
Citation: Shibasaki, S.; Ueda, M.

Utilization of Macroalgae for the

Production of Bioactive Compounds

and Bioprocesses Using Microbial

Biotechnology. Microorganisms 2023,

11, 1499. https://doi.org/10.3390/

microorganisms11061499

Academic Editors: Angel Llamas

and Edward A. Bayer

Received: 31 March 2023

Revised: 18 May 2023

Accepted: 2 June 2023

Published: 5 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Review

Utilization of Macroalgae for the Production of Bioactive
Compounds and Bioprocesses Using Microbial Biotechnology
Seiji Shibasaki 1,* and Mitsuyoshi Ueda 2

1 Laboratory of Natural Science, Faculty of Economics, Toyo University, Hakusan Bunkyo-ku,
Tokyo 112-8606, Japan

2 Office of Society-Academia Collaboration for Innovation (SACI), Kyoto University, Yoshidahonmachi,
Sakyo-ku, Kyoto 606-8501, Japan; ueda.mitsuyoshi.7w@kyoto-u.ac.jp

* Correspondence: seiji@toyo.jp; Tel.: +81-3-3945-8041

Abstract: To achieve sustainable development, alternative resources should replace conventional
resources such as fossil fuels. In marine ecosystems, many macroalgae grow faster than terrestrial
plants. Macroalgae are roughly classified as green, red, or brown algae based on their photosynthetic
pigments. Brown algae are considered to be a source of physiologically active substances such
as polyphenols. Furthermore, some macroalgae can capture approximately 10 times more carbon
dioxide from the atmosphere than terrestrial plants. Therefore, they have immense potential for
use in the environment. Recently, macroalgae have emerged as a biomass feedstock for bioethanol
production owing to their low lignin content and applicability to biorefinery processes. Herein, we
provided an overview of the bioconversion of macroalgae into bioactive substances and biofuels using
microbial biotechnology, including engineered yeast designed using molecular display technology.
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1. Introduction

For many centuries, fossil fuel consumption has increased, leading to a high level
of emissions of carbon dioxide into the atmosphere [1,2]. Moreover, human life relies on
various materials produced via chemical synthesis using large amounts of energy. Recently,
there has been an increase in energy demand in response to the growing global population
and economy. Therefore, to pave the path to a sustainable future, it is critical we develop
renewable and clean sources of bioenergy.

Bioethanol production has been proposed and developed using various agricultural
biomasses, including corn [3], sugarcane [4], sugar beet [5], potato [6], and wheat [7].
Compared with fossil fuels, bioethanol produces fewer toxic substances and causes fewer
harmful environmental issues [8]. However, concerns remain that the use of biomass for
energy production competes with the use of food by humans and livestock. On the other
hand, many biomolecules in macroalgae, including polysaccharides, can be converted to
ethanol-fermentable sugars in ocean ecosystems. Therefore, macroalgae have attracted the
attention of researchers as an alternative fuel source for bioethanol production. Macroalgae
can grow at rates higher than those of terrestrial plants [9,10], and arable land is not needed
for the cultivation or fertilization of macroalgae. Furthermore, macroalgae can grow in
salt water, preventing competition for fresh water required for crop production in fields.
Therefore, macroalgae are considered ideal resources for third-generation biofuels [11].

Algae are a group of photosynthetic, prokaryotic, and eukaryotic organisms [12].
Macroalgae come in different sizes and colors. They are classified according to their photo-
synthetic pigments, color schemes (red, brown, green, etc.), and habitat [9,13]. For example,
the exclusive economic zone of Japan is approximately 450 million km2 (1/80 of the world’s
total sea area), with >1000 macroalgal species in these limited areas. Furthermore, they
have different chemical compositions and bioactive molecular contents.
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Polysaccharides represent biomass or bioactive compounds. Brown algae commonly
contain laminarin and fucoidan, green algae contain ulvans, and red algae contain large
amounts of carrageenan [14]. Brown macroalgae additionally contain alginate, cellulose,
hemicellulose, laminarin, and mannitol, which are the major carbohydrates (Figure 1) and
are characterized by high contents of mannitol, laminarin, and alginate [15]. Laminarin
comprises a β-1,3-linked glucose polymer with connecting β-1,6 cross-linked branches. In
brown macroalgae, it functions as a long-term storage compound and exhibits seasonal
variations ranging from 0 to 35% on a dry basis [16]. Brown macroalgae additionally
contain mannitol as a carbon storage compound, accounting for up to 20–30% of the dry
weight [17].
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Figure 1. Examples of chemical structures of the saccharides in macroalgae. (A) Chain form (upper)
and monomeric unit (lower) of alginate. (B) Laminarin. (C) Mannitol.

