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Abstract: Increasing clinical and preclinical evidence implicates gut microbiome (GM) dysbiosis
as a key susceptibility factor for neurodegenerative disorders, including Alzheimer’s disease (AD)
and Parkinson’s disease (PD). In recent years, neurodegenerative diseases have been viewed as
being driven not solely by defects in the brain, and the role of GM in modulating central nervous
system function via the gut–brain axis has attracted considerable interest. Encouraged by current
GM research, the development of new probiotics may lead to tangible impacts on the treatment of
neurodegenerative disorders. This review summarizes current understandings of GM composition
and characteristics associated with neurodegenerative diseases and research demonstrations of key
molecules from the GM that affect neurodegeneration. Furthermore, applications of new probiotics,
such as Clostridium butyricum, Akkermansia muciniphila, Faecalibacterium prausnitzii, and Bacteroides
fragilis, for the remediation of neurodegenerative diseases are discussed.

Keywords: gut microbiome; neurodegenerative diseases; probiotics; Clostridium butyricum; Akkerman-
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1. Introduction

Age-related neurodegenerative diseases, including Alzheimer’s disease (AD) and
Parkinson’s disease (PD), are chronic and progressive neurological disorders with a range
of causes and clinical presentations [1,2]. The prevalence of neurodegenerative diseases
has increased worldwide in parallel with the rise in life expectancy, and effective treat-
ments for neurodegenerative diseases are highly desired. Of note, the primary prodromal
symptom of AD and PD, gastrointestinal dysfunction, is detected prior to clinical diagnosis,
suggesting that the gastrointestinal tract and its connection to the central nervous system
(CNS) are involved in these diseases’ etiology [3]. Among other causes (genetics, immune
system, etc.) attributed to AD and PD pathogenesis [4], gut dysbiosis is an emerging
factor and has received increasing attention. The advent of multi-omics sequencing has
led to revolutionary advances in our understanding of gut dysbiosis in neurodegenerative
diseases [5]. Once it became understood that our gut can effectively communicate with
our brain, numerous studies sought to clarify the intricate processes involved. In recent
years, a new player has emerged as a key regulator of the gut–brain axis, that is, the gut
microbiota (the trillions of microorganisms, including bacteria, fungi, viruses, protists, and
archaea, living in the gut). Clinical treatments that target the gut microbiota provide a
new and promising approach for reducing risks, modulating symptoms, and delaying
neurodegenerative progression. A phenomenon now referred to as pharmacomicrobiomics
reveals that drugs can influence gut microbiota composition, and the gut microbiota can
also influence an individual’s response to a specific drug.
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In this communication, we review recent progress in the understanding of gut dysbio-
sis and neurodegeneration, with particular emphasis on the potential application of new
probiotics for AD and PD therapies.

2. Pathological Features of Neurodegenerative Diseases

Neurodegenerative diseases are relatively common and are progressive, and devas-
tating neurological disorders. As the global population ages, the incidence and preva-
lence of neurodegenerative diseases have risen rapidly in the past two decades. AD is
the most prevalent neurodegenerative disease and the leading cause of dementia world-
wide. Histopathologically, AD is characterized by β-amyloid (Aβ)-containing extracellular
plaques and tau-containing intracellular neurofibrillary tangles [2]. The presentation of
AD with memory impairment is most common, but difficulties in expressive speech, vi-
suospatial processing, and executive functions co-occur, ultimately leading to the classic
clinical signs of dementia. PD apparently results from the complex interplay of α-synuclein
aggregation, neuroinflammation, mitochondrial dysfunction, and abnormal synaptic trans-
mission, leading to the gradual, irreversible loss of dopaminergic neurons in the substantia
nigra and the resulting striatal dopamine depletion [6]. In addition to the cardinal motor
symptoms, such as resting tremor, rigidity, and bradykinesia, PD patients also exhibit
non-motor symptoms, including hyposmia, sleep disorders (e.g., rapid eye movement sleep
behavior disorder), psychiatric symptoms (anxiety and depression), cognitive impairment,
and gastrointestinal disturbances (constipation, delayed gastric emptying, dysphagia, and
sialorrhoea) [7].

