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Abstract: A set of diseases caused by fungi and oomycetes are responsible for large losses in annual
world cocoa production. Managing the impact caused by these diseases is very complex because a
common solution has yet to be found for different pathogens. In this context, the systematic knowl-
edge of Theobroma cacao L. pathogens’ molecular characteristics may help researchers understand
the possibilities and limitations of cocoa disease management strategies. This work systematically
organized and summarized the main findings of omics studies of T. cacao eukaryotic pathogens,
focusing on the plant–pathogen interaction and production dynamics. Using the PRISMA protocol
and a semiautomated process, we selected papers from the Scopus and Web of Science databases and
collected data from the selected papers. From the initial 3169 studies, 149 were selected. The first
author’s affiliations were mostly from two countries, Brazil (55%) and the USA (22%). The most fre-
quent genera were Moniliophthora (105 studies), Phytophthora (59 studies) and Ceratocystis (13 studies).
The systematic review database includes papers reporting the whole-genome sequence from six
cocoa pathogens and evidence of some necrosis-inducing-like proteins, which are common in T. cacao
pathogen genomes. This review contributes to the knowledge about T. cacao diseases, providing
an integrated discussion of T. cacao pathogens’ molecular characteristics, common mechanisms of
pathogenicity and how this knowledge is produced worldwide.

Keywords: Moniliophthora; Phytophthora; Ceratocystis cacaofunesta; witches’ broom disease; black pod
disease; Ceratocystis wilt; frosty pod rot

1. Introduction

Theobroma cacao L. (Malvaceae) is an important crop for the economy of many countries,
as it is used to produce cocoa powder and cocoa butter, important raw materials for the
production of foods and cosmetics [1]. Theobroma cacao is cultivated mainly in countries
in South and Central America as well as in Western and Central Africa, and in some
countries in Asia. Despite the large number of producers, cocoa production is continuously
challenged by a considerable set of diseases that have a significant impact on the global
annual yield.

Diseases caused by microorganisms have been responsible for the main losses of
Theobroma cacao in different parts of the world over the last decade [2]. Three diseases
have received special attention in the scientific literature: witches’ broom disease (WBD)
and frosty pod rot (FPR), caused by the basidiomycete fungi Moniliophthora perniciosa and
Moniliophthora roreri, respectively, as well as black pod rot (BPR) caused by Phytophthora spp.
oomycetes [3,4].
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Witches’ broom disease and frosty pod rot (FPR) occur in South and Central America,
currently affecting almost all cocoa producers in this region [5]. Black pod root (BPR)
occurs in all regions of the world and is caused by different species of Phytophthora spp.
Phytophthora palmivora is distributed globally, but it does not cause the most aggressive
forms of BPR. In contrast, Phytophthora megakarya only occurs in some countries in West
Africa, but it causes the most aggressive losses to trees and yield [6]. In South America,
Phytophthora capcisi is widespread [7], and Phytophthora theobromicola and P. palmivora are
present in Brazil.

Two other fungi have attracted interest to the scientific community: the basidiomycete
Ceratobasidium theobromae, which causes vascular-streak dieback (VSD) and currently causes
the second-largest yield losses in Southeast Asia, and the ascomycete Ceratocystis cacaofu-
nesta, the cause of Ceratocystis wilt disease (CWD), which can kill the host 10–30 days after
infection [2].

The scientific community and cocoa farmers have been using different strategies to
control T. cacao diseases, such as crop management [8], chemical and biological control [9],
and the development of resistant cultivars in breeding programs [10].

An important issue is that sometimes a clone resistant to one disease is susceptible
to another. For example, the CCN 51 genotype, while being resistant to witches’ broom
disease, is susceptible to Ceratocystis wilt disease [11]. Therefore, some researchers have
tried to develop genotypes that are simultaneously resistant to more than one disease [12].

In recent decades, some important data about T. cacao pathogens’ genomes and molec-
ular aspects of interaction with the host during infection have been produced. The
complete genomes of some pathogens, such as M. perniciosa [13,14], M. roreri [14,15],
Phytophthora spp. [16,17] and C. cacaofunesta [18] have already been sequenced and are pub-
licly available. Moreover, pathogen effectors with important roles in the plant–pathogen in-
teraction are known, such as necrosis and ethylene-inducing proteins (NEPs) from fungi of
the genus Moniliophthora [19], oomycetes of the genus Phytophthora [20], and cerato-platanin
proteins (CPs) from the species M. perniciosa [21], M. roreri [15] and C. cacaofunesta [18]. In
silico studies have predicted potential effectors for Moniliophthora spp. [14] and C. cacaofu-
nesta [18] that can be targeted in future research to better understand the molecular aspects
of plant–pathogen interactions.

Recent reviews about T. cacao diseases describe important aspects of symptomatology,
pathogen taxonomy, management strategies and molecular aspects of plant–pathogen
interaction. For WBD, Santos et al. [22] presented the evolution of different proteins
of M. perniciosa in the three phases of infection: the initial secretion of effector proteins
to penetrate plant tissues and CPs to overcome the initial plant immune response in
the asymptomatic phase; NEPs and proteins associated with catabolic processes such as
amylases, pectinases and cellulases in the green broom phase; and the presence of pectin
methyl esterase and methanol oxidase proteins in the necrotrophic phase.

