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Abstract: Tuberculosis (TB) remains one of the most significant global health problems, posing
a significant challenge to public health systems worldwide. However, diagnosing drug-resistant
tuberculosis (DR-TB) has become increasingly challenging due to the rising number of multidrug-
resistant (MDR-TB) cases, despite the development of new TB diagnostic tools. Even the World
Health Organization-recommended methods such as Xpert MTB/XDR or Truenat are unable to
detect all the Mycobacterium tuberculosis genome mutations associated with drug resistance. While
Whole Genome Sequencing offers a more precise DR profile, the lack of user-friendly bioinformatics
analysis applications hinders its widespread use. This review focuses on exploring various artificial
intelligence models for predicting DR-TB profiles, analyzing relevant English-language articles using
the PRISMA methodology through the Covidence platform. Our findings indicate that an Artificial
Neural Network is the most commonly employed method, with non-statistical dimensionality
reduction techniques preferred over traditional statistical approaches such as Principal Component
Analysis or t-distributed Stochastic Neighbor Embedding.

Keywords: NGS; MDR-TB; SNPs; rpoB; Mycobacterium tuberculosis; ML; IA

1. Introduction

Tuberculosis (TB) is a treatable and preventable infectious disease caused by Mycobac-
terium tuberculosis. Despite its curability, this ancient illness remains a major global health
concern due to its high incidence and mortality rates worldwide. As of 2021, an estimated
10.6 million people had developed TB, and 1.6 million had lost their lives to the disease.
The regime of drug-susceptible and drug-resistant M. tuberculosis isolates demands a mini-
mum of three to four antibiotics (rifampicin, isoniazid, ethambutol, and pyrazinamide) in
combination, leading to complex patterns of drug susceptibility and resistance. The World
Health Organization (WHO) estimates that globally in 2020, 71% of people diagnosed with
bacteriologically confirmed pulmonary TB were tested for rifampicin (RIF) resistance, up
from 61% in 2019 and 50% in 2018 [1]. In 2019, about 0.5 million DR-TB cases were reported
worldwide, of which 78% were MDR-TB. MDR-TB is defined as resistant to at least RIF and
isoniazid (INH), the most effective first-line antituberculosis drugs. It is estimated that one
in four deaths caused by antimicrobial resistance is due to rifampicin-resistant TB. Treating
drug-resistant TB is more complex than treating drug-susceptible TB.

A Drug Susceptibility Test (DST) is essential for proper antituberculosis treatment,
avoiding complications, and significantly reducing the treatment period. Microbiological
culture is the gold standard to evaluate the DR; however, it requires two to six weeks to
obtain results and must be performed at a Biosafety Level 3. Consequently, most patients
start antituberculosis treatment without DST information. To effectively treat DR-TB, a
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rapid and specific drug sensitivity test (DST) is necessary for selecting the appropriate
TB treatment. This test helps identify the most effective treatment for the patient. [2].
Today, the World Health Organization (WHO) recommended molecular tests, such as
Xpert® MTB/RIF (Cepheid, Sunnyvale, CA, USA), Truenat® MTB, and the MTB Plus
system (Molbio Diagnostics, Goa, India), to use as initial tests for the diagnosis of TB and
rifampicin-resistant TB. However, molecular DSTs cannot detect resistance profiles when
mutations occur outside the target genetic region. On the other hand, Whole Genome
Sequencing (WGS) is a technique that can compensate for this weakness.

WGS allows the identification of the DR-TB profile-identified known mutations and
can be used to propose new mutations that confer resistance when compared with a diverse
amount of DST; it is accurate and provides a rich set of additional information for further
analysis of new TB antibiotic development. Therefore, it is essential to explore the value of
modern statistical approaches, such as Machine Learning (ML), which can analyze vast
amounts of characteristics in large databases such as genomics and perform high-precision
resistance classification. ML models can be utilized to analyze the whole genome sequenc-
ing of M. tuberculosis strains, helping predict resistance profiles and reducing the time delay
in starting appropriate treatment. The increased availability of new artificial intelligence
technologies, in particular ML and Deep Learning (DL), allows an approach to complex
clinical databases, radiological images, and whole genomes to perform rapid detection and
classification of the disease, support clinical decision-making, and contribute to quick and
timely diagnosis. However, it is still being determined what model is recommended for
these biological data or if the metrics are reported similarly and consistently. Furthermore,
the several ways of grouping the resistance analyses by drug or treatment regimen make it
challenging to compare them. There is no standardized method for analyzing sequence
data to ensure a good result for resistance prediction. These methods can include, for ex-
ample, analyzing mutations already known to confer drug resistance, analyzing the entire
genome (considering only mutations or the whole genome compared against a reference),
and analyzing specific genes. To better understand the research conducted in this area
and identify any gaps in knowledge, a scoping review was conducted. The main research
question was: What is the current knowledge in the literature about the effectiveness of ML
models in identifying drug resistance? This includes identifying the types of algorithms
and input data used in previous studies.