In general, Aβ peptides begin to accumulate approximately 10–30 years before the
onset of dementia, which occurs in the early stages of AD and is detectable in the basal
temporal and medial frontal regions [8]. The early stage of PD is difficult to recognize, and
by the time that patients notice their motor symptoms, the disease has usually advanced for
a long period. It has been shown that non-motor symptoms, particularly gastrointestinal
dysfunction, frequently occur approximately 20 years before neurodegeneration appears.
Considering the high prevalence of gastrointestinal symptoms, these symptoms are consid-
ered a prodromal phase of neurodegenerative diseases [7]. Specifically, the pathology in
the gastrointestinal tract shows similarity with the brain. Aβ and α-synuclein can spread
gradually from the enteric nervous system (ENS) to specific brain regions, subsequently
causing neurodegeneration [9,10]. More studies are needed to understand the relationship
between gastrointestinal symptoms and disease progression, with the aim of discovering
new biomarkers for diagnosis. Furthermore, in light of recent developments in gastroin-
testinal dysfunction, the gut might be a gateway for the development of an urgently needed
disease-modifying therapy.

3. Gut Microbiome Alterations in Neurodegenerative Diseases

A healthy human gut harbors a microbiome of 200–400 species and trillions of micro-
bial cells. This gut microbiome (GM) is dynamic, and the microbial composition and the
abundances of species are affected by environment, diet, age, feeding mode, application
of antibiotics, etc. [11]. Notably, the GMs of AD and PD patients have been found to
display different features than those displayed by healthy GMs, implicating their role in
the pathogenesis of neurodegeneration via the regulation of gut barrier integrity, neuroin-
flammation, immune responses, and neurotransmitter activities [12–14]. GM alterations are
mainly in the Firmicutes phylum (including the Oscillospiraceae family, Enterococcaceae family,
Streptococcaceae family, and Lachnospiraceae family) and Bacteroidetes phylum (including the
Rikenellaceae family and Prevotellaceae family). At the genus level, fecal samples from AD
patients have been found to show increased abundances of Ruminococcus [14], Enterococ-
cus [15], Streptococcus [16], Alistipes [17], Dorea [16], Collinsella [14,15], and Eggerthella [15],
while there were decreased abundances of Faecalibacterium [15], Lachnospira [14,18], Rose-
buria [15], and Coprococcus [15]. In addition to AD, increasing evidence shows that GM
dysbiosis is implicated in PD-related pathology. In many studies, the GMs of PD patients
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showed alterations at the genus level compared with healthy controls, including increased
abundances of Alistipes [19], Streptococcus [20], Ruminococcus [21,22], Enterobacter [20,23], En-
terococcus [20,24], Verrucomicrobium [21,25], Desulfovibrio [26], and Anaetroncus [27], whereas
decreases were seen for Faecalibacterium [20,25,28], Prevotella [12,21,23,29], Blautia [20,25,30],
Lachnospira [25,26], and Roseburia [12,25,30]. In summary, current studies have indicated
that AD and PD share common GM dynamics, i.e., increased abundances of Streptococcus,
Ruminococcus, and Alistipes, and decreased abundances of Faecalibacterium, Lachnospira, and
Roseburia (Table 1). Multiple sclerosis (MS) is a chronic inflammatory and degenerative
disease of the CNS. Abundant evidence indicates that the GM plays a role in MS through
its influence on immune function [31]. In both progressive and relapsing-remitting MS,
the abundances of Clostridium bolteae and Ruthenibacterium lactatiformans, as well as the
genera of Akkermansia and Methanobrevibacter, have been found to be increased, whereas
the abundances of Blautia wexlerae and Dorea formicigenerans have been found to have
decreased [32,33]. Furthermore, MS patients have been shown to be more likely to harbor
and show an increase in the epsilon toxin-producing strains of Clostridium perfringens [34].

Table 1. Gut microbiome alterations in neurodegenerative diseases.

Subjects
Gut Microbiome Alterations

Increased Decreased

AD patients

Ruminococcus [14]
Enterococcus [15]
Streptococcus [16]
Alistipes [17]
Dorea [16]
Collinsella [14,15]
Eggerthella [15]

Faecalibacterium [15]
Lachnospira [14,18]
Roseburia [15]
Coprococcus [15]

PD patients

Alistipes [19]
Streptococcus [20]
Ruminococcus [21,22]
Enterobacter [20,23]
Enterococcus [20,24]
Verrucomicrobium [21,25]
Desulfovibrio [26]
Anaetroncus [27]

Faecalibacterium [20,25]
Prevotella [21,23,29]
Blautia [20,25,30]
Lachnospira [25,26]
Roseburia [25,30]