In another review, Jiménez et al. [23] reported important genetic aspects of the M. roreri
population structure, evidencing the presence of more diverse genetic groups in Colombia
and other less diverse groups that are more widespread as a consensus of molecular
markers studies. This study also presents modulations of fungal gene expression, with
a high expression in genes related to cell wall restructuring and the glyoxylate cycle,
suggesting that the pathogen perceives and responds to the shortage of nutrients in the late
infection period.

For the species of the genera Phytophthora which causes cocoa black pod rot, Marelli et al. [24]
identified a larger number of genes in P. megakarya and P. palmivora genomes in comparison
to other Phytophthora species, which is possibly due to whole-genome duplication events.
In the genome of these pathogens, the presence of proteins commonly involved in plant–
pathogen interactions, such as pectinases, proteases, elicitins, Crinklers, necrosis-inducing
proteins (NLPs) and RXLRs, was observed.

To face the problem of multiple diseases occurring in the same region, it is important
to understand potential solutions and limitations considering two or more pathogens simul-
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taneously. Thus, understanding the similarities and specificities of pathogens is essential
to propose and evaluate new solutions. In this context, this work aims to summarize the
state of the art of molecular studies in eukaryotic cocoa pathogenic microorganisms and
what is known about their mechanisms of pathogenicity. To achieve this, we systematically
reviewed the available molecular literature about T. cacao fungi and oomycete pathogens,
especially studies related to plant–pathogen interactions.

2. Materials and Methods

This work followed the PRISMA guidelines for reporting systematic reviews [25].
This systematic review included the steps of planning, execution, and data summarization,
which were followed by a bioinformatic analysis of the collected data. During the first three
steps, we used the StArt software (State of the Art through Systematic Review), Beta version
3.0.3 [26] and R software, version 4.0.3 [27], along with some specific packages mentioned
further in this section, to organize the work and provide automation to repetitive tasks.

2.1. Planning

The planning started with defining the subject and its main aspects, such as the
objective, research questions, paper databases, research string, and data summarization
strategy. The planning step was discussed with the research group and reviewed to
minimize bias of the protocol. The research questions that guided this review are presented
in Table 1.

Table 1. Systematic review research questions.

Questions

What genera and species of eukaryotic microorganism pathogens of T. cacao have been the focus of omics studies in recent years?
Which molecular techniques have been applied, and what kind of data are available for each of these species?

How is scientific production about this subject distributed globally?
Which scientific journals and subject areas contain the majority of available studies?
How are the most cited papers found in the systematic review related to each other?

Which proteins for each species are already associated with pathogenicity in the current literature?
Do these proteins have orthologs among the T. cacao pathogens discussed in the systematic review?

Terms associated with the research subject were chosen to gather the initial review
records. Metadata were collected from primary study papers that contained the terms
“cocoa” or “cacao” and “pathogen(s)” or “disease(s)” in the title, abstract or keywords. We
limited the study period from 2000 to June 2022 and obtained the works from the Scopus
and Web of Science databases. The search strings used in the advanced search in each
database are shown in Table 2.

Table 2. Search strings for each scientific database’s advanced search tool.

Database String

Scopus
TITLE-ABS-KEY (cocoa OR cacao AND pathogen* OR disease*)

AND PUBYEAR > 1999 AND (LIMIT-TO (DOCTYPE, “ar”)) AND
(LIMIT-TO (LANGUAGE, “English”))

Web of science TS = (cocoa OR cacao) AND TS = (pathogen* OR disease*) AND
Language: (English) AND DOCUMENT TYPE: (Article)

The complete protocol defined in the planning step can be found in Supplementary
Materials Table S1.

2.2. Execution

Metadata from the studies were collected in June 2022 using advanced search tools
in the Scopus and Web of Science, and were downloaded as raw text files in the Bibtex
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format. Given the large number of initial records obtained from the databases, a semiauto-
mated process based on text mining was used during the screening step. In this process,
papers were clustered based on similarities in their abstract content. Papers belonging to
clusters not related to the subject of this work were removed from the initial records. The
semiautomated record selection consisted of the following steps:

1. The structure of topics present in the records was modeled using latent Dirichlet
allocation [28] with the R package textmineR, version 3.0.5 [29]. The number of topics
was estimated using the R package ldatuning, version 1.0.2 [30].

2. Records were clustered based on their relation to the topic structure using affinity
propagation [31] with the R package APCluster, version 1.14.10 [32]. The number of
clusters was estimated with the R package NbClust, version 3.0.1 [33], which provides
the most frequent best solution among a set of estimates proposed by different criteria.

3. Word clouds were generated using the R package wordcloud, version 2.6 [34] based
on the paper abstracts of each cluster. This allowed for identification and exclusion
of clusters not related to the subject of this review. Before excluding a cluster, some
papers were randomly selected, and their titles and abstracts were read first.

4. Papers in the selected clusters were subjected to conventional screening using the
StArt software.

5. After the semiautomated screening, the titles and abstracts were read, and the remain-
ing papers obtained from the databases were read fully to select those for the next
step of analysis.

