third-most-detected bacterial pathogen
related to BSIs and urinary-tract infections (UTIs), and demonstrated carbapenem resistance
rates from 30.9% to 41.4%, and from 41.7% to 43.0%, respectively [47–51]. Worryingly, it
is relevant to emphasize the staggering increase in the number of P. aeruginosa isolates
causing BSIs in 2021 (pandemic-period), totaling 3,845 cases, a remarkable 168.1% surge
compared to 2019 (pre-pandemic period), which recorded only 1432 cases. Surely, the
resistance phenotypes of the CR-PA in this study, which included MDR/XDR/DTR isolates,
reflect this worrisome scenario, further complicated by the presence of SPM-producing
isolates. Finally, such findings also align with our research group’s previous data, in which
Rodrigues et al. [32] documented the early spread of MDR/XDR CR-PA within local ICUs
in the state of PA from 2010 to 2013.

The monobactam antibiotic ATM has presented potential in the treatment of infections
caused by MDR/XDR CR-PA [52,53]. In the present report, ATM has been indicated as an
effective antimicrobial against CR-PA, with a resistance rate of only 37.1%. This sensitivity
profile can be attributed to the fact that the antibiotic is not broken down by SPM. Studies
conducted worldwide and in Brazil have reported similar findings, suggesting the strong
efficacy of ATM against CR-PA [54,55]. However, it is noteworthy that resistance to ATM
was observed in some isolates, pointing out the presence of other AMR mechanisms, such
as mutations observed in mexAB-oprM efflux system [56]. Further investigations are needed
to fully understand the role of ATM and its potential strategies in the management of
CR-PA infections [57].

Results obtained through the WGS analysis of the 10 XDR SPM-1-producing
P. aeruginosa allowed further insights into the AMR mechanisms presented in such strains,
in which the aac(6′)-Ib’, aadA7, aph(3′)-IIb, blaOXA-56, blaPDC-374, blaSPM-1, catB7, cmx, crpP,
fosA-354827590 and rmtD1 markers were commonly found. For the blaOXA-494 gene, only
one sample was negative; in contrast, for the blaOXA-50 gene, only one sample was positive.
This bacterial resistome echoes the findings in the Brazilian study published by Galetti et al.
(2018), where in genomic analysis of 13 different P. aeruginosa strains belonging to ST277
revealed a highly conserved resistome (blaSPM-1, rmtD, aacA4, aadA7, blaOXA-56, blaOXA-396,
blaPAO, aph(3′)-IIb, aac(6′)Ib-cr, crpP, catB7, cmx, and fosA), playing an important role in the
persistence of this clone in infections occurring in Brazilian hospitals. The blaOXA gene
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variants are considered as naturally occurring in the P. aeruginosa genome, and its high
prevalence indicates a potential horizontal transfer in which class D β-lactamases can
be introduced by other co-habituating bacterial species [58,59]. According to Horcajada
et al. [1] and Nicolau [60], the blaOXA-50 gene plays an important role in P. aeruginosa resis-
tance, since classical β-lactamase inhibitors show weak activity against it. Indeed, kinetic
analysis of β-Lactams hydrolysis by OXA-50 variants of P. aeruginosa demonstrated that
chromosomally encoded AMR mechanisms mainly provided weak carbapenemase activity,
but may act synergically [61]. Among the aminoglycoside-modifying enzymes presented,
the aac(6′) acetyltransferase is one of the most frequently described, conferring resistance to
both tobramycin and amikacin, or tobramycin alone [1,62,63].

To fuel its pathogenicity, P. aeruginosa possesses an array of virulence factors that
enable the colonization, invasion, and persistence within host tissues, often leading to acute
and chronic challenging-to-treat infections. Gaining a comprehensive understanding of
these virulence mechanisms is imperative for the development of effective strategies to
manage P. aeruginosa infections [13]. In relation to presence of pigments like pyocyanin and
pyoverdine, it has been implicated in exacerbating infections as these pigments sequester
iron from host cells, serving the metabolic needs of the bacterium, and consequently
intensifying the infection and pathogenesis [64]. A study conducted by Fothergill et al. [65]
reported pyocyanin production in P. aeruginosa isolates ranging from 41.3% to 81.5%,
findings consistent with the data obtained in the current investigation, where pyocyanin
production among isolates was of 42.9%. With regard to pyoverdin, Prado et al. [66]
observed pyoverdin production in over 74.0% of clinical strains, while Silva et al. [67]
found that more than 90.0% of the isolates investigated exhibited pyoverdin production.
Interestingly, the present study recorded a pyoverdine production rate of 42.9%, which
contrasts with the previous findings. In this study, aprA, a gene belonging to T1SS, and lasA
and lasB genes belonging to T2SS, showed high positive occurrence. Other studies with
SPM-1-producing P. aeruginosa also reported a strong presence of these virulence genes, as
in the studies by Adonizio et al. [68] and Silva et al. [67].