MD patients

Clostridium bolteae [32]
Ruthenibacterium lactatiformans [32]
Clostridium perfringens [34]
Akkermansia [32,33]
Methanobrevibacter [33]

Blautia wexlerae [32]
Dorea formicigenerans [32]

GM alterations are also implicated in the clinical manifestations of neurodegenerative
diseases. It has been reported that Dorea, the Oscillospira family, and Ruminococcus are posi-
tively associated with constipation, whereas Faecalibacterium is negatively associated with
constipation [35]. Decreased abundances of Faecalibacterium and Roseburia are correlated
with gastrointestinal comorbidities, especially constipation severity [36]. Infection with
Citrobacter rodentium can induce anxiety-like symptoms that are likely mediated via vagal
sensory neurons [37]. Lower levels of Lachnospiraceae and higher levels of Enterobacteriaceae
families are linked with increased disease severity in PD [38]. The gut microbiota of patients
with neurodegenerative diseases is significantly altered and exhibits obvious characteristics,
which may be applied for the development of potential biomarkers or therapeutic targets. A
lack of understanding of the mechanisms and pathophysiology of GM disturbance hampers
the diagnosis and clinical treatment of neurodegenerative diseases. Owing to differences in
sequencing techniques, diet, regional disparity, and therapeutic regimen, types of altered
gut microbiota have not been clearly elucidated. Rigorous and standardized methodol-
ogy is needed to draw stronger conclusions regarding the question as to whether there
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exist common microbiome signatures for neurodegenerative diseases. While an increasing
number of studies have revealed the association of GM dysbiosis with neurodegenerative
diseases, further causative studies are still needed to reveal the mechanisms underlying
these diseases and their potential relevance to clinical manifestations.

4. Microbiota–Gut–Brain Axis

It is well accepted that the GM exerts considerable influence on brain function via
the microbiota–gut–brain axis. The GM communicates with the brain via the activation
of the vagus nerve, stimulation of enterochromaffin cells and immune system, and direct
transport of metabolites from the circulation into the brain [39]. In regard to the neuronal
pathways for gut–brain connections, the vagus nerve is the most direct and well-studied
pathway. In mice with autism spectrum disorder (ASD), Lactobacillus reuteri was reported
to rescue social dysfunction in a vagus nerve-dependent manner [40]. It has been found
that microbial production of indole from tryptophan was more likely to result in anxi-
ety and depression in the host because bacterial indole could activate vagal neurons and
negatively impact emotional behaviors [41]. The propagation of Aβ and α-synuclein in
the gastrointestinal tract has been found to be transmitted via the vagus nerve to the
brain [42,43]. Colonic enterochromaffin cells express receptors for various GM-derived
metabolites, such as short-chain fatty acids (SCFAs), aromatic amino acids, secondary
bile acids, and neurotransmitters [44,45]. Furthermore, enterochromaffin cell production
of serotonin has the potential to influence brain function directly or indirectly [46]. For
immune-mediated routes, SCFAs interact closely with the immune system through the
activation of G protein-coupled receptor (GPCR) and inhibition of histone deacetylase
(HDAC) activity, leading to decreased neuroinflammation [47,48]. Ghrelin, a brain–gut
peptide mainly released by X/A-like cells of the stomach, has been shown to elicit neu-
roprotective effects in both AD and PD [49,50]. Specific gastrointestinal microbiota and
their metabolites are able to modulate ghrelin secretion. Microbial-derived SCFAs and
hydrogen sulfide regulate circulating ghrelin levels via direct or indirect modulation of
ghrelin secretion [51]. Hydrogen supplementation can also increase the concentration of
ghrelin, and the neuroprotective effects of hydrogen can be abolished by ghrelin receptor
antagonists [52]. On the other hand, a bacterial endotoxin, lipopolysaccharide (LPS), has
been shown to aggravate neuroinflammation by directly entering the brain or by activating
immune response [53].