2.3. Summarization

As defined in the review protocol, a dataset was collected from each selected paper.
This set consisted of the title, document object identifier (doi), year of publication, genus
and species studied, type of molecular analysis, genomic sequences investigated, genes
related to pathogenicity or differentially expressed, and proteins differentially accumulated
during the plant–pathogen interaction.

A MySQL relational database was constructed to organize the collected data, and the
R package RMariaDB, version 1.2.2 [35] was used to connect R with the MySQL database.
Graphics were generated using the package ggplot2, version 3.4.0 [36].

In addition to the graphics produced from the summarization of the collected data,
metadata from the scientific databases were employed with the R package bibliometrix,
version 4.0.1 [37] to generate a co-citation network by coupling the main references. The
resulting graph was edited using the Vosviewer software, version 1.6.18 [38].

After this initial data summarization, the genes and proteins linked to the diseases
were subjected to bioinformatic analysis.

2.4. Bioinformatic Analysis

The amino acid sequences of proteins associated with the diseases were obtained
from the NCBI protein database [39] using the identifier provided in the corresponding
papers. For genes, the corresponding protein sequences were also obtained from the NCBI
database using a translated BLAST search (blastx) [40] to find proteins with high similarity
(e − value < e−10). A BLAST search was also performed to retrieve protein sequences from
other species included in this systematic review.

Clusters of orthologous proteins among the studied genera and species were iden-
tified by submitting the protein sequences found to the web version of the Orthovenn2
software [41], which was also used to identify common motifs in the amino acid sequences
from different species belonging to the same cluster.

Selected clusters of proteins associated with pathogenicity, shared among pathogenic
species, were submitted to Multiple Expectation Maximization for Motif Elicitation using
the MEME suite [42,43] to detect shared motifs.
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3. Results
3.1. Bibliometric Analysis

A total of 3617 records were obtained in the initial search, with 1975 records from the
Scopus database and 1642 from Web of Science. After removing 1035 records detected as
duplicates by the bibliometrix package, the remaining 2852 records were submitted to topic
modeling, and subsequently to cluster analysis.

The ldatuning package enabled the estimation of 14 topics as the local optimal number
of topics, and we used this number as a parameter for topic modeling. Then, by using the
topic modeling result as an input, NbClust also estimated 14 clusters as the local optimal
number of clusters, for a total set of 2852 records. After selecting records based on cluster
analysis, four clusters containing a total of 841 records were formed comprising studies
related to the review subject, and the remaining records were excluded. The excluded
clusters were mainly related to human health, benefits of cocoa consumption, agroforestry
systems, and other topics not related to the molecular studies of T. cacao pathogens. The
cluster analysis word clouds for all included and excluded records are in Supplementary
Materials Figure S1.

Afterward, the titles and abstracts of the 841 selected records were read, and 229 papers
were selected for full reading. Finally, the full reading led to the detection of 13 duplicates,
and another 67 papers were excluded because of the absence of molecular studies with
T. cacao pathogens. The remaining 149 papers formed this systematic review’s database
(SRDB) (Figure 1a). In Figure 1b, the initial records had a high frequency of words such
as “chocolate”, “food” and “dietary”, all of which were not related to this review subject.
The word cloud generated with the records after the semiautomated selection supported
by data mining (Figure 1c) no longer contained those words, showing the efficacy of
the semi-automated selection. Similarly, the word cloud generated with the abstract
of the final selected papers presented a high frequency of words such as “perniciosa”,
“moniliophthora”, “fungus”, “phytophthora”, “isolates” and others, demonstrating the
efficacy of the screening process (Figure 1d).
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systematic review studies database.
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The SRDB contained studies conducted by authors from different parts of the world
with Eastern Europe being the exception; however, they were mostly authored by re-
searchers from the Americas, and mainly South and Central America (Figure 2a). Almost
80% of the SRDB studies had lead authors from Brazil (55%) and the USA (22%) out of a
total of 16 countries (Figure 2b).
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Figure 2. Knowledge production and dissemination about cacao diseases caused by eukaryotic
pathogens in the systematic review database. (a) Geographic distribution of papers according to the
first author’s country. (b) Bar plot showing the number of papers by country according to the first
author. (c) Publication frequency of the most common journals in the systematic review database.
(d) Co-citation network structure of the most cited papers in the systematic review database. Nodes
represent papers and the size of the node represents the number of citations; edges represent the
citation between two papers. Nodes with the same color represent clusters of papers with similar
co-citation patterns.

The selected studies were predominantly published in journals related to phytopathol-
ogy and fungal genetics, as expected. Out of 71 journals, approximately 50% of the papers
included in this review were published by nine journals: Plant Pathology, Fungal Biology,
Mycological Research (currently Fungal Biology), Genetics and Molecular Research, Fungal Genet-
ics and Biology, Mycologia, Physiological and Molecular Plant Pathology, BMC Genomics, and
European Journal of Plant Pathology.