In addition, the translocation of up to four cytotoxic effector proteins by the T3SS
is responsible for distinct tissue injury to the host, with exoU having a higher impact on
bacterial virulence [11]. The distribution of the genes encoding these cytotoxins is not
uniform among P. aeruginosa strains, and some of them, particularly exoS and exoU, are
almost mutually exclusive [69]. In fact, a large, multicenter study conducted in Spain
revealed that the exoU+/exoS− genotype was an independent risk factor for early mortality
in P. aeruginosa BSIs, and was negatively linked to XDR profiles [14].Thus, the T3SS factor
is an important differential factor that needs to be considered when analyzing virulence
and clinical outcomes associated with HRC [70]. Results on the present study highlight
the fact that all evaluated strains were related to the invasive virulotype (exoS+/exoU−),
genotypic virulence profile usually observed among MDR/XDR P. aeruginosa strains, as
exoU carriage along with several AMR mechanisms may pose a fitness cost to bacterial
cell [71–73]. Furthermore, all 10 samples analyzed belonged to serogroup O2. According to
Stanislavsky [74], polysaccharide O (OPS), the most variable region of the lipopolysaccha-
ride (LPS), is of major relevance in the virulence and is responsible for conferring serogroup
specificity. According to Donta et al. [75], serogroup O2, along with serogroups O1, O3,
O4, O5, O6, O7, O10, and O16, accounts for 90% of bacteriemic strains of P. aeruginosa. In a
study by Nasrin et al. [17], serotype O2, along with serotypes O5, O16, O18, and O20, were
among the most common, which corroborates with the findings of the present study.

Global epidemiology data further highlight a small geographic spread of blaSPM-1
strains when compared to its endemicity in Brazil, with rare reports of this variant in
countries such as Iran [76,77], UK [78], Chile [79], Egypt [80], and the USA [81–83]. In
Brazil, the clonal expansion of SPM-1-producing P. aeruginosa strains is related to the
HRC ST277, with its detection in all Brazilian regions, including São Paulo [25], Rio de
Janeiro [84], Paraná [85], Porto Alegre [86], Minas Gerais [87], and Pará [31,32], showing its
dissemination potential, high adaptability, and establishment as an international clone. In
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the present report, the MLST genotyping revealed that 18 strains with MDR/XDR/DTR
characteristics belonged to the ST277 lineage, and one related to the ST2711, which, to the
best of our knowledge, is the first report of blaSPM-1 in another clone than the ST277. This
finding also supports the limited genetic diversity of SPM-1-producing P. aeruginosa, and
indicates the possible occurrence of an outbreak, with recent clonal expansion probably
related to the high selective pressure on healthcare institutions in northern Brazil. The
clonal expansion of such strain also raises concerns regarding the potential dissemination of
AMR gene, and the limited effectiveness of conventional treatment options. Further, when
comparing the genomic phylogenetic inference, we highlight the distance between sample
57508/ST2711 and the other samples, being the most distant sample when compared
to CCBH4851; the remaining samples were clustered as a possible transmission chain
due elevated similarity (above 99.9%). Further investigation is needed to understand the
underlying mechanisms driving the persistence and spread of these particular STs in the
clinical or environmental settings.

As the pandemic spread, hospitals globally observed an increase in patients infected
with COVID-19, a situation requiring major adjustments in healthcare systems and infras-
tructure, especially in infection control and antimicrobial management programs [88]. In
this regard, some reports indicate that the indiscriminate use of antibiotics determined
by the therapeutic challenges in combating the pandemic has resulted in increased AMR
rates, especially related to individuals infected with P. aeruginosa hospitalized in ICUs [89].
Unfortunately, less robust healthcare systems, such as those in the Latin American and
Asian countries, where AMR rates are dangerously high and antimicrobial stewardship pro-
grams are just beginning to be implemented, are adjusting their response to the pandemic
to varying degrees [90–93]. Regrettably, these circumstances create the so-called “perfect
storm” for an accelerated evolution of AMR, especially in clinically important strains, such
as P. aeruginosa [94]. The present study is one of first in Brazil to thoroughly report data on
AMR after the COVID-19, pandemic reflecting a comparative perspective between studies
conducted before the pandemic, where the peak detection of SPM-1-producing P. aeruginosa
strains occurred between 2008 and 2015 [32,95–97], and in the post-pandemic context, as
with results in the current study, a re-emergence and the possibility of an outbreak of
SPM-1-producing P. aeruginosa was observed.

The present study is not without its limitations. Firstly, a notable limitation was the loss
of isolates during the culture process, which may have resulted in an incomplete dataset.
Additionally, our laboratory faced the constraint of unavailability of certain essential testing
disks for evaluating classical antipseudomonal drugs such as meropenem and colistin, and
novel antibiotics including cefiderocol, ceftazidime-avibactam, and ceftolozane-tazobactam.
Another limitation stems from the lack of comprehensive data regarding the origin and
specific wards from which the P. aeruginosa isolates were recovered, limiting our ability
to assess potential associations between strain characteristics and clinical settings, and
outbreak investigation. Lastly, all included samples could not be genotyped via MLST and
WGS due to a lack of necessary reagents, which could have provided valuable insights
into genetic relatedness and transmission patterns. These limitations should be taken into
account when interpreting the findings and highlight areas for further investigation and
improvement in future studies.

5. Conclusions

The CR-PA isolates included in this study showed a high prevalence of virulence
genes, where among them, aprA, lasA, toxA, exoS, exoT, and exoY were positive in all strains,
suggesting a high pathogenicity capacity. The exoS+/exoU− virulotype was standard in all
isolates, indicating an invasive characteristic. As for the phenotypic profile of resistance, all
strains showed either MDR or XDR, in addition to a pool of DTR isolates, thus posing a
challenge regarding the management and treatment of patients infected with P. aeruginosa
producing SPM. Additionally, results obtained through MLST and WGS revealed the major
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role of the HRC ST277 in spreading SPM-1-producing strains, in addition to the novel
report of the blaSPM-1 variant in the clone, ST2711, and a conserved resistome.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/microorganisms11082069/s1, Table S1: MLST primers
design for the present study.
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