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Abstract: Plant roots host numerous microorganisms around and inside their roots, forming a
community known as the root microbiome. An increasing bulk of research is underlining the influ-
ences root-associated microbial communities can have on plant health and development. However,
knowledge on how plant roots and their associated microbes interact to bring about crop growth
and yield is limited. Here, we presented (i) the communication strategies between plant roots and
root-associated microbes and (ii) the applications of plant root-associated microbes in enhancing
plant growth and yield. This review has been divided into three main sections: communications
between root microbiome and plant root; the mechanism employed by root-associated microbes;
and the chemical communication mechanisms between plants and microbes and their application in
plant growth and yield. Understanding how plant root and root-associated microbes communicate
is vital in designing ecofriendly strategies for targeted disease suppression and improved plant
growth that will help in sustainable agriculture. Ensuring that plants become healthy and productive
entails keeping plants under surveillance around the roots to recognize disease-causing microbes and
similarly exploit the services of beneficial microorganisms in nutrient acquisition, stress mitigation,
and growth promotion.

Keywords: plant-microbe interactions; signaling molecule; root exudate; disease suppression;
crop production

1. Introduction

The orthodox methods of attaining improved agricultural output are not environ-
mentally sustainable. For instance, the superfluous and prolonged application of artificial
agrochemicals results in soil nutrients depletion and water pollution as well as environmen-
tal degradation [1]. If nothing is done to mitigate the effect of the excessive and prolonged
use of agrochemicals, coupled with the human population predicted to hit 9.9 billion by
2030, there will be a decline in the amount of food resources available to feed the world [2].
Hence, sustainable agricultural practices like the use of biological materials is a neces-
sity for restoring soil fertility, feeding the ever-increasing population, and improving the
agroecosystem resilience [3].

Plant microbiome nexuses could provide a prospect to develop schemes for sustain-
able agricultural practices [4]. Plants take up water and nutrients through the root system,
which is inhabited and bounded by a multifaceted microbial community referred to as the
root microbiome [5]. The root microbiome is a significant driver for plant yield, health,
and ecosystem functioning because it is the intersection point between a plant and the eco-
sphere [6]. Furthermore, it serves as a receptacle of extra genes that plants can acquire when
required [7]. The root microorganisms are recruited from several microorganisms found in
bulk soil, which is the basic factor influencing the composition of the root microbiome [8].
It is also vital to note that the plant genotype also contributes to the final composition
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of these societies because plant-resultant substrates and exudates give the nutrient and
physical niches of the rhizosphere [9]. These microorganisms form complex links that are
established and controlled via antagonism, competition, nutrient cycling, and chemical
communication facilitated by various groups of signaling molecules (Figures 1 and 2) [10].
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Understanding the concept and relevance of the root microbiome to plant health will
improve our insight into the colossal power of these tiny giants in ecosystem function. In
recent years, research has focused on the composition and the structure of root microor-
ganisms [11]. However, the multifarious communications between the root microbiome
and the host are not entirely understood. These interactions could facilitate the release of
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plant growth regulators; nitrogen fixation; zinc, potassium, and phosphate solubilization;
siderophore, hydrogen cyanide, and ammonia production; and the production of other
secondary metabolites that are hostile to disease-causing organisms [12]. With this in mind,
the study aimed to review (i) the communication mechanisms between plant roots and
its associated plant growth-promoting microbial communities and (ii) the applications of
plant root-associated microbes in enhancing plant growth and yield. This understanding
will provide sustainable solutions in raising agronomic crop production. This review was
sectioned into communications between the root microbiome and plant root; the mecha-
nism employed by root-associated microbes in promoting plant growth; and the chemical
communication mechanisms between plants and microbes and their application in plant
growth and yield through stress mitigation, disease suppression, and nutrient acquisition.

2. Communication between the Root Microbiome and Plant Root

The communication between the root microbiome and plant roots is an intricate and
dynamic process that entails an array of chemical, molecular, and physical interactions [13].
These interactions are controlled by a wide range of specialized exudates and metabo-
lites [14]. Around or within the plant roots, there are several of these molecules whose
concentration varies according to the distance from the point of emission. These deposits
include sloughed-off tissue and cells, H+ efflux, CO2 from cell respiration, mucilage, in-
tact root border cells, and proteins [8]. The low molecular weight organic compounds,
also known as root exudates, contain amides, sugars, and phenolic, aromatic, and amino
acids [15]. These chemicals facilitate communications, function as chemical attractants and
repellants that drive the root microbiome, and include bacteria, fungi, archaea, and viruses
that reside in and around the roots of plants [15].

The underlying interaction among bacterial microbes is unquestionably a vital factor
in root microbiome dynamics [16]. This interaction between bacterial cells is dependent
on the production and distribution of signal molecules that is consequently perceived
by other community affiliates. Upon signal recognition, the molecules can be up- or
down-regulating gene expression and alter the physiology and activities of the receiving
organism [17,18]. These communications exert both negative and positive impacts on the
agricultural scheme based on the relationship (whether pathogenic, symbiotic, or growth
promoting) that occurs [19]. Fungi, on the other hand, use their arm-like and branching
membrane to form a mycelium, a communication system that links between plant roots [20].
The mycelium provide water, sugar, and nutrients, and in a more intricate dynamics with
the plants, provide chemical signals. With plant root-fungi interaction, plants can indirectly
communicate with other plants around them [21]. The indirect communication depends on
the fungal network, which allows the flow of various chemical signals [22]. For example, a
high level of soil phosphorus tells other plants that there is a plant-fungal collaboration,
and they may reply to this indicator either by producing sugar in order to entice these
kinds of fungi so that they can obtain their share of nutrients or by releasing chemicals to
wane the fungus’ capacities to manufacture nutrients, thereby rendering their competitor
less healthy [23]. Archaea directly relate with plants, and they have the potential to
communicate with plants through (i) nutrient supply, (ii) possible plant growth promotion
via auxin biosynthesis, and (iii) fortification against abiotic (mainly osmotic and oxidative)
stress [24,25].

The communication between the root microbiome and plant roots involves a so-
phisticated interplay of chemical signals, root exudates, microbial metabolites, and gene
regulation. This dynamic interaction is crucial for plant growth, health, and adaptation
to changing environmental conditions [26]. For instance, the root-associated microbes
employ direct or indirect strategies to impact plant health status and growth [27]. Direct
strategies include nutrient acquisition, phytohormones production, and phosphate solubi-
lization, while indirect strategies include eliciting plant immune responses and preventing
plant pathogens from proliferating and competing with their resources (Figure 1) [28].
For example, Stringlis, et al. [29] showed that probiotic-plant-rhizobacteria collaboration
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elicited the root-specific transcription factor MYB72 and further led to the production
and emission of MYB72-controlled β-glucosidase BGLU42-reliant scopolin and scopoletin,
respectively, resulting in a well-established niche for microbial consortiums and resistance
profits for the host plant against Verticillium dahlia and Fusarium oxysporum (soil-borne
fungal pathogens). Bacterial assemblages connected with plant roots contribute a vital
role in subduing soil-borne pathogens, and multispecies probiotic associations could boost
disease suppression efficiency. For example, Hu, et al. [30] reported that the addition of
Pseudomonas consortia in Solanum lycopersicum rhizosphere microbiome reduced Ralstonia
solanacearum concentration and lessened the disease incidence because of the meddling and
increased resource competition with the pathogen. Similarly, an increase in the Pseudomonas
consortia richness resulted in increased plant biomass and effective absorption of nutrients
in Solanum lycopersicum plants.

Root-related microbes likewise produce communicating compounds ranging from
antibiotics, organic acids, volatile signals, phytohormones, extracellular enzymes and
quorum-sensing molecules (QSMs) (Figure 2) [31]. These compounds aid the relationship
between plant roots and microbes associated with facilitating plant growth. For instance, N-
acyl-L-homoserine lactones (quorum-sensing molecules) were reported by Ortiz-Castro [32]
to influence the lateral root formation, root system architecture, primary root growth, and
root hair development of Arabidopsis thaliana in their post-embryonic stage. Bacterial strains
such as Bacillus amyloliquefaciens L3 use communicating molecules like volatile organic com-
pounds to stimulate reactions in fungi and plants and generate induced systemic resistance
(ISR) in plants, consequently the eliciting expression of defense genes that mitigate the
negative effect of viruses, oomycetes, bacteria, and fungi on plants [33–36]. Root-resultant
exudates, apart from aiding plant fitness and longevity, also benefit microorganisms that
use them as a resource (carbon-rich products with other nutrients) that supports microbial
multiplication [37–39].

Alongside different rhizodeposits produced in the rhizosphere, different hormones
are also produced that aid plant-microbe communication cascades [18]. These hormones
include abscisic acid, auxin, cytokinins, gibberellin, and peptide hormones that regulate
plant growth and development. Several plant growth-promoting rhizobacteria have been
reported to produce indole acetic acid in a chemically defined medium with tryptophan
precursor [40,41]. Auxin production enhances seed germination, nutrient uptake, and root
growth and development [18,42]. For instance, cytokinin was found to stimulate cell divi-
sion, inhibit root elongation, and affect root hair development [43], while gibberellin was
reported to alter many physiological and developmental processes in plants by promoting
seed germination, stem elongation, flowering, and fruit setting in plants [44]. Gibberellin
also facilitates cell-to-cell communication [18].

In the past, microbial ecologists used to face big challenges in investigating mul-
tifaceted microbial societies. However, today the tide has changed thanks to method-
ological advances like the high throughput deoxyribonucleic acid sequencing machinery
that provides comprehensive information on the composition and structure of micro-
bial groups [45–47]. With the availability of many sequence datasets from environmental
samples, the focus now is to go beyond alpha and beta diversity and look more at the
interactions between microbial taxa and their host [48,49]. To obtain a more profound
understanding of plant–root-microbe interactions, new tools are being developed. For
instance, exometabolomics have been developed to dissect cross-feeding between root
microorganisms and plants when root exudates serve as the only carbon source for the
cultivation of the rhizosphere microbes [50]. With this tool, it is now possible to know the
main compound controlling plant-bacteria communications by comparing exometabolite
datasets [51]. Another available tool is the synthetic microbial communities (SynComs) ap-
proach, which is used to expound and predict outputs caused by particular characteristics
of bacterial consortia [52]. This SynComs approach was used by Lebeis, et al. [53], who
revealed that the defense phytohormone salicylic acid modulates bacterial colonization of
the roots of Arabidopsis. These available tools allow us to unknot the entangled networks



Microorganisms 2023, 11, 2003 5 of 15

of interactions of fundamental microbiomes or holobionts for efficiently using the root
microbiome to intensify crops’ nutrient procurement and fight against biotic and abiotic
stress [54].

3. Chemical Communication Mechanisms between Plants and Microbes and Their
Application in Plant Growth and Yield

Microorganisms use processes like enzymes release, induction of systemic resistance
in host plants, antibiosis, and rhizospheric competence to stimulate plant-microbe commu-
nications, and these processes originated from chemical signaling [55]. Distinct chemical
signal molecules produced by different microbes influence biofilm growth, sporulation,
motility, conjugation, virulence, antibiotic production, and symbiosis as well as alter the soil
pH and the microbial community [56]. Most of these chemicals are used to induce tolerance
against biotic and abiotic stress. Cho, et al. [57] reported that Pseudomonas chlororaphis O6
produced 2R, 3R-butanediol in the presence of jasmonic acid, ethylene, and salicylic acid
signaling pathways, increasing the tolerance to drought in Arabidopsis thaliana by increasing
the proportion of closed stomata. Another study revealed that under salt stress conditions,
Pseudomonas simiae strain AU produced volatile organic compounds that provided salt
tolerance in soybean plants by decreasing sodium ion and increasing the amount of potas-
sium and phosphorus content [58]. Their investigation further revealed that proline and
chlorophyll content increased in the plant roots exposed to volatile organic compounds
released by Pseudomonas simiae strain AU [58]. Some chemicals produced by microbes have
the ability to activate a chain of physiological alterations that stimulate plant growth [59].
del Carmen Orozco-Mosqueda, et al. [60] reported that the release of dimethylhexadecy-
lamine by Arthrobacter agilis UMCV2 increased iron obtainability in Medicago truncatula.
This became possible due to (i) the dimethylhexadecylamine released by Arthrobacter ag-
ilis UMCV2 stimulating acidification in the root biome. (ii) This then promoted proton
extrusion under an iron deficit. (iii) Finally, it led to an increase in ferric reductase activity.
Fungal colonization primes the chemical protection development in plants by increasing
the levels of fatty acid derivatives, alkaloids, terpenoids, and phenylpropanoid polyamine
conjugates in plants; these compounds are emitted to prevent pests [61,62]. The plant
root-associated microbes in mitigating abiotic and biotic stress, nutrient acquisition, and
growth promotion must be promoted to enhance sustainable agriculture [63,64].

3.1. Root Microbiome Role in Abiotic Stress Tolerance

Crops are often exposed to physical stresses such as soil salinization, submergence,
extreme temperatures, nutrient imbalances, and drought, to mention a few [65]. The fact
that these stresses will intensify in the coming years makes them a big concern as plant
growth, yield, and productivity will be hindered. To overcome these abiotic stresses, plants
must undergo adaptive modifications or solicit the help of beneficial microbes to live
and promote plant function [46,66]. Root-associated microbes can stimulate growth and
defend the host via many molecular machinery in abiotic stress circumstances (Table 1).
Ribeiro and Cardoso [67] revealed that strains of Bacillaceae, Enterobacteriaceae, and Pseu-
domonadaceae isolated from the Araucaria angustifolia root were tremendous plant growth-
promoting bacteria. Some of these bacterial strains are P-solubilizing microbes that help the
crops tolerate drought, salt, and extreme temperature conditions through the production
of numerous phytohormones, antioxidants, and exopolysaccharides; the production of
1-aminocyclopropane-1-carboxylate deaminase; the enrichment of nutrient uptake; the
production of many volatile compounds; and the initiation of the buildup of osmolytes.
They also help in the regulation of stress-responsive genes [68,69]. Under drought settings,
Yuwono, et al. [70] found that osmotolerant rhizobacterial inoculated with rice increased
root and shoot dry weight. It was also proven that under stress conditions, these isolates
produced betaine, signifying that the drought tolerance was because of the increase in os-
molyte. They also revealed that the rhizobacteria-plant interaction led to indole acetic acid
production. An under-drought experiment conducted by Ruiz-Lozano, et al. [71] showed



Microorganisms 2023, 11, 2003 6 of 15

that co-inoculation of Glomus mosseae and Bradyrhizobium japonicum in drought-stressed
soybean plants resulted in increased leghemoglobin content, acetylene reductase activity,
and protein content by 25%, 112%, and 15%, respectively, compared with well-watered
soybean plants and plants colonized by Bradyrhizobium alone.

Root-associated microbes also use other strategies to retain ion homeostasis in plants
facing salt stress. For instance, bacterial exopolysaccharides fix Na+ and confine Na+ inflow
into the roots. They produced volatile organic compounds (VOCs) during stress conditions
so that VOCs can activate high-affinity K+ transporter (HKT1) reduction in roots and stim-
ulate HKT1 in shoots, thereby restraining Na+ entrance into roots and easing shoot-to-root
Na+ retransmission. The K+/Na+ ratio is increased by arbuscular mycorrhizal fungi by
immensely improving Ca2+ and K+ absorption and eluding the movement of toxic Na+

under salty conditions. Furthermore, for effective water assimilation in saline-strained
plants, roots’ closely associated microbes control the processes of genes encrypting the
plasma membrane integral proteins to aquaporin activity [72–74]. Boosting the antiox-
idative systems in plants for ROS (reactive oxygen species), scavenging, and producing
polyamines and proline are among the mechanisms employed by root-associated microbes
in mitigating salt stress in plants. Bano and Fatima [75] induced salt stress conditions
and co-applied Pseudomonas and Rhizobium at the seedling stage of maize. Their findings
showed that under sodium chloride conditions alone, a harmful effect on maize growth
and development was observed. Furthermore, improved sodium chloride tolerance of
maize upon co-inoculation with Pseudomonas and Rhizobium is linked with reduced elec-
trolyte leakage, increased proline production, and conservation of leaf water contents. The
improvement of nutrient uptake to boost plant survival under salt conditions is another
mechanism employed by root-associated microbes. For instance, the introduction of Bacil-
lus aquimaris to wheat plants resulted in a substantial rise in phosphorus, nitrogen, and
potassium in wheat leaves (Upadhyay and Singh 2015). The root-associated microbe can
also aid plants in withstanding high- or low-temperature conditions, either by increasing or
decreasing anthocyanin, proline, and sugar contents. Barka et al., [76] reported that under
low temperatures, grapevine plant bacterized with Burkholderia phytofirmans strain PsJN
increased physiological activity and grapevine growth through a substantial increase in
proline, starch deposition, carbohydrates, and phenol contents compared with the control.

Table 1. Root-associated microbes and their mitigation of abiotic stresses confronting plants.

Stress Type Root Associated
Microbes Plant Host Inoculated

with Activities The Effect on Plant Reference

Drought
Enterobacter,
Bacillus, Moraxella
and Pseudomonas

Acacia arabica Triticum
aestivum L.

Indole-3-carboxylic acid,
indole-3-lactic acid, and
indole-3-acetic acid
production

Improved shoot length,
tillers, and number of
spikelets and increased
spike length and seed
weight of Triticum
aestivum L.

[77]

Salt Halomonas and
one Bacillus

Salicornia rubra,
Sarcocornia
utahensis, and
Allenrolfea
occidentalis

Alfalfa -

Increased total biomass
of alfalfa and improved
root length by 2.6 and
1.5 fold in Halomonas
and Bacillus inoculated
plants, respectively,
compared with the
uninoculated alfalfa.

[78]

salt or drought
Bacillus
amyloliquefaciens
SB-9

Grapevine Grapevine
plantlet

melatonin secretion,
5-hydroxytryptophan,
serotonin, and
N-acetylserotonin

Lessened the
antagonistic effects of
salt- and
drought-induced stress
by decreasing the
secretion of
malondialdehyde, O2

-,
and H2O2 (reactive
oxygen species) in roots.

[79]
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Table 1. Cont.

Stress Type Root Associated
Microbes Plant Host Inoculated

with Activities The Effect on Plant Reference

Heavy metal
stress

Phialocephala
fortinii,
Rhizodermea
veluwensis, and
Rhizoscyphus sp

Clethra
barbinervis

Clethra
barbinervis
seedling

Siderophores

Improved K absorption
in shoots and decreased
the concentrations of
Cd, Zn, Pb, Cu, and Ni
in roots.

[80]

Heavy metal Penicillium
ruqueforti Thom

Solanum
surattense Burm Wheat seedling Indole-3-acetic acid

Led to low
concentrations of heavy
metals in the root and
shoot. Increased
nutrient uptake and
higher plant growth.

[81]

Heat Thermomyces sp. Cullen plicata Cucumber

Increase in antioxidant
enzyme activities,
soluble proteins,
flavonoids, saponins,
and total sugars.

Maintained the optimal
quantum efficiency of
photosystem II, water
use efficiency, and
photosynthesis rate and
increased the root
length, induced
accumulation of
saponins, total sugars,
soluble proteins,
flavonoids, and
antioxidant enzyme
activities.

[82]

High
temperature,
salinity, and
glyphosate
pollution

Ochrobactrum
cytisi strain
IPA7.2

Solanum
tuberosum L.

Solanum
tuberosum L.

Indole-3-acetic acid and
type II 5-
enolpyruvylshikimate-
3-phosphate
synthase

Improved the mitotic
index of root meristem
cells, the number of
roots, the number of
leaves and the length of
shoots.

[83]

Flood Klebsiella variicola
AY13 Soybean Soybean Indole acetic acid

production

Plants growth improved
with enriched
chlorophyll content and
quantum efficiency of
chlorophyll
fluorescence.

[84]

3.2. Root Microbiome Role in Nutrient Acquisition

Most micronutrients and macronutrients important for plant growth are available in
the soil in insoluble forms. Plants devise several mechanisms for the acquisition of these
nutrients in the soil. The plant root microbiome enhances the uptake of major micronu-
trients by mineralizing or solubilizing them and ensuring their bioavailability through
acidification [85,86], secretion of hydrolytic enzymes such as phytase or phosphatase,
excretion of proton, and production of siderophore [87]. Endophytes, rhizospheric mi-
crobiomes, and arbuscular mycorrhizal fungi (AMF) help the plant in the acquisition of
nutrients from the soil through the solubilization of nutrients such as sulfur (S), potassium
(K), calcium (Ca), iron (Fe), zinc (Zn), and phosphorus (P) [88–90]. Some notable root
microbiome genera associated with maize, wheat rice, and legumes, such as Streptomyces,
Pantoea, Citrobacter, Azospirillum, Bacillus, Herbaspirillum, Achromobacter, Gluconacetobacter,
Burkholderia, Chryseobacterium, Bacillus, Klebsiella, Azotobacter, and Pantoea, have been re-
ported to enhance plant development and growth via the uptake of micronutrients and
stimulate the development of plant roots [91–94]. Siderophores secreted by endophytes aid
plants’ iron uptake from the soil; this is because iron cannot directly penetrate the plant
cell even through transporters [95]. Root endophytes, such as Azoarcus, Herbaspirillum,
Acetobacter, and diazotrophicus, have been reported to be active in nitrogen fixation. Some
diazotrophic endophytic microbial communities, such as Bacillus, Gammaproteobacteria, and
Actinobacteria, have been largely reported as atmospheric nitrogen fixers in rice [95–97].
Rhizobia, most importantly, Burkholderiales, form root nodules with legumes, which convert
atmospheric nitrogen into ammonia, which is readily available to the plant, while the plant,
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in return, produces carbon compounds [98,99]. Some root microbiomes such as Brevibacillus,
Kineococcus, Microbacterium, Rhizobium, Burkholderia, Nocardia, Bacillus, Rhodococcus, Methy-
lobacterium, Mesorhizobium, and Paenibacillus associated with Eucalyptus plant have been
reported to be involved in the fixing of nitrogen [95,100]. A summary of other studies on
the nutrient acquisition attributes of some plant root microbiomes is presented in Table 2.

Table 2. Nutrient acquisition attributes of notable plant root microbiomes.

Root Microbiomes Host Plant Phosphorus
(P)

Potassium
(K)

Nitrogen
Fixers (N2F)

Siderophore
(Sid) Zinc (Zn) References

B. amyloliquefacien Rice + + + + + [101]
A. sulfonivorans Wheat − − − + + [102]
A. amazonense Sugarcane − − + − − [103]
B. megaterium Soybean + − + + − [104]
P. agglomerans Rice + − + − − [101]
P. putida Soybean − − + + − [105]
B. silvatlantica Sugarcane − − + − − [106]
B. aryabhattai Soybean − − − − + [107]
K. pneumoniae Rice − − − + − [108]
B. tropica Sugarcane − − + − − [109]
P. putida Rice + − − − − [110]
P. dispersa Wheat − − − + + [101]
B. vietnamiensis Rice − − + − − [111]
R. leguminosarum Beans + − − + + [112]
B. licheniformis Chickpea + − − − − [113]
B. subtilis Soybean − − + + − [114]
P. polymyxa Maize − − + − − [115]
P. thivervalensis Maize − − − + − [116]
E. asburiae Maize − − − + − [116]
R. endophyticum Beans + − − − − [117]
R. irregularis Tomato + − − − − [118]

+ Active, − Inactive.

3.3. Root Microbiome Role in Disease Suppression/Biocontrol

Insects and pathogens attack plants and retard their yield, growth, and health. How-
ever, plant root microbiomes have been reported to be a reservoir of many bioactive
metabolites that can protect and enhance plant resistance against attacks from pathogens
and pests [95]. Phyllospheric microorganisms isolated from different plants showed that
an abundance of Firmicutes is capable of secreting volatile organic compounds active in
the protection of crops from several fungal and bacterial pathogens/diseases [119]. The
plant root microbiome protects the plant through induced systemic resistance (ISR) or
antibiosis from insects, pathogens, and herbivores. Siderophores, antibiotics, salicylic acid,
N-acyl homoserine lactones, lipopolysaccharide, jasmonic acid, and flagella secreted by
endophytic bacteria have been reported to be capable of inducing systemic resistance in
plants [120]. In addition, endophytic fungi, majorly of the phyla Glomeromycota, Basidiomy-
cota, Ascomycota, and Zygomycota, are capable of secreting inhibitory compounds, some of
which are terpenoids, polyketones, phenols, chlorinated compound, alkaloids, peptides,
steroids, and flavonoids, which aid the protection of plants from insects, pathogens, and
herbivores [121]. Actinomycetes have also been widely studied due to their ability to
secrete notable antimicrobial compounds active against plant pathogens. Streptomyces spp.
secretes many antimicrobial compounds such as indolo-sesquiterpene antimicrobial com-
pounds, munumbicins, coronamycin, and kakadumycins [95,122,123]. Studies have also
revealed that siderophore can induce ISR in plants and enhance biocontrol activities. For
example, strains of endophytic methylobacterium successfully suppressed Xylella fastidiosa
(a pathogen responsible for chlorosis in citrus trees) via siderophore production [63]. Rhi-
zobiomes such as Actinobacteria, Proteobacteria, and Firmicutes have been linked with the
inhibition of Rhizoctonia solani, which commonly attacks sugar beet [95], while Gammapro-
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teobacteria have also successfully inhibited the disease via non-ribosomal peptide synthesis
(NRPS) [124]. A high abundance of bacteria such as Streptomyces, Bacillus, Paenibacillus, and
Rhizobium in the root microbial community of cucumber was cultivated and monitored in
suppressive soil [125]. A summary of similar studies on the biocontrol attributes of some
plant root microbiomes is presented in Table 3.

Table 3. Biocontrol activities of some plant root microbiomes.

Root Microbiomes Host Plant Pathogens Active against Activities and Metabolites
Secreted/Induced References

Pseudomonas sp., Pantoea sp. Grapevine A. tumefaciens, A. vitis - [126]
A. calcoaceticus Soybean P. sojae 01 Siderophore and indole acetic acid [105]

Bacillus sp. Soybean
C. truncatum, R. solani, F
oxysporum, S. rolfsii, A.
alternata, and M. phaseolina

Siderophore and
Hydrogen cyanide. [127]

B. subtilis Rice R. solani, F. verticelloides, and
S. rolfsii Lipopeptides [128]

B. gladioli 3A12 Maize S. homoeocarpa - [129]

P. fluorescens 63–28 Pea P. ultimum and F. oxysporum f.
sp. pisi

Induced peroxidase,
polyphenoloxisae, Superoxide
dismutase and phenylalanine
amonialyase.

[130]

P. aeruginosa FTR Maize

F. oxysporium, P. aphanidermatum,
Alternaria sp.,
R solani,
M. phaseolina, Alternaria sp. and
S. rolfii,

- [116]

Glomus etunicatum Wheat G. graminis Isozyme [131]
B. velezensis CB3 Citrus P. digitatum - [132]
G. versiforme and T harzianum Cowpea E. flexuosa - [133]

B. velezensis Maize T. funiculosus, P.
oxalicum, and F. verticillioides Lipopeptide [134]

R. leguminosarum RPN5 Beans
M. phaseolina, F.
oxysporum, S. sclerotiorum and F.
solani.

- [112]

Serratia (B17B), Enterobacter (E),
and Bacillus (IMC8, Y, Ps, Psl,
and Prt)

Papaya and Bean P. capsici - [135]

Acremonium sp., Leptosphaeria sp.,
T. flavus, and P. simplicissimum. Cotton V. dahliae strain Vd080 - [117]

Bacillus sp. Millet R. solani, S. rolfsii, and
F. solani Antimicrobial peptides [136]

B. subtilis Rice M. oryzae
Enhanced activity of peroxidase,
polyphenol oxidase and
superoxide dismutase

[137]

Pseudomonas sp. Wheat F. graminearum - [138]
B. subtilis EB-28 Tomato B. cinerea - [139]
F. mosseae Wheat X. translucens - [140]
R. irregularis Tomato A. solani - [118]
F. mosseae Wheat B. graminis - [141]
F. mosseae and P. fluorescens Wheat G. graminis - [142]

4. Conclusions and Future Prospects

It is evident that plant-microbe signaling cascades are essential regulators of plant
development and growth, and these signal molecules can alter the morphology and phys-
iology of the host plant. Plants develop complex interactions and communicate with
various microbes in their rhizosphere through different signals that affect plant growth
and modulate the plant-specific core root microbiome. These signals, secreted by micro-
and macro-symbionts, can enhance root development, increase nutrient and water uptake,
and promote tolerance to biotic and abiotic stresses. As a result of the roles that plant
growth-promoting organisms played in improving plant growth and yield, the role of
plant-microbe signals in sustainable agriculture and the recovery of marginal lands cannot
be overemphasized. It is, therefore, important to focus future research on the understand-
ing of intra- and inter-communication that can lead to the identification of more signal
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molecules and similarly improve plant growth and development. There is a need to develop
efficient technologies for isolating and identifying signal compounds useful for sustainable
development.
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