The most cited papers in the SRDB formed five clusters of co-citations (Figure 2d):
cluster 1 contained papers discussing, among other results, the population structure or sub-
population of M. perniciosa and M. roreri pathogens [14,44–46] and Phytophthora spp. [47,48];
cluster 2 contained papers discussing M. perniciosa effector proteins [49–51]; cluster 3 con-
tained papers based on molecular markers discussing M. perniciosa genetic diversity, which
is similar to cluster 1 [52–54]; cluster 4 contained studies characterizing and evaluating
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M. perniciosa proteins interacting with T. cacao [55–57]; and cluster 5 contained molecular
responses of M. roreri during its interaction with T. cacao [58,59].

3.2. Characterization of Studies

The SRDB contained analyses of 44 species distributed across 18 genera. Some species
were not exact T. cacao pathogens, but were species that received new classifications during
or near the time interval of the systematic review. For example, in some papers, samples of
C. cacaofunesta were analyzed together with C. fimbriata, which were collected from different
host species. All studies found in the scientific databases were published from 2003 to 2022,
although the advanced search was set up to retrieve papers published from the first day of
2000. Papers were concentrated in a set of species, and the yearly distribution indicated an
increase from 2017 to 2022 (Figure 3a).
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Figure 3. Genus and species of Theobroma cacao pathogens and type of analysis. Some papers are
counted more than once because they have data from more than one species. (a) Number of papers by
species per year. (b) Bar plot of papers by genus. (c) Bar plot of papers by technique for each genus.

The studies were mostly concentrated on three genera: Moniliophthora (105 studies),
Phytophthora (59 studies) and Ceratocystis (13 studies). Within the genera Moniliophthora and
Phytophthora, the most frequent species were M. perniciosa and P. palmivora, respectively
(Figure 3b). It is important to note that the total number of studies represented in any
graphic in Figure 3 exceeds the number of papers in the SRDB (149), since some individual
papers contain studies of more than one species.

The studies were categorized into 78 techniques according to the type of molecu-
lar analysis and/or nature of the results, and those 78 techniques were clustered into
24 categories (Figure 3c). Some techniques were more frequent in the selected studies,
such as genomic sequence analysis, molecular marker development and whole-genome
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sequencing. As expected, the distribution of techniques by genus followed the distribution
of studies, concentrating the major number of techniques in the most frequent genera:
Moniliophthora, Phytophthora and Ceratocystis, in this order.

The genomic sequence analysis category included studies containing nucleotide se-
quence analysis for genes from one or more species. This category included studies such
as phylogenetic and population structure studies, and specific gene and gene family anal-
ysis. Some important studies proposing new species classification were found in this
category: (i) the classification of the causal agents of WBD and FPR in a new lineage of
Marasmiceae [60]; (ii) the classification of C. cacaofunesta as a new species in the C. fimbriata
complex, which has T. cacao as a specific host [61]; and (iii) the identification of a new
species, Phytophthora theobromicola, causing BPR in the Brazilian state of Bahia [62].

The molecular marker analysis category was formed by papers that developed or
used existing molecular markers to investigate pathogen genomes. Molecular markers
for population studies were developed for M. perniciosa [53,63,64], M. roreri [46,65] and
Phytophthora spp. [46,66–68].

Some works in the SRDB presented gene expression profiles for pathogens in vitro
or those involved in the plant–pathogen interaction. Considering the systematic review
protocol, studies only analyzing the host expression were not considered. The SRDB
contained studies of gene expression pathogens of the species M. perniciosa, M. roreri,
P. palmivora and P. megakarya.

The differential gene expression between M. perniciosa biotrophic-like and saprotrophic
mycelia was first elucidated by Rincones et al. [69] by employing an in vitro culture of
isolates from infected T. cacao trees. The main results of this study were the identification of
the pathogenicity-related genes associated with cell wall degradation as a possible response
to carbon, and the description of nitrogen restriction during the biotrophic phase. On the
other hand, saprotrophic mycelia genes related to carbon metabolism were overexpressed.
Saprotrophic mycelia also overexpressed genes related to antifungal toxins that could
prevent the colonization by competing fungi. In another study, Franco et al. [70] identified
the presence of Thaumatin-like proteins, a type of pathogenicity-related protein with
antifungal effects, in the M. perniciosa genome. They observed its expression via in vivo
experiments with T. cacao.

Another study including the gene expression of M. perniciosa identified a family
of cerato-platanin (CP) genes that are expressed at different moments during the plant–
pathogen interaction. CP proteins usually act as phytotoxins, elicitors and allergens [21].

In samples of M. roreri collected from highly susceptible (Pound-7 and CATIE-1000)
and tolerant (UF-273, CATIE-R7 and CATIE-R4) clone pods, Bailey et al. [71] demonstrated
the earlier expression of genes associated with stress metabolism, responses to heat shock
and anoxia in the tolerant clone samples. Genes encoding alternative oxidase proteins and
transporter-like genes were among the overexpressed genes in tolerant clone pods, possibly
associated with the fungus’s ability to overcome plant resistance. In another experiment,
Bailey et al. [72] evaluated the in vitro gene expression of M. roreri in the biotrophic phase
but obtained results that conflicted with those of in vivo experiments.