5. Linking Gut Microbiome Dysbiosis and Neurodegenerative Diseases
5.1. Gut Microbiome Interacts with Hosts Subsection

The GM–host interaction is an important direction to understand the regulation of
health and disease. As previously reported, the GMs of patients with bipolar disorder
depression were sufficient to induce depression-like behavior in mice, which was attributed
to the elevated expression of tetratricopeptide repeat and ankyrin repeat containing 1
(TRANK1), a robust risk gene of bipolar disorder [54]. Inspiringly, the interplay between
the GM and its host has been investigated in PD. Intracellular protein aggregates that
are primarily composed of α-synuclein in Lewy bodies serve as the neuropathological
hallmark of PD. α-Synuclein is encoded by the SNCA gene, the mutations of which lead to
a drastic overexpression of α-synuclein and cause a Mendelian autosomal-dominant form
of PD [55]. Given that there is an overabundance of opportunistic pathogens in PD, the
question as to whether these pathogens are triggers of the neurodegeneration seen is being
investigated, and there is likely a connection to SNCA variants. Recently, Wallen et al. [56]
have reported the association of three opportunistic pathogens with PD, which is dependent
on SNCA genetic variations. The candidate SNCA genetic variants for interaction with
the genera Corynebacterium, Porphyromonas, and Prevotella are rs356229, rs10029694, and
rs6856813, respectively. Among these, the Porphyromonas interacting genetic variant is also
associated with increased PD risk. These findings indicate that the increased abundance of
opportunistic pathogens seen in the PD gut might be modulated by host genotype. In this
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sense, there is an interaction between genetic susceptibility to the disease and GM dysbiosis
(Figure 1). Nonetheless, the power of a single gene in explaining the interaction between a
host and GM is limited, and the conclusions may be partial and misleading [57]. Further
studies to integrate multiple genetic variations in experimental models and humans will be
needed to tease out these interactions.
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Figure 1. Potential mechanisms of gut microbiome dysbiosis involved in neurodegenerative diseases.
AD is characterized by Aβ-containing extracellular plaques, and PD is characterized by intracel-
lular α-synuclein accumulation to form Lewy bodies. The propagation of Aβ and α-synuclein in
the gastrointestinal tract can be transmitted via the vagus nerve to the brain. In addition, there
is an interaction between host genetic susceptibility to neurodegeneration and GM dysbiosis, that
is, Corynebacterium, Porphyromonas, and Prevotella interact with the SNCA genetic variants rs356229,
rs10029694, and rs6856813, respectively. Citrobacter rodentium and environmental microbial neurotoxin
BMAA trigger mitochondrial dysfunction, ultimately leading to neurodegeneration. Furthermore, de-
fective autophagy fails to eliminate intracellular pathogens and induces alterations in the composition
of the gut microbiome.

5.2. Gut Microbiome–Mitochondria Connection

As the endosymbiosis hypothesis has demonstrated, mitochondria are descendants of
primordial aerobic pleomorphic bacteria (likely Rickettsia), which developed a mutualistic
partnership with ancient anaerobic microbes (likely Archaea) [58]. As a consequence, a stable
symbiosis was established to provide energy for the host. Bacterial peptidoglycan muropep-
tides, a unique component of bacterial cell walls in both Gram-positive and Gram-negative
species, accumulate in host intestinal mitochondria, which can maintain mitochondrial
homeostasis and suppress host mitochondrial oxidative stress [59]. A previous study has
shown that intestinal infection with the Gram-negative bacterium Citrobacter rodentium can
trigger mitochondrial antigen presentation. Subsequently, cytotoxic mitochondria-specific
CD8+ T cells in Pink1-knockout mice deplete dopamine-producing neurons through au-
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toimmune attack, thereby causing the transient motor dysfunction resembling that is seen
in PD patients (Figure 1) [60]. β-N-methylamino-L-alanine (BMAA), a natural neurotoxin
produced by cyanobacteria or other microbes, has been shown to be involved in neu-
rodegeneration. In a previous study, BMAA was detected in the brains of patients with
neurodegenerative diseases, which can cross the blood–brain barrier (BBB) [61]. Mechanis-
tically, BMAA elicits mitochondrial dysfunction and AD features in cortical neurons with
increased tau phosphorylation and Aβ peptide deposition [62]. Recently, Esteves et al. [63]
reported that BMAA triggered a chain of events including mitochondrial dysfunction
and innate immunity activation. When BMAA reaches the gut, it can interact with the
ENS and possibly target mitochondria, which has been advanced as a potential cause for
neurodegeneration [64].