Bioactive compounds such as proteins and peptides in macroalgae exhibit anti-inflammatory,
antioxidant, antitumor, antiviral, neuroprotective, hypocholesterolemic, hepatoprotective,
and liver-protecting functions [18]. These beneficial health effects are also mediated by spe-
cific diterpenes, pigments (fucoxanthin, phycocyanin, and carotenoids), polysaccharides,
and bioactive peptides [19]. In particular, phenolic compounds have the most structural
variation and highest content in macroalgae. Phlorotannins are the most widely investi-
gated polyphenols, with high contents in brown macroalgae [20].

In the present review, we describe bioactive compounds and biofuels from macroalgae
using microbial technology. Furthermore, we emphasize the applications of recent microbial
biotechnologies and molecular display technologies for biofuel production from macroalgae.

2. Biological Activity and Bioconversion of Green Macroalgae
2.1. Ulvan

The green macroalgae Ulva species are edible seaweeds comprising health-promoting
and bioactive compounds. The major carbohydrates of Ulva species are ulvans and glu-
cans, with median values of 45.0 mol% and 22.5 mol% for rhamnose and glucuronic acid,
respectively. Ulvan accounts for 9–36% of the dry weight of Ulva species [21]. It is high in
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dietary fiber, thereby promoting gastrointestinal health, and is associated with a decrease
in the occurrence of chronic diseases. Dutschei et al. reported that Bacillus licheniformis
can grow on a medium containing ulvan-derived xylose-containing oligosaccharides [22].
Heterologous expression of two marine enzymes, namely, ulvan lyase PL28 and glucuronyl
hydrolase GH105 [23], in Bacillus licheniformis resulted in the efficient conversion of the
algal polysaccharide ulvan as a carbon and energy source [22]. In another study on the
saccharification of ulvans, a broad-spectrum ulvan lyase was identified (Cdf7993 protein)
from Formosa agariphila KMM 3901 and investigated further [24].

2.2. L-Rhamnose

Rhamnose is an important monosaccharide that is widely distributed among microor-
ganisms and plants. Certain bacterial saponin glycans contain rhamnolipids, mycolic acids,
and extracellular polysaccharides [25]. In the green macroalga Ulva lactuca, L-rhamnose
and D-glucose are the major carbohydrates present in the ulvan polysaccharide structure;
these sugars can be recovered under mild conditions [26].

Investigation of the antiviral activity of rhamnose polysaccharides revealed that rham-
nose sulfate in the green alga Monostroma nitidum exhibits anti-severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) activity. SARS-CoV-2 invasion is achieved via the
interaction of its S-protein with angiotensin-converting enzyme 2 (ACE2) in susceptible
host cells. The rhamnose fraction not only inhibited the binding of S-protein and ACE2
analogs but also that of SARS-CoV-2 and ACE2 analogs [27]. In addition, branched and
sulfated heterorhamnan exhibited specific activity against the herpes simplex virus [28].
Sulfated polysaccharides, including L-rhamnose derived from the green alga Spirogyra
neglecta, exhibit immunomodulatory activity [29]. In addition to the immunomodulatory
activity, several green algae exert antitumor activity [30]. A study reported that extracts
containing sulfated heterorhamnans from the green alga Gayralia oxysperma exerted cyto-
toxic effects against U-87 MG, a cell line isolated from a patient with malignant gliomas.
Furthermore, sulfated polysaccharides with rhamnose increased the number of cells in the
G1 phase [31].

Clostridium beijerinckii can use L-rhamnose as the sole carbon source to produce acetic
acid, butyric acid [32], 1,2-propanediol, propionic acid, and n-propanol [33]. Green macroal-
gae can be processed into hydrolysates containing D-glucose and L-rhamnose; therefore,
they have potential applications as an industrial fermentation strain. D-galactosyl-β1→4-
rhamnose, which exerts immunomodulatory activity, is produced by a one-pot reaction
using a combination of recombinant phosphorylases and dried baker’s yeast [34].