Masanto et al. [73] evaluated the relative expression of eight genes associated with
pathogenicity from P. palmivora isolates obtained from T. cacao plants in Nicotiana benthami-
ana. Only four genes were expressed in the in planta test experiment for 24 h, 48 h, 72 h and
96 h. The isolates showed three different levels of severity through in vitro tests with apples,
but the mild and severe isolates had similar gene expression profiles, under-expressing the
four genes (CNR1, Pec1, Pec3 and RXLR5) in 48 h, while the moderately severe isolate had
the opposite behavior.

In another study, Puig et al. [6] evaluated the metabolism and gene expression of
P. palmivora and P. megakarya isolates under high- and low-temperature stress. P. palmivora
showed more tolerance, which was explained by its persistence in some areas with high-
temperature periods, even when plants were also affected by P. megakarya. The metabolite
analyses showed a higher metabolite concentration in P. palmivora than in P. megakarya
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under high-temperature stress. The gene expression profile of genes associated with
responses to abiotic stress presented slight differences among isolates. Only genes encoding
chaperones/heat shock proteins did not have the same profile: some P. megakarya genes
were found to be exclusively heat-responsive, while P. palmivora genes responded similarly
to any type of temperature stress.

Seven papers presented the whole-genome sequencing (WGS) of the T. cacao pathogens
discussed in this review. The SRDB included WGS and assembly studies for the following
species: C. cacaofunesta (1); C. theobromae (1); M. perniciosa (2); M. roreri (2); P. palmivora (2);
and P. megakarya (2) (Table 3).

Table 3. Whole-genome sequencing studies and data availability.

Paper Species Assembly Deposit Genome Size (Mb) Number of Gene
Models

[13] M. perniciosa Genbank: GCA_000183025.1 26.7 16,329

[15] M. roreri Genbank: GCA_000488995.1 52.2 17,910

[16]
P. megakarya Genbank: GCA_002215365.1 101.18 42,036

P. palmivora Genbank: GCA_002911725.1 107.42 44,327

[18] C. cacaofunesta Genbank: GCA_002776505.1 30.5 7382

[14]
M. perniciosa (MP 4145) +

http://nbcgib.uesc.br/mperniciosa (accessed
on 27 April 2023)

47.01 14,210

M. roreri 45.17 14,154

[74] C. theobromae Genbank: GCA_009078325.1 31.2 9264

[17]
P. megakarya http://www.cacaopathogenomics.com/

(accessed on 27 April 2023)
222.04 ± 25.19 * 57,577 ± 7904 *

P. palmivora 135.32 ± 17.21 * 36,778 ± 4481 *
+ Ref. [14] presents five M. perniciosa genomes from different hosts. Mp 4145 was isolated from a susceptible
cacao genotype. * Ref. [17] analyzed P. megakarya and P. palmivora isolate genomes from infected T. cacao trees in
different countries. Values with an * (asterisk) are in the form mean ± standard deviation.

Genome size varies according to genera and species. Ceratocystis cacaofunesta and
C. theobromae have the lowest genome sizes at 30.5 Mb and 31.2 Mb, respectively. P. megakarya
has the biggest genome size (~222 Mb), followed by P. palmivora (~135 Mb), while the
genome size of Moniliophthora spp. is close to 50 Mb, with there being an exception for
the first assembly published by Mondego et al. [13] (26.7 Mb). However, this same work
estimated a genome size ranging from 38.7 to 39.0 Mb. The number of predicted genes for
each assembly was mostly proportional to the genome size. C. cacaofunesta had the smallest
number of predicted genes (7382) and P. megakarya, the biggest (~57.5 thousand).

Some studies have predicted potentially secreted proteins and/or effector-coding genes
for each genome annotation. For M. perniciosa, Barbosa et al. [14] predicted 157 effector
candidates in the isolate Mp 4145, and more than 100 in the other two isolates from
susceptible T. cacao. They also predicted 243 effector candidates from the M. roreri isolate.
Meinhardt et al. [15] identified 1535 secreted protein-coding genes and observed that 1355
among them were expressed in infected cacao pods. Ali et al. [74] identified 138 putative
effectors in the C. theobromae genome. Ali et al. [16] identified 3757 (1779 transcribed) and
3865 (2633 transcribed) putative, secreted protein-coding genes in the P. megakarya and
P. palmivora genomes, respectively. They also found some of these genes transcribed in
RNA samples from infected T. cacao plants.

3.3. Genes and Proteins Associated with Pathogenicity

In the SRDB, nine papers conducted proteomic studies on proteins associated with
pathogenicity or that were differentially accumulated during the plant–pathogen interaction.
Almost all (seven) studies analyzed M. perniciosa proteins, while one studied Ganoderma
boninense proteins and another studied C. cacaofunesta proteins. However, 17 other studies
using molecular markers, gene expression or other nucleotide sequence analysis discussed

http://nbcgib.uesc.br/mperniciosa
http://www.cacaopathogenomics.com/
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genes potentially associated with pathogenicity in other species: M. perniciosa, M. roreri,
P. megakarya and P. palmivora.

Among the M. perniciosa protein studies [75], an important work analyzed the fungal
proteome from necrotrophic mycelia to basidiocarp development. Some proteins potentially
associated with virulence have been found in the primordium (mycelium) and basidiocarp
stages, such as aldo-keto reductases, which are associated with virulence and mushroom
formation, linoleate diol synthase, leukotriene-A4 hydrolase and 3-ketoacyl-coA-thiolase,
and other proteins belonging to biosynthesis pathways of lipids related to immune response
and virulence in pathogenic fungi.

In another study, Silva et al. [76] discussed the proteomic response of M. perniciosa
when exposed to a pathogenesis-related protein TcPR-10 recombinant from a gene isolated
from T. cacao. Many proteins highly expressed are related to the stress response, such
as heat shock proteins and chaperones, and some proteins are associated with defense
mechanisms against cytotoxic compounds, such as oxidoreductases and proteins associated
with autophagy.

The NLP-like effector of plant necrosis 2 (NEP2), a protein that induces necrosis
in the host tissue, plays an important role in M. perniciosa infection. Garcia et al. [19]
identified NEP1 and NEP2 and demonstrated their ability to induce necrosis by inoculating
recombinant NEPs in Nicotiana tabacum leaves. The crystal structure of MpNep2 was
determined by Zaparoli et al. [77], who also showed that MpNep2 is overexpressed in the
stage of advanced necrosis in T. cacao tissues.

Other important proteins related to M. perniciosa pathogenicity are discussed in other
papers in the SRDB. For example, PR-1 proteins were found to neutralize plant defenses
and avoid competing fungi in [57]; the crystal structure of MpPR1i was determined by
Baroni et al. [78]; and cerato-platanin (CP)-like proteins, another necrosis-inducing protein
also found in ascomycetes, were identified by Zaparoli et al. [79].

Genome and secretome analysis of M. roreri also revealed the presence and expres-
sion of NEPS, PR-like proteins and cerato-platanin proteins [15]. In the same study,
Meinhardt et al. [15] found evidence that high expression levels of chitin synthases could
help fungi to overcame host defenses.

Teh et al. [80] provided a functional analysis and characterization of G. boninense NEPs.
The soluble recombinant GbNEP expressed in Escherichia coli BL21(DE3)pLysS was able to
induce necrosis in two model plants, Solanum lycopersicum (tomato) and Nicotiana tabaccum
(tobacco). However, it was ineffective when applied to oil palm (Elaeis guineensis) leaves
and root tissues.

Molano et al. [18] identified some proteins potentially associated with pathogenicity
secreted by C. cacaofunesta in culture media supplemented with T. cacao xylem extracts.
This set of proteins contains: 25 glycoside hydrolase (GH) proteins associated with cell
wall degradation; 2 NEP2 precursors and 1 cerato-platanin protein that are phytotoxic; and
54 phosphatidylinositol (PI)-specific phospholipase Cs (PI-PLCs) among other potential
effectors.

NEP-like proteins also play an important role in Phytophthora spp. infection. Bae et al. [20]
identified multiple copies of the NEP1 protein in the P. palmivora genome. From nine copies,
six had confirmed expression in the mycelium and one in P. megakarya zoospore-infected T.
cacao leaf tissue. Necrosis-induced proteins are also found in P. palmivora genome sequences.

For all genes and proteins presented in the paper as associated with pathogenicity,
available amino acid sequences were retrieved from the blastp or blastx search (for nu-
cleotide sequences). A total of 240 retrieved sequences were submitted to Orthovenn2
orthologous cluster analysis.

Orthovenn2 revealed 83 clusters of possible orthologous proteins among the 240 sequences
for different species. Some clusters shown in Figure 4a are formed exclusively by sequences
described from pathogens of only one species. These are the clusters in line VII (M. perni-
ciosa) and line VIII (M. roreri) (Figure 4a). Other clusters are formed by sequences described
in pathogens from species belonging to the same genus. These are the clusters in line II
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(P. palmivora, P. megakarya and P. capsici), line IV (P. megakarya and P. capsici) and line V
(M. perniciosa and M. roreri). Two set of clusters include sequences from pathogens belong-
ing to different genera: line I (M. perniciosa, M. roreri, P. palmivora, P. megakarya and P. capsici)
and line II (Ceratobasidium theobromae, M. perniciosa and M. roreri). These last two sets of
clusters were submitted to MEME analysis for a better description.
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Line I (Moniliophthora spp. and Phytophthora spp.) consisted of a cluster of 14 proteins
(Figure 4b). The MEME analysis identified three motifs shared among these proteins.

In line II (Moniliophthora spp. and C. theobromae), there were three clusters with a total of
12 proteins (Figure 4c). Cluster 1 comprised six proteins with predicted molecular function
in cell wall organization, cluster 2 comprised three proteins with predicted molecular
function in the carbohydrate metabolic process, and cluster 3 comprised proteins with
molecular function predicted in serotonin biosynthetic process from tryptophan.

4. Discussion
4.1. Identification of Studies and Pathogens

The focus of this systematic review is on the molecular characteristics of T. cacao
pathogens and diseases. However, given the widespread interest in chocolate, which is the
main product produced from the raw material of T. cacao pods, it is expected that papers
related to the commercial, nutritional and industrial aspects of chocolate will also appear
in a scientific database search about T. cacao. As a result, the initial database retrieval for
this systematic review yielded over 3500 papers. Given this large number of papers, it is
useful to have a good strategy for the initial selection of papers.

Recent studies have proposed semiautomated steps carried out by machine learning
to assist researchers in their initial search on scientific databases, which face a continuous
increase in the amount of data [81,82]. Using a semiautomated strategy saved us time and
effort by grouping papers by topics and providing an efficient way to remove papers not
related to the systematic review subject. After the initial steps of semiautomated study
selection, the total number of papers for title and abstract reading was reduced from 3617 to
817, from which 149 studies were selected for inclusion in the systematic review database
(SRDB).

More than half of the papers included in the systematic review have the first author
affiliated with a Brazilian institution. This result is consistent with a recent systematic
review on the molecular biology of the interaction between cocoa and witches’ broom
disease, which showed that Brazilian institutions were responsible for more than 70% of
the research on this topic [22].

Cocoa is an important crop for the Brazilian economy, and the country has produced
more than 250 thousand tons of cocoa beans in recent years [83]. However, Brazil was
the second-largest cocoa producer in the world until the witches’ broom disease spread
in the 90s [84]. Since then, much research has been conducted in Brazil, in collaboration
with many institutions around the world, on witches’ broom disease and the pathogen
M. perniciosa [22]. The second largest number of publications in the SRDB are from authors
affiliated with American institutions. The global spread of publications does not necessarily
reflect the global production of T. cacao nor the commercial interesting in the production of
cocoa derivates. Despite the interest in the crop, disparities in global scientific production
can concentrate a large number of publications in a small number of countries [85]. The
United States and Brazil occupied the 1st and 14th positions, respectively, in the SCImago
country rankings of publications in 2022 [86], with many collaborations between researchers
from multiple institutions regarding T. cacao diseases [22]. These two facts together may
have contributed to this large number of publications by researchers from Brazilian and
American institutions.

In general, the most frequent pathogens analyzed in the SRDB studies have been
causing yield losses in cocoa production worldwide in recent years and decades. In the
late 1980s, Fulton [3] identified the “trilogy” of diseases caused by fungi and oomycetes
in tropical regions, namely, witches’ broom, frost pod rot, and black pod diseases. More
recently, the VSD caused by the basidiomycete C. theobromae has caused significant losses
in cocoa production in Southeast Asia and has been the focus of research [74]. Ceratocystis
wilt disease caused by the ascomycete C. cacaofunesta [2], which can kill infected plants in
10–30 days [87], has recently been studied more frequently as well. Although being beyond
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the scope of this review, a complex of badnavirus infecting T. cacao trees in the West Africa
region, the largest T. cacao producer region in the world, is also of concern [88].

The five clusters formed by the most cited papers in the SRDB are mainly related to
population structure and the genetic diversity of pathogens. Some important results of
these papers have led to the recent identification of new species such as C. cacaofunesta [61]
and Phytophthora theobromicola [62], and the reclassification of M. perniciosa and M. roreri
into a new taxon in the Marasmiaceae family [60].

The clear comprehension of pathogen speciation can guide researchers to understand
specific characteristics of T. cacao pathogens. The whole-genome sequencing of C. ca-
caofunesta showed a phosphatidylinositol-specific phospholipase C (PI-PLC) gene family
expansion [18], which is uncommon in other closely related species of the C. fimbriata
complex. This broad range of PI-PLCs may be related to the pathogens’ ability to overcome
susceptible T. cacao genotypes’ initial defense [89].

Similar studies have been conducted to understand the genetic diversity of T. cacao and
to identify molecular markers for disease resistance or tolerance to different diseases such as
black pod rot [90,91], witches’ broom disease [92–94] and frosty pod rot [95]. Understanding
the origin and diversity of cocoa pathogens can help in the development of biocontrol
solutions based on coevolved antagonist endophytes [96,97].

4.2. Theobroma cacao Pathogens’ Molecular Characterization

Whole-genome sequencing studies were conducted for the most frequent pathogens
in this review. Ceratocystis cacaofunesta has the smallest genome that is 30.5 Mb and has
a few more than 3000 predicted genes, but the range and proportion of the genome size
and predicted genes are compatible with other Ceratocystis species [18]. The genome size
and number of genes from M. perniciosa (47.01 Mb and 14.2k genes) and M. roreri (47.1 Mb
and 14.2k genes) found by Barbosa et al. [14] are consistent with the expected dimensions
for these species and with the M. roreri genome size found by Meinhardt et al. [15] (52 Mb
and 17.9k genes). Slight differences occur even in isolates from different subpopulations
or due to different genome sequencing technologies [14]. Phytophthora palmivora and
P. megakarya have the largest genomes and correspondingly the highest number of genes,
but these are also consistent with the genus. Ali et al. [16] found genome sizes of 101 Mb
for P. megakarya and 107 Mb for P. palmivora, with ~40k genes. However, Morales et al. [17]
found significantly different genome sizes for the same species considering the mean ± SD
of the sequenced isolates: 222.04 Mb ± 25.19 (57,577 ± 7904 genes) for P. megakarya and
135.32 Mb ± 17.21 (36,778 ± 4481 genes). In Phytophthora species, events of hybridization
and genome duplication are common [98], and Morales et al. [17] found evidence of recent
whole-genome duplications in the genome assemblies. The C. theobromae genome has
31.62 Mb (9.2k genes), which is considerably smaller than that of closely related species
such as R. solani strains (56.02–36.9 Mb) and Botryobasidium botryosum (45.75 Mb) [74].
Among the genes and proteins associated with pathogenicity, necrosis-inducing proteins
were more frequent in the SRDB studies: M. perniciosa [77], M. roreri [19], P. palmivora and
P. megakarya [20], and G. boninense [80]. Additionally, a NEP2 precursor was also reported
in C. cacaofunesta [18].