5.3. Defective Autophagy

Autophagy, in a broad sense, refers to a cellular homeostatic mechanism delivering
cytoplasmic constituents to lysosomes for degradation. Initially described as a “self-eating”
survival pathway that enables nutrient recycling during starvation, autophagy can also
respond to a range of inputs, including microbial products commonly known as pathogen-
associated molecular patterns (PAMPs) [65]. One of the best appreciated manifestations
of autophagy is to defend against microbial invasion through direct elimination of intra-
cellular pathogens [66]. Autophagy degrades invading pathogens (e.g., Salmonella and
Escherichia/Shigella), modulates the release of proinflammatory cytokines, and participates
in antigen presentation. In intestinal epithelial cells, autophagy enhances the tight junction
barrier function owing to the reduced permeability of ions and small molecules due to
lysosomal degradation of claudin-2 [67]. Furthermore, autophagy in colonic epithelial
cells has been reported to protect against colitis through the maintenance of antimicrobial
peptides and secretion of mucins that act as a mucosal barrier against bacterial inva-
sion [68,69]. The disruption of autophagy in intestinal epithelial cells induces alterations
in the composition of gut microbiota and reduces α-diversity. In autophagy-deficient
mice, the abundances of Candidatus Arthromitus and Pasteurellaceae family are increased,
whereas the abundances of the Akkermansia muciniphila and Lachnospiraceae families are
found to be reduced (Figure 1) [69]. Indeed, both AD and PD are accompanied by defective
autophagy, leading to the failure in eliminating protein aggregates or damaged mitochon-
dria [70,71]. Given the impact of autophagy dysfunction in gastrointestinal homeostasis,
there is therapeutic interest in activating autophagy to eliminate pathogenic bacteria and
protein aggregates, and thus halting the progression of neurodegenerative diseases [72].

6. New Probiotics in Neurodegenerative Diseases

According to the Food and Agriculture Association (FAO), probiotics are “live mi-
croorganisms, which when administered in adequate amounts confer a health benefit to
the host” [73,74]. It has been shown that Lactobacillus plantarum PS128 alleviates nigral
dopaminergic neuronal death and motor deficits in a PD mouse model [75]. L. plantarum
DR7 can reduce the dopamine metabolism-related enzymes, β-hydroxylase and tyrosine
hydroxylase, to regulate dopamine pathways [76]. Lactobacillus acidophilus EG004 shows
a positive effect on cognitive ability in a healthy mouse model, probably by producing
butyrate and, therefore, modulating neurotransmitters and neurotrophic factors [77]. The
administration of Lacticaseibacillus rhamnosus Fmb14 has been reported to improve colitis-
related depression-like behavior [78]. Human Lactobacillus brevis and Bifidobacterium dentium
are also efficient GABA producers, and have the potential to improve depression-like ab-
normalities [79,80]. Combined administration of L. plantarum and Bifidobacterium bifidum
with interval aerobic exercise has been found to play a neuroprotective role in AD [81].
Another probiotics mixture (Lactobacillus rhamnosus, Bifidobacterium animalis lactis, and L.
acidophilus) can also rescue nigral dopaminergic neurons in PD models by increasing the
levels of butyrate [82].
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New probiotics are microbial taxa that conform to the traditional definition of pro-
biotics but have not been applied for health improvement. These novel probiotics also
contain live organisms, such as bacteria, which can be expected to prevent or treat diseases
or improve the health conditions of human beings [73]. Currently, studies investigating
new probiotics are ongoing worldwide. Traditional probiotic strains are usually obtained
from gut microbiota, milk, and fermented food. Probiotics that are currently available
generally belong to a narrow range of microbial species, mainly related to Lactobacillus
and Bifidobacterium. By contrast, new probiotics are isolated from host commensal bacteria
using new tools, which harbor a wider range of species and more candidate bacteria. In
this paper, we describe several promising probiotics (Clostridium butyricum, Akkermansia
muciniphila, Faecalibacterium prausnitzii, and Bacteroides fragilis) and their potential applica-
tions in neurodegenerative diseases.

6.1. Clostridium butyricum

Clostridium butyricum, a butyrate-producing, spore-forming anaerobic bacterium, is
found in a wide variety of environments, including soil, milk, and vegetables. C. butyricum
is detected in 10–20% of the human gastrointestinal tract and is one of the earliest colonizers
in infants [83]. Traditionally, C. butyricum has been used as a potent probiotic owing to its
beneficial effects on host health. Because of its increased butyrate production, C. butyricum
is able to enhance the thickness of the mucosal layer and strengthen the gut barrier integrity
by increasing the expression of tight junction proteins (e.g., occludin and ZO-1). In addition,
C. butyricum plays a protective role in gastrointestinal infections and regulates the host
immune system [84]. C. butyricum is effective against Clostoridioides difficile, a causative
pathogen of nosocomial infections; Helicobacter pylori, a causative pathogen of gastric
cancer; and antibiotic-resistant Escherichia coli, Staphylococcus aureus, and Vibrio cholerae
infections [85–87]. It has been shown that C. butyricum can also upregulate protectin D1,
an anti-inflammatory lipid metabolite, in colon tissue under antibiotic therapy to alleviate
systemic inflammation [88]. Indigenous spore-forming bacteria, predominantly Clostridia,
can promote the biosynthesis of serotonin [44].

C. butyricum exerts neuroprotective effects in various neurodegenerative diseases. In
a PD mouse model, the oral administration of C. butyricum can improve motor deficits,
dopaminergic neuron loss, synaptic dysfunction, and microglial activation. These neuro-
protective effects may be related to the increased levels of colonic glucagon-like peptide-1
(GLP-1) and cerebral GLP-1 receptor, eventually restoring gut microbiota homeostasis [89].
Moreover, the anti-depressive effects of C. butyricum in chronic, unpredictable and mild
stress-induced depression-like behavior may result from the stimulation of intestinal GLP-1
secretion [90]. In AD models, the administration of C. butyricum for four weeks prevents
cognitive impairment, Aβ deposits, and neuroinflammation, which are mediated by the
restoration of gut microbiota and butyrate production (Figure 2) [91]. In vascular dementia
mice, C. butyricum significantly alleviates the cognitive dysfunction and histopathological
changes via anti-apoptotic properties and subsequent activation of the PI3K/Akt path-
way [92]. Treatment with C. butyricum defends against cerebral ischemia/reperfusion injury
through antioxidant and anti-apoptotic mechanisms, which may be partially attributed
to the increased butyrate contents in the brain [93]. C. butyricum treatment has been con-
sistently shown to improve neurological dysfunction and neurodegeneration in a mouse
model of traumatic brain injury [94]. Although the neuroprotective effects of probiotic C.
butyricum appear well established, additional human randomized controlled trials would
further provide valuable clinical data related to various strains’ utility as an intervention in
neurodegenerative diseases.
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Figure 2. Implications of new probiotics in neurodegenerative diseases. Clostridium butyricum, a
butyrate-producing anaerobic bacterium, plays a protective role in neurodegenerative diseases; it can
prevent cognitive impairment and Aβ deposits in AD, and improve motor deficits, dopaminergic
neuron loss, synaptic dysfunction, and microglial activation in PD. Akkermansia muciniphila and
Faecalibacterium prausnitzii are effective in alleviating cognitive deficits and reducing Aβ levels in AD;
however, their potential role in PD is unclear. Additionally, enterotoxigenic Bacteroides fragilis drives
LPS-induced inflammation and degenerative neuropathology in AD, while non-enterotoxigenic B.
fragilis exerts anti-inflammatory properties. Although B. fragilis accounts for the level of intestinal
hydrogen in PD, its exact role in the neurodegeneration of PD has not yet been elucidated.

6.2. Akkermansia muciniphila

Akkermansia muciniphila, a Gram-negative, anaerobic bacterium first identified in
2004 [95], is considered a promising candidate of new probiotics [96]. The benefits of
A. muciniphila are not limited to protecting the mucosal barrier integrity and improving host
metabolic functions and immune responses; A. muciniphila also possesses therapeutic value
in modulating brain function. In this case, the critical role of A. muciniphila has been demon-
strated in neurodegenerative diseases. Several studies have consistently reported that the
genus Akkermansia is highly effective in distinguishing PD or in serving as a potential early
biomarker for PD diagnosis [25,29,97]. It is noteworthy that the abundance of A. muciniphila
is also found to be increased in PD patients [98]. One of the possible explanations for this
is that the increased abundance of A. muciniphila in PD patients is aimed at fighting and
preventing disease progression. Although treatment with A. muciniphila has been reported
to improve cognitive deficits and reduce Aβ levels in an AD mouse model [99], whether
A. muciniphila can alleviate neurodegeneration in PD patients remains unknown (Figure 2).
There are also opposite results demonstrating that an A. muciniphila-conditioned medium
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can initiate α-synuclein aggregation in enteroendocrine cells [100]. To date, few studies
have explored the direct impact of A. muciniphila on the nervous system; thus, the likelihood
of beneficial effects exerted by A. muciniphila should be addressed. Further characterization
of its relevance in neurodegeneration will be fundamental to unveil the consequences of
A. muciniphila dysbiosis.

6.3. Faecalibacterium prausnitzii

Faecalibacterium prausnitzii, an anaerobic Gram-positive bacterium, belongs to the
Firmicutes phylum and the Ruminococcaceae family, also known as Clostridium cluster IV. The
interest in F. prausnitzii is related to its capacity to produce beneficial metabolites, such as
fructose, formic acid, and d-lactate, and it is one of the most important butyrate-producing
bacteria [101]. In addition, a 15 kDa protein with anti-inflammatory properties produced by
F. prausnitzii can inhibit the nuclear factor-κB (NF-κB) pathway in intestinal epithelial cells
and prevent colitis in animal models [102]. Consistently, several other studies in mice have
clarified the protective role of F. prausnitzii in experimentally induced colitis. Intragastric
administration of either F. prausnitzii or its culture supernatant can significantly decrease the
severity of colitis by down-regulating pro-inflammatory cytokines [103]. Butyrate produced
by F. prausnitzii modulates Th17/Treg balance and exerts anti-inflammatory effects in a
colorectal colitis rat model [104]. In terms of neurodegenerative diseases, the abundance of
F. prausnitzii has been found to be decreased in a group with mild cognitive impairment
(MCI) compared with the healthy controls, which correlated with cognitive scores [105].
Two isolated F. prausnitzii strains from healthy individuals have been shown to improve
cognitive impairment in an AD mouse model [105]. Thus far, studies on the potential
effects of F. prausnitzii on PD have not been reported (Figure 2). Additional research
studies are needed to further prove the beneficial role of F. prausnitzii in the remediation of
neurodegenerative diseases.

6.4. Bacteroides fragilis

Bacteroides fragilis is another promising probiotic, and is a commensal, Gram negative,
non-spore-forming obligatory anaerobic bacterium abundant in the human gastrointestinal
tract. Typically, B. fragilis can interfere with other microbes by inhibiting their growth or
translocation. As previously reported, B. fragilis treatment prevents Clostrioides difficile
infection, possibly by resisting pathogen colonization, enhancing the relative abundance
of A. muciniphila, and improving the gut barrier integrity [106]. Indeed, B. fragilis can be
classified into two subgroups: non-enterotoxigenic and enterotoxigenic B. fragilis [107].
Enterotoxin-containing B. fragilis secretes an unusually complex mixture of neurotoxins,
including pro-inflammatory LPS. In this sense, exposure to enterotoxigenic B. fragilis
in human primary brain cells is an exceptionally potent inducer of the inflammatory
pathway, driving pro-inflammatory degenerative neuropathology in the AD brain [108].
Conversely, non-enterotoxigenic B. fragilis strains exert beneficial effects owing to their anti-
inflammatory and immunomodulatory activities. The oral administration of B. fragilis has
been found to increase gut microbiota diversity and beneficial commensal bacteria, thereby
improving the gut tight junction integrity and reducing inflammatory cytokines [109]. Fecal
bacterial assessment based on 16S rRNA amplicon sequencing shows that the abundance of
B. fragilis is lower in PD patients than in healthy controls [110]. Considering that B. fragilis
is one of the main hydrogen-producing intestinal bacteria, the decreased abundance of
B. fragilis may be accounted for by the lower amount of intestinal hydrogen level in PD
patients (Figure 2) [111]. Although B. fragilis is potentially interesting as a new probiotic,
its role in neuropathology is contrasting, thus the specific strains used should be carefully
evaluated for their safety and efficacy in neurodegenerative diseases.

7. Perspectives and Conclusions

Gastrointestinal dysfunction serves as a prodromal symptom preceding the clinical
manifestations of neurodegenerative diseases. Currently, there is growing interest in new
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probiotics as potential therapeutic agents. The safety and tolerability of these novel pro-
biotics need to be validated in both animal models and human trials in order to develop
personalized applications. Understanding the mechanisms by which probiotics colonize in
the gut could lead to the development of “personalized” bacterial therapies. Another chal-
lenge is storage due to the strict anaerobic conditions required during microbial collection
and freeze drying. Even so, the current state of new probiotics remains largely promising in
the context of neurodegenerative diseases for the purpose of slowing down or preventing
neurodegeneration, as well as developing effective therapeutic interventions.
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