2. Materials and Methods

The literature was systematically reviewed to describe the usefulness of the newest
contributions of computational ML methods in comprehensively diagnosing the M. tu-
berculosis complex. The review focused on the advantages of the technique for diag-
nosis, the most commonly used model, and the limitations of its implementation. The
PRISMA methodology was implemented to review articles. The Covidence platform
(https://app.covidence.org, (accessed on 1 March 2023)) was integrated to assist in elabo-
rating reviews.

To find documents that might be relevant, we searched the following bibliographic
databases (PubMed). The search results were exported to Covidence, and any duplicate
entries were removed. Additionally, each article’s references were thoroughly searched
to supplement the electronic database results. Search strategies were developed using
Medical Subject Headings (MeSH) and text words related to ML and tuberculosis. Med-
line/Pubmed (National Center for Biotechnology Information, n.d.) and ScienceDirect
(Elsevier, n.d.) databases were searched, and searches were limited to English. The refer-
ence lists of included studies or relevant reviews identified by the search were reviewed.
Data were collected through a search taken from various PubMed publications, as well
as WHO publications, including the words “whole genome sequencing” AND/OR “drug
resistance prediction,” AND/OR “drug resistance learning,” AND/OR “tuberculosis inci-
dence surveys,” AND/OR “genomic medicine,” AND/OR “clinical application of machine
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learning algorithms,” and analyzed against the criteria of direct relevance to the problem
of drug resistance profiling using ML data on M. tuberculosis WGS.

2.1. Eligibility Criteria

Articles had to apply an ML model to genomic data to be included in the review.
Articles from peer-reviewed journals were included if they were published between 2017
and 2022, written in English, and had at least a first-in-class drug analysis. The literature
search results were uploaded into a collaborative file, and eligibility criteria and citation
abstracts were attached to a database. Titles and abstracts produced by the search were
independently screened against eligibility criteria. We thoroughly investigated all titles that
appeared to meet the eligibility criteria or had uncertainties and obtained complete reports.
Afterwards, we checked the full texts to ensure that they met the eligibility criteria. If
needed, we contacted the study authors for extra information to clarify any questions about
eligibility. Disputes were resolved through mediation. The reasons for excluding trials were
recorded. Disagreements were settled through consensus. For each article, the following
details were looked at: type of data, availability of data, number of observations, method
of analysis, method of validation, and how the results matched up with direct methods
(culture, PSD, rapid test). For each study included, the prediction performance metric
was recorded concerning the directly measured value, which was taken as the confidence
indicator for each method used.

To ensure consistency, we carefully reviewed and adjusted our selection and data
extraction guidelines before starting the review process. Our reviewers worked in pairs to
assess all publications related to our search, including their titles, abstracts, and full texts.
Any disagreements were resolved through discussion and consensus with other reviewers.

2.2. Analysis of the Extracted Variables

In order to obtain the required variables, two reviewers collaborated and developed a
data-charting form. They independently documented the data, shared their discoveries,
and modified the form as necessary. A standardized data abstraction tool was utilized to
record data from qualified studies. The Covidence platform gathered crucial information
regarding the study’s characteristics and metrics pertaining to drug resistance.

We abstracted data on article characteristics (e.g., country of origin, funder), engage-
ment characteristics, and contextual factors, determining 13 variables for the analysis
(Table 1). For the variables “features” and “type of algorithm,” categories were defined
in which the studies were grouped. The categories were defined in a two-step process:
First, each study’s input data and the ML algorithm were evaluated in detail. From these
detailed data, two reviewers defined meaningful and more general categories into which
the studies were grouped. To ensure accuracy and relevance, we did not use standard
textbook categorizations for the variables studied. We created our own categories that
strike a balance between meaningful generalizations and detailed information. As a result,
we identified ten categories for “type of algorithm” and five for “type of input data.” Keep
in mind that a study could fall into more than one category depending on the algorithm
type or input data used.

Table 1. Data extracted from the studies.

Variable Categories Definition Example

Sample size

<150, 150–1500, 1500–3600,
3600–8600,

8600–17,000,
17,000–32,700

Number of samples included NA

Publication
year 2017–2022 Year of the publication date of the article 2017–2022

Country of
study Countries Country where the study was published USA, Mexico, Brazil
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Table 1. Cont.

Variable Categories Definition Example

Input Data
type

Omic data Second-generation sequencing platform output files FastaQ files Illumina

Sequence data First-generation sequencing platform output files FastaQ files Sanger

Clinical data Clinical records SQL or any database

Type of
features

Whole genome variants All variants, including SNPs, deletions, and insertions 1296_ins_3_a_attc,
fprA_564_del_2_acg_a

Whole genome SNPs Only variants previously classified as SNP
Known genetic positions

registered in databases such as
NC_000962.3: 1524 nt

DNA variant All variants of a resistance-related gene rpob, katG, embB

SNPs All SNPs of a resistance-related gene rpob_S450L, rpob_L430P,
katG_R463L

Catalog of mutation resistance Genomic positions selected by a catalog of resistances
published by WHO Lys43Arg (aag/aGg)

Number of
features NA

Variables or attributes that are used to describe and
quantify the input data that is used to train a

machine-learning model

Binary or categorical
representations of variants,

complete sequence
representations, and the number
of patterns or relationships used

for training.

Origen of
genomes Countries Countries from which genomes were taken

Availability of
data

No available There is no available data

Available There are available data The data or code used is provided
through web pages or GitHub

Type of
algorithm

Artificial Neural Network Artificial intelligence method
Convolutional neural network,

Recurrent neural network,
multi-layer perceptron

Bayesian Methods A method of statistical inference Naïve Bayes

Clustering
The task involves organizing a set of objects into

groups based on similarities between objects within the
same group

k-means clustering, hierarchical
clustering

Decision tree A graph that uses a branching method to illustrate
every possible output for a specific input Decision tree

Discriminant analysis A multivariate technique used to separate two or more
groups of observations Linear discriminant analysis

Ensemble methods Combines several base models AdaBoost, Random Forest

Instance-based learning Family of techniques for classification and regression k-nearest neighbor

Logistic regression Statistical analysis method to predict a binary outcome Logistic regression

Regression (Other)
Statistical processes for estimating the relationships

between a dependent variable and one or more
independent variables

Linear regression

Kernel methods This is a deep learning algorithm that uses supervised
learning to classify or regress data groups Support vector machine

Other Algorithms not classified into one of the categories
above

Reinforcement learning, graphical
models

External
Validation

Yes Performance of the algorithm tested on external data Automated scoring of the genome
with scoring by DST

No NA NA

Reduction
method

Not reduction No dimensionality reduction methods were used. NA

Statistical Statistical dimensionality reduction methods were
used PCA, RF, T-SNE

Not statistical Statistical dimensionality reduction methods were not
used Match catalogue
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Table 1. Cont.

Variable Categories Definition Example

Number of
Drugs 1–14 Number of drugs tested NA

Treatment line

First line OMS definition RIF, INH, STR, EMB, PZA

Second line OMS definition AMK, CAP, KAN, CIP, OFL, MOX,
ETH, CYS, PAS

Both lines OMS definition First and second line

3. Results

According to the search criteria, seventy-one articles were found in the Medline/Pubmed
and ScienceDirect databases. Of these, 57 were eliminated because they did not meet the
eligibility criteria, and nine were eliminated because they needed to present a methodology
or objectives for this research. In total, 24 articles were included for analysis (Figure 1).
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Reviews and Meta-Analyses.

The study findings were divided into two categories: (1) diagnostic first-line drug
resistance and (2) determination of second-line drug resistance. The criteria for grouping
were based on the description of the ML method used, its association with a direct method,
and its correspondence to clinical diagnosis (Tables 1 and 2).
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Table 2. Frequency of type of algorithm implemented.

Type of Algorithm %

Artificial Neural Network 28
Decision Tree 22

Clustering 13
Logistic Regression 6

Kernel Methods 6
Ensemble Methods 6
Bayesian Methods 3

Instance-Based Learning 3
Other 6

We identified 24 primary studies addressing research on ML models published be-
tween 2017 and 2022. There is a high degree of diversity between the training characteristics
and the genomes’ number and origin. The most commonly used model is ANN [3–12].
However, in recent studies, ensemble learning models and ANNs have shown superior
performance. The most used metric is accuracy. However, its predominance is 58.33%,
showing no standardization between studies on which metric to use (Figure 2). Dimen-
sionality reduction methods are prevalent in this data set due to their many characteristics.
However, it is more prevalent (50%) to use non-statistical methods to reduce data, such as
non-standardized criteria.
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4. Discussion

After analyzing various models, we found that most of them use clustering for training
and Random Forest for feature selection [4–10,13–25]. However, recent research shows that
an increasing number of models are using neural networks [4,6,7,10,20,22], which have
proven to be more effective. In fact, some studies have even implemented deep learning
convolutional models [3,8,9,11], which show promising results. It’s worth noting that as
the models become more complex, they become harder to standardize. This requires more
abstract representations of biological features used for training. Clustering models use
point mutations like SNPs, whereas deep learning models use representations based on
scores [11] or feature ordering [9]. This may result in difficulty correlating relevant features
during the classification process.

Our research revealed that there is a lack of focus on developing effective metrics to
evaluate studies related to healthcare technology implementation. We also found a limited
number of studies on the practical application of these technologies in clinical settings.
Additionally, there is insufficient consideration given to the inclusion and empowerment
of healthcare professionals in the education and use of these technologies. We did not
come across any studies that address stakeholder relationships or the use of evaluative
and iterative strategies to introduce and promote machine learning (ML) technologies in
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clinical practice. It was observed that the studies we reviewed invested more effort in
improving analysis matrices than in performing standardized preprocessing that would
enable comparison (Figure 2).

The type of characteristics used to train the machine learning models varied for each
study, from binary representation for the presence and absence of mutations in resistance
genes or genes complete to physicochemical characteristics of the amino acids resulting
from the base arrangement in each isolate [13]. Few studies compared the performance of
the models for each characteristic used; this tells us about the need to generate a methodol-
ogy that allows for a systematic comparison of the different types of characteristics used in
training machine learning models. Systematically comparing each feature’s strengths and
limitations and identifying which are most effective for specific machine-learning tasks
will be easy for researchers. Additionally, it would allow researchers to better optimize the
performance of their models by selecting the most appropriate characteristics.

Aytan-Aktug et al. (2020) [4] compared different feature representations, including
binaries, scores, and combinations. They found that these representations slightly improved
the prediction results, but the number of features differed significantly. For example, the
amino acid representation had over 260,000 features, while the binary representation had
only 6736. This stark contrast in the number of features raises the possibility of performing
dimensionality reduction on the amino acid representation, which could further improve
prediction results. Reducing the number of features could eliminate redundancies and
noise, allowing for a more efficient and accurate representation of the data.

There is a wide range of approaches to analyzing mutations in these studies. Some
focus on known resistance genes previously identified in the literature [4,8], while others
explore the entire genome or specific types of single nucleotide polymorphisms (SNPs),
deletions, or insertions [4,6,7,9,12–21]. Some studies look at mutations in a genome-wide
context to discover new genes that may be related to resistance [22,23]. However, despite
the various approaches taken, there needs to be more research that specifically examines the
role of epistasis (the interaction between genes) in developing drug resistance, suggesting
that there is a need for more studies that focus on understanding the complex genetic
mechanisms that can contribute to the emergence of DR [10,11,24,26].

Most studies focus on model accuracy as their main performance metric. However,
a predictor with a specificity and sensitivity of at least 95% [27] is generally required for
clinical applications. However, this represents a significant challenge since most clinical
data sets must be balanced between sensitivity and drug-resistant observations. Never-
theless, there is an imbalance, particularly noticeable for first-line TB drugs like isoniazid
and rifampicin compared to other first- and second-line drugs. The model needs more
examples in unbalanced sets to identify resistant cases, resulting in low sensitivity. While
specificity can be high due to the model being presented with many sensitive cases, high
accuracy in predicting sensitive cases does not necessarily imply good performance. This
situation highlights the need for more robust modeling strategies to improve the specificity
and sensitivity of predictive models for clinical implementation. Reporting these metrics in
more standardized ways in reported models is also crucial.

Our research indicates the necessity for greater emphasis on creating measurable
standards to assess studies and the limited attention given to implementing these studies
in clinical settings. Additionally, technology inclusion and education for healthcare profes-
sionals are not being considered. We could not find any studies that address the importance
of building relationships and using evaluative and iterative strategies while introducing
and promoting machine learning technologies in clinical practice. Furthermore, the studies
in our research tend to prioritize improving analysis matrices rather than standardized
preprocessing for comparison purposes (refer to Figure 2).

TB continues to pose a significant global health burden, particularly with the emer-
gence of drug-resistant strains. The COVID-19 pandemic has further underscored the
urgent need to intensify efforts toward achieving the End TB strategy. However, diagnos-
ing drug-resistant tuberculosis (DR-TB) has become increasingly challenging, despite the
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development of new diagnostic tools. The rising number of multidrug-resistant (MDR-TB)
cases necessitates innovative approaches for accurate and timely detection of DR-TB.

In recent years, the integration of AI models has shown great promise in predicting
DR-TB profiles with enhanced precision. These models leverage advanced algorithms
to analyze complex genomic data, enabling the identification of key genetic mutations
associated with drug resistance in M. tuberculosis. Although traditional diagnostic methods
like Xpert MTB/XDR or Truenat, recommended by the WHO, have improved diagnostics,
they may not detect all genome mutations associated with drug resistance.

It is crucial to cover all aspects of the field to comprehensively understand the current
landscape of AI models for predicting DR-TB profiles. Which includes exploring the diverse
range of AI techniques employed, the datasets utilized, and the performance metrics used
to evaluate their effectiveness. By examining experiments or studies of impact in sufficient
depth, this review aims to analyze the strengths and limitations of existing approaches
comprehensively. By delving into the experimental setups, data sources, and evaluation
methodologies employed in these studies, valuable insights can be gained, allowing for
a deeper understanding of the advancements and challenges in the field. Additionally,
this review suggests new avenues for future research to address the current limitations
and drive further progress in DR-TB prediction. By identifying gaps in knowledge and
proposing novel research directions, researchers can pave the way for innovative solutions.
These new avenues include the following:

(a) Integrating multiple AI techniques or combining AI with other diagnostic modalities,
such as imaging or transcriptomics, to improve prediction accuracy;

(b) Developing more accurate and robust AI models that can handle complex and noisy
data from different sources and settings;

(c) Exploring the use of AI for predicting resistance to other drugs besides rifampicin,
isoniazid, pyrazinamide, and fluoroquinolones;

(d) Integrating AI with other technologies such as molecular diagnostics, biosensors, or
nanotechnology for rapid and point-of-care detection of DR-TB;

(e) Evaluating the cost-effectiveness, feasibility, and ethical implications of implementing
AI for DR-TB diagnosis in low- and middle-income countries.

Moreover, efforts should be made to expand the diversity of training datasets, en-
compassing various geographic regions and genetic variants of M. tuberculosis, to enhance
the generalizability of AI models. Furthermore, developing user-friendly bioinformatics
analysis applications can simplify the interpretation of WGS data and facilitate widespread
adoption of this technology.

Our scoping review has some limitations. The diversity of approaches to ML and the
tendency to name the models with individual qualifiers cause some articles to not appear in
the searches performed. To reduce this, we performed a manual search in the references of
the articles and used tools such as research rabbit to be as exhaustive as possible. However,
omissions may arise. In addition, many quick reviews contain confidential information
and are not publicly available.

5. Conclusions

The small number of articles in the specific field of study and the heterogeneity of the
results raise the need for further analysis to characterize the usefulness of ML methods as
diagnostic aids. Little use of DL models is observed in the studies analyzed [4,6,8,9]. It
was shown that it is possible to differentiate drug resistance or sensitivity using genomes;
however, there is great diversity in the characteristics used to train the models. In the case
of studies using models for mutation detection, it can be concluded that the prediction
efficiency for each gene is different according to the model implemented. Therefore,
integrating multiple models is more efficient than one. The most commonly used model is
neural networks, which have quite variable accuracy and have shown high accuracy.

Nevertheless, only some articles were found that implement them, so further research
is required for their characterization. This scoping review aimed to identify gaps in the
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literature that could guide a future systematic review. However, the lack of standardization
in the approaches means that conducting a systematic review is neither appropriate nor
necessary. We require high-quality research that considers the needs of the hospital setting
to determine which techniques and models can be standardized and may be beneficial to
this population and to guide clinicians on how to use these technologies.

In conclusion, this review aimed to cover all essential aspects of AI models for pre-
dicting DR-TB profiles, examine experiments or studies of impact in sufficient depth, and
suggest new avenues for future research. By providing a comprehensive understanding of
the current state of research, highlighting impactful studies, and proposing innovative di-
rections, this review contributes to the ongoing efforts in combating DR-TB and ultimately
achieving the goal of eliminating TB as a public health threat.
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