The NEP-like proteins from Moniliophthora spp. and Phytophthora spp. formed a cluster
in the Orthovenn2 analysis, suggesting that they have a similar function. However, the
G. boninense NEP did not establish an orthologous cluster with the analyzed proteins. This
result is consistent with previous findings, which showed that MpNEP is more closely
related to oomycetes than fungi, possibly because of gene acquisition for the horizontal
transfer by oomycetes from a common ancestor of M. perniciosa and M. roreri [99]. Moreover,
there is evidence of the horizontal acquisition of two other genes by Moniliophthora, mannitol
phosphate dehydrogenase (MPDH) from actinobacteria and metallo-dependent hydrolase
(MDH) from firmicutes [99], which enforces the role of lateral acquisition in the evolution
of these pathogens.
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Horizontal gene transference and hybridization play important roles in phytopathogens’
adaptation to new hosts or their acquisition of new mechanisms of virulence [100,101]. A
comparative genome analysis of 31 Phytophthora species identified genes potentially ac-
quired by horizontal transfer from distantly related species, with homologs associated with
pathogenicity, virulence and effector genes from the Pathogen–Host Interaction database
(PHI-base) [102]. Closely related species can also exchange genetic material by mobile
elements or anastomosis [103,104]. Analysis of the mitogenome of Ceratocystis huliohia and
Ceratocystis lukuohia, which are sexually incompatible co-occurring pathogens in sapwood,
evidenced that the regions originated in C. huliohia and are actively moving to populations
of C. lukuohia [105]. Considering the occurrence of many diseases in T. cacao crops in the
same region such as WBD, BPR and CWT in South American countries, analyzing the
evidence of horizontal gene transfer among T. cacao pathogens or their ancestors should be
an issue studied in future research.

In the initial phase of WBD, M. perniciosa secretes many effector proteins [22,69], but
only some of them, such as NEP and CP families, have well-understood functions in the
current literature. More than 150 putative effectors have been identified in M. perniciosa
whole-genome sequencing and annotation from T. cacao isolates. More than 200 putative
effectors have been identified from the closely related species M. roreri [14]. Many of those
putative effectors should be targeted in future research to provide a better understanding of
their function in the pathogenicity of these species in T. cacao. Some genes associated with
pathogenicity identified only by gene annotation require confirmations in vitro, in planta,
and if possible, in field experiments. There are many possible regulations from genes
to proteins, and some species have families of NEPs, including pseudogenes. Moreover,
experiments with M. roreri under culture conditions have already shown conflicting results
compared to field conditions [72].

Ceratocystis cacaofunesta whole-genome sequencing and annotation [18] also helped
predict a considerable number of putative, secreted proteins (342) and confirmed the
accumulation of 86 (24%) of them in enriched T. cacao xylem culture media. The expansion
of the PI-PLC family in the C. cacaofunesta genome and its possible role in overcoming the
plant initial immune response in susceptible T. cacao genotypes has already been discussed
in the current literature, but research is lacking on other C. cacaofunesta effectors, their
molecular functions and their structural characterization.

5. Conclusions

This work provides a compilation of important studies on the molecular aspects of
T. cacao pathogens over the last two decades. The main contribution is an integrated discus-
sion on the recently studied pathogens regarding the knowledge production, distribution
and available information about these pathogens.

Research from Brazil and the USA is primarily responsible for most publications
about T. cacao pathogens, and M. perniciosa is the species of cocoa pathogens with the most
studies, especially those that involved isolates from cocoa. This is true in terms of the
diversity of studies and available data. While some M. perniciosa proteins already had
been targeted for heterologous expression for characterization, some species have yet to be
studied proteomically. Despite the number of works on M. perniciosa and witches’ broom
disease, there is not, currently, high-quality genome sequence and assembly data publicly
available for M. perniciosa.

In summary, NEP-like protein coding genes are present in almost all T. cacao genomes,
and sometimes as gene families, but their effective expression and existence in functional
form needs to be confirmed by further experiments. For many T. cacao pathogens, the
genome size and number of genes appear to be considerably variable, even among different
isolates from the same species. In this context, new research involving genome sequencing,
transcriptomics and proteomics under plant–pathogen conditions could provide a better
understanding of within- and among-species diversity.
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