2.3. Bioconversion Using Yeast Cells

As an example of a yeast-based bioconversion application, Greetham et al. investigated
the fermentation ability of the marine yeast Wickerhamomyces anomalus M15, particularly for
hydrolysis and ethanol production, using brown (Laminaria digitata), green (Ulva linza), and
red (Porphyra umbilicalis) macroalgae [35]. After pretreatment with seawater, the highest
amount of sugar was liberated by the green macroalga U. linza. In addition, fermentation of
Wickerhamomyces anomalus M15 using a concentrated hydrolysate from Ulva linza resulted
in the production of 48.2 g/L ethanol, which is equivalent to an overall yield of 0.329 g/g
available sugars [35]. As another yeast-based application, Jiang et al. investigated ethanol
fermentation using a hydrolysate from the green macroalgae Ulva. They suggested that
Saccharomyces cerevisiae RN1016 with xylose isomerase achieved the highest ethanol pro-
duction levels among the microorganisms examined under the optimized thermochemical
conditions [36].

3. Component and Bioconversion of Red Macroalgae

Carrageenan is the main carbohydrate component in red macroalgae such as Eu-
cheuma denticulatum [37], and agar is the main component in species such as Gelidium
amansii [38]. During the decomposition of agarose, enzymatic hydrolysis, acid hydroly-
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sis, and acid prehydrolysis with subsequent enzymatic hydrolysis result in the liberation
of 3,6-anhydro-α-L-galactose (AHG) and D-galactose for subsequent fermentation [39].
However, the decomposition of carrageenan is difficult because acid treatment produces
inhibitory compounds such as acetic acid, furfural, 5-HMF, and levulinic acid [40–42].
Therefore, D-galactose and AHG from agarose are suitable target molecules in the use of
red macroalgae.

Many marine microorganisms, including Pseudoalteromonas carrageenovora [43], Zobel-
lia galactanivorans [44], Pseudoalteromonas fuliginea [45], and Saccharophagus degradans [46],
exhibit agarase activity. Additionally, the catabolic pathway of AHG has been well inves-
tigated in the agarolytic marine bacteria Vibrio sp. [47] and Streptomyces sp. [48]. As an
example of its application in bioconversion, the AHG catabolic pathway was introduced
into an ethanologenic Escherichia coli strain. The engineered strain exhibited 2.0-fold higher
AHG consumption and 1.2-fold higher ethanol production compared to the control [49].

As a yeast-based application in bioconversion, a study investigated ethanol production
using a hydrolysate derived from the red macroalga Gracilaria verrucosa [50]. Analysis of the
relationship between galactose adaptation effects and mRNA transcriptional levels revealed
that the use of galactose for ethanol fermentation using Gracilaria verrucosa hydrolysates
enhanced the overall ethanol yield in Saccharomyces cerevisiae KCCM 1129 [50]. In another
bioconversion method using yeast cells, the representative probiotic yeast S. cerevisiae var.
boulardii was used for depolymerization into a beneficial compound, neoagarooligosaccha-
rides, by an endo-type β-agarase [51].

4. Bioactivity of Brown Macroalgae
4.1. Macroalgae Polyphenols or Phlorotannins

Polyphenols are compounds that contain more than two hydroxyl groups. Flavonoids,
lignin, and tannins are well-known polyphenols produced by terrestrial organisms [52].
Tannins are further categorized into condensed tannins, which are formed by polymerized
flavanols, and hydrolyzable tannins, which are combined with sugar and gallic or ellagic
acid via ester bonds [53]. Polyphenols in macroalgae, known as phlorotannins, have a
polymerized structure of phloroglucinol and are different from the tannins in terrestrial
organisms. Eckols, phlorethols, fucols, fucophlorethols, fuhalols, isofuhalols, and carmalols
are the basic structures of phlorotannins bound to phloroglucinol [54,55]. Physiological
studies previously carried out on phlorotannins are described below.

4.2. Inhibiting Advanced Glycation End Product (AGE) Formation

AGEs are produced by nonenzymatic reactions between proteins and reducing sug-
ars [56,57]. AGEs play important roles in the development of diabetic complications,
osteoporosis, atherosclerosis, sarcopenia, and neuropathy [58,59]. Chemical synthesis has
been used to develop glycation inhibitors to suppress AGE production. For example,
aminoguanodine [60] and OPB-9195 [61] have been identified as AGE inhibitors; however,
they have not been approved for clinical use owing to their adverse effects. Therefore, com-
pounds that are effective against AGE formation have been explored in edible plants [62].
To this end, the antiglycation activities of phlorotannins present in brown macroalgae
(Ecklonia cava, Ecklonia kurome, Ecklonia stolonifera, Eisenia arborea, and Eisenia bicyclis) have
been studied.

4.3. Effect of Phlorotannins on Methylglyoxal (MGO) Formation

AGEs are produced after the formation of MGO, an α-dicarbonyl compound [63].
Studies have reported that the blood MGO levels were higher in patients with type I dia-
betes than in healthy people [64,65]. Therefore, phlorotannins extracted from Lessoniaceae
were evaluated for their inhibitory activities against fluorescent AGE production in human
and bovine serum albumin (HSA and BSA)–MGO models [66]. The inhibitory effect on
the formation of fluorescent AGEs was calculated as the half-maximal inhibitory concen-
tration (IC50). Compared with the positive control aminoguanidine hydrochloride (AG)
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(IC50 = 0.70 mg/mL in the HSA–MGO models and 0.9 mg/mL in the BSA–MGO models),
phlorotannins from Lessoniaceae exhibited higher antiglycation activity (Table 1).

Table 1. IC50 values of crude phlorotannins against fluorescent AGEs formation [66].

Algae (Original Area) HAS-MGO (mg/mL) BSA-MGO (mg/mL)

Eck. Cava (Mie) 0.53 0.51
Eck. Kurome (Fukuoka) 0.45 0.46
Eck. Kurome (Kumamoto) 0.53 0.50
Cultured Eck. Kurome (Kumamoto) 0.46 0.46
Eck. Stolonifera (Yamaguchi) 0.52 0.47
Eis. arborea (Mie) 0.46 0.53
Eis. bicyclis (Fukuoka) 0.45 0.43

The values of aminoguanidine hydrochloride (positive controls) were 0.70 mg/mL in the HSA-MGO model and
0.90 mg/mL in the BSA-MGO model.

4.4. Effect of Phlorotannins on Glyceraldehyde (GA) Formation

GA is also involved in AGE production. AGEs derived from GA form faster than
those from MGO [67]. Therefore, many studies have explored inhibitors of the formation of
AGEs from GA [68–70]. In addition to the serum albumin–MGO models described in the
previous section, the inhibitory effects of phlorotannins have been examined using HSA–
or BSA–GA models [71]. As a result, phlorotannins from Lessoniaceae exhibited an IC50
of 0.48–0.70 mg/mL (Table 2). The inhibitory effect of phlorotannins derived from Eisenia
bicyclis on fluorescent AGEs was 2.3–3.7-fold higher than that of AG as a positive control.

Table 2. IC50 values of crude phlorotannins against fluorescent AGEs formation [71].

Algae (Original Area) HAS-GA (mg/mL) BSA-GA (mg/mL)

Eck. Cava (Mie) 0.70 0.75
Eck. Kurome (Fukuoka) 0.58 0.55
Eck. Kurome (Kumamoto) 0.61 0.59
Cultured Eck. Kurome (Kumamoto) 0.52 0.58
Eck. Stolonifera (Yamaguchi) 0.54 0.56
Eis. arborea (Mie) 0.51 0.61
Eis. bicyclis (Fukuoka) 0.48 0.52

The values of aminoguanidine hydrochloride (positive controls) were 1.10 mg/mL in the HSA-GA model and
1.93 mg/mL in the BSA-GA model.

4.5. Effect of Phlorotannins on Nε-(Carboxymethyl)lysine (CML)

CML is an AGE formed by the oxidation of glucose with lysine [72]. In human dermal
fibroblasts, CML–collagen decreased the ability of epidermal keratinocytes to adhere
to collagen and induce apoptosis [73]. CML–collagen inhibits collagen cross-linking in
osteoblasts and causes diabetic osteopenia [74,75]. The suppression of CML formation
in these diseases is thought to be clinically important. Recently, the inhibitory effect of
phlorotannins on CML formation was examined [76]. The inhibitory effect following
treatment with phlorotannins from Lessoniaceae on CML formation was 0.16 µg/mL,
which was distinctively lower than that following treatment with 0.40 mM AG as a positive
control. Phloroglucinol and eckols inhibit CML formation at concentrations approximately
317–1818-fold lower than those of AG [76]. Taken together, phlorotannins can be considered
potential inhibitors of CML formation.

5. Microbial Conversion of Macroalgae
5.1. Microorganisms and Their Enzymes

To develop bioconversion methods for algae, an effective method for crushing and
saccharifying seaweed bodies is crucial. Considering these situations, algae-degrading
microorganisms can be exploited to develop a sustainable tool for algal processing. Previous
outbreaks of seaweed diseases have led to the screening of algae-degrading bacteria.
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The marine bacterium Alteromonas elyakovii KMM 162T was isolated from spot-wounded
fronds of the brown macroalga Laminaria japonica [77]. Similar to other brown algae, Fucus
evanescens-degrading bacteria, Pseudoalteromonas sp., and Halomonas sp. have also been
isolated previously [78].

Tanaka et al. isolated four brown algae-degrading Gram-negative bacteria, namely
Formosa haliotis strains from the gut of the abalone Haliotis gigantea [79]. Furthermore, they
performed genomic analysis of the Formosa haliotis strain MA1 (LMG 28520T) to reveal the
mechanism of degradation of seaweed bodies. As a result, more genes related to macro-
molecule degradation were identified compared with conventional marine bacteria [79].
Several genes related to hydrocarbon degradation and gene clusters related to alginate
degradation have been identified.

Furthermore, genes encoding alginate lyase family PL-7, an oligoalginate lyase classified
as alginate lyase (family PL-17), 4-deoxy-l-erythro-5-hexoseulose uronic acid (DEH) reductase,
KdgF, 2-keto-3-deoxy-D-gluconate (KDG) kinase, and 2-dehydro-3-deoxy-phosphogluconate
aldolase have been identified [80]. The KDG produced by this cluster is further metabo-
lized in a major biochemical pathway of sugars. Using this gene cluster, Formosa haliotis
may effectively and functionally use fewer compounds in marine environments than in
terrestrial environments [80].

5.2. Degradation of Alginate

Alginate-degrading bacteria are considered industrially important because products
using alginate lyases can be applied in the pharmaceutical industry, the food industry, and
bioethanol production [81]. Several researchers have investigated alginolytic strains in the
environment and identified them as Sphingomonas sp. strain A1 [82], Zobellia galactanivo-
rans [83], Vibrio splendidus strain 12B01 [84], and Saccharophagus degradans strain 2–40 [85].
Alginate-degrading bacteria have been further explored for the efficient production of rare
sugars from brown macroalgae by screening algae-corrupting bacteria. As a result of this
screening, Falsirhodobacter sp. strain alg1 was isolated and analyzed [81,86]. Although
there are only two alginate lyases, namely, AlyFRA and AlyFRB, in strain alg1, DEH was
effectively produced by controlling the ratio of the two enzymes [81].

5.3. Immobilization of Recombinant Alginate Lyase

To achieve effective and sustainable DEH production, microbial strains of Escherichia
coli, Saccharomyces cerevisiae, and Sphingomonas sp. A1 were developed by introducing genes
encoding alginate lyase and other enzymes related to DEH fermentation and bioethanol
production [87,88]. These strains can produce ethanol directly from sodium alginate. The
enzymatic reactions of recombinant endo-alginate lyase Alg7D and exo-alginate lyase
Alg17C from Saccharophagus degradans yielded 45.5% DEH (DEH weight/alginate weight)
from alginate [89].

Considering the industrial applications of DEH, increasing the yield of DEH and
examining the reusability of enzymes are warranted to minimize costs. In general, enzyme
reusability can be attained by immobilizing the enzymes into carrier materials. Moreover,
the immobilized enzymes can be handled as solids and readily separated from the reaction
mixture containing the products. Tanaka et al. examined DEH production using free and
immobilized alginate lyases, endo-type AlyFRA, and exo-type AlyFRB from Falsirhodobacter
sp. alg1 [90].

The investigation using LC-MS revealed that the reaction of both recombinant enzymes
rAlyFRA and rAlyFRB with sodium alginate generated highly purified DEH. Next, AlyFRA-
and AlyFRB-immobilized enzymes with κ-carrageenan were prepared as iAlyFRA and
iAlyFRB, respectively. The immobilization rates of AlyFRA and AlyFRB increased as the
concentration of κ-carrageenan increased, and their κ-carrageenan gels were less fragile.
Immobilized enzymes prepared with 4.0% (w/v) κ-carrageenan completely degraded the
substrate and produced DEH in the seventh batch reaction [90]. Considering these facts,
the immobilization of AlyFRA and AlyFRB can effectively and economically produce
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large amounts of DEH from sodium alginate. Therefore, the industrial-scale production of
DEH via the extraction of saccharified liquid containing alginate from brown algae can be
developed by improving the immobilization conditions and carrier materials.

6. Molecular Display Technology for Macroalgae Utilization
6.1. Technology for Immobilizing Proteins on the Cell Surface

After the development of genetic engineering, molecular display technology or cell sur-
face engineering was developed for various biological investigations and was conveniently
applied to prepare recombinant proteins in bioprocesses [91–93]. The first technology in this
field was the so-called “phage display” technology, which was developed by Smith [94].
In this technology, a foreign protein is inserted into the filamentous phage protein III
via genetic manipulation, and its fusion protein is produced on the virion surface. This
technology is currently used for screening combinatorial proteins or clones of peptide
ligands [95,96]; however, it is difficult to perform and involves steps such as infection of
Escherichia coli cells with phages for the recovery of positive clones. This technical challenge
can be solved using molecular display technology with bacterial cells, which can provide an
easier display system without infection and can display large numbers of proteins [97,98].

Since the development of E. coli as a host bacterium for molecular display technol-
ogy [99,100], several bacteria, such as Acetivibrio cellulolyticus [101], Bacillus subtilis [102],
Lactobacillus [103], and Staphylococcus [104], have been effectively used for biotechnological
applications. Depending on the biochemical or physical characteristics of foreign proteins,
manifold bacterial hosts have been developed for surface display. However, it is difficult to
achieve high-throughput screening of positive clones from libraries using a flow cytometer
or microscope and to determine the levels of eukaryotic proteins using bacterial surface
display technology.

6.2. Yeast Display System

The yeast Saccharomyces cerevisiae is well known as a useful host of genetic biotechnol-
ogy because it can fold and glycosylate heterologous eukaryotic proteins. Furthermore,
these cells are economically advantageous for high-density cultivation. Moreover, yeast
cells can be used to express different proteins using several genetic markers. Indeed,
various studies have reported that yeast can display different kinds of protein, the so-
called “co-display” [105–107]. This molecular display system enabled us to perform high-
throughput screening using conventional devices such as a flow cytometer or a multiwell
plate reader [108,109].

The cell surface of the yeast Saccharomyces cerevisiae comprises β-glucans and manno-
proteins [110], which exist outside the cell membrane. Cell wall proteins, such as agglutinins
(Aga1 and Aga2), Flo1, Sed1, and Cwp1, are well-known anchor molecules that can re-
tain target proteins on the yeast cell surface. In addition to these proteins, α-agglutinin
is also one of the most widely used anchoring proteins for heterologous proteins in the
yeast display system. A target and α-agglutinin fusion protein is produced by introducing
multicopy plasmids or integrative plasmids into the host strain. A fusion protein in the
system is transiently transported to the exterior of the cell membrane by secretory vesi-
cles and then released by an enzymatic reaction involving phosphatidylinositol-specific
phospholipase C. Finally, the target–α-agglutinin fusion protein is transferred to the cell
wall [111,112]. Using the Saccharomyces cerevisiae–α-agglutinin display system, enzymes,
fluorescent proteins [108], antibodies, and peptides [91] have been successfully displayed
on the cell surface and used as elements of biomonitoring [113], adsorbents for screening
of protein libraries [114], oral vaccines [115,116], catalysts in bioconversion, etc. Enzymes
displayed on yeast cells can be repeatedly used via centrifugation with a synergistic con-
version associated with the yeast intracellular metabolic pathway. Cells with the ability to
degrade macroalgae and ferment macroalgal components have been developed by using
molecular display technology, as described below.



Microorganisms 2023, 11, 1499 8 of 19

6.3. Bioethanol Production from Laminarin

As described earlier, brown algae have the potential to be used to produce biomass
energy because they do not compete with food and do not contain persistent lignin. As
mentioned in the Introduction, brown algae contain up to 35% lignin on a dry weight
basis [16] and have attracted much attention in the field of energy production. Nevertheless,
they have not yet been effectively used as biomass because they cannot decompose into
glucose. Therefore, to use brown algae, it is necessary to degrade laminarin to produce
glucose for assimilation during alcohol fermentation.

Laminarinase, i.e., β-1,3-glucanase and β-1,6-glucanase, can produce glucose from
polysaccharides for ethanol production [117]. Studies have reported ethanol production
from laminarin using microorganisms [118–120]. Pichia angophorae can directly produce
ethanol from laminarin [120]; however, it does not exhibit salt tolerance, unlike Saccha-
romyces cerevisiae [121]. In bioethanol production from brown macroalgae, the salt-tolerant
characteristics of microbial cells would be advantageous. Saccharomyces cerevisiae has been
used in the fermentation industry and can produce high levels of ethanol; however, it
cannot assimilate laminarin.

Using qualitative proteomic analysis, Motone et al. reported that the marine, laminarin-
assimilating bacterium Saccharophagus degradans strain 2–40 exhibits a high ability to de-
grade polysaccharides for bioethanol production [122]. In the multicomponent enzyme
system of S. degradans 2–40, various polysaccharides, including agar, alginate, cellulose,
hemicellulose, and laminarin, can be degraded [123]. In a proteomic study, 92 molecules,
including 6 carbohydrases, were identified as proteins specifically produced during cul-
tivation in a laminarin-containing medium [122]. Among the identified carbohydrases,
Gly16G, Lam16B, and Gly5M belong to the glycoside hydrolase family 5 or 16 [122].

Although Gly16G and Lam16B have already been predicted to be laminarinases [123],
the catalytic machinery of Gly16G is missing according to NCBI (http://www.ncbi.nlm.nih.
gov/ accessed on 1 March 2023). Moreover, the molecular weight of Lam16B is extremely
high and is therefore thought to be unsuitable for cell surface displays [124,125]. As a
result, Gly5M was selected as the candidate hydrolytic enzyme for laminarin and displayed
on the yeast cell surface. In the reaction between laminarin and Gly5M-displying yeast,
oligosaccharides were produced, and Gly5M was suggested to be a novel hydrolytic
enzyme for laminarin. Analysis of the produced oligosaccharides revealed that most
comprised gentiobiose, with two glucose molecules linked by a β-1,6-glycosidic bond.
Furthermore, Aspergillus aculaeatus β-glucosidase (BG)-displaying yeast was used to achieve
ethanol production from laminarin. Cocultivation of Gly5M- and BG-displaying yeast
strains was performed in a medium containing 20 g/L laminarin as the sole carbon source.
As a result, 5.2 g/L of ethanol (corresponding to 46% of the theoretical yield) was produced
under optimized conditions [122]. A study revealed that ethanol productivity depends
on the initial inoculation ratio of the two yeast strains, and the proportion of the two
enzymes is important in fermentation [122]. This cocultivation system using Gly5M- and
BG-displaying yeast strains could be a powerful tool for ethanol production using laminarin
in brown macroalgae.

6.4. Bioethanol Production from Xylan

Xylan is present in macroalgae and comprises a heteropolysaccharide withβ-1,4-linked
xylopyranoside. It constitutes >90% of the hemicellulose content [126]. Bioconversion of
xylan into bioethanol can be an efficient and sustainable method for bioethanol production
from nonedible biomass derived from macroalgae. In a previous study, xylan-degrading
xylanase II (XYNII) from Trichoderma reesei and beta-xylosidase (XylA) from Aspergillus
oryzae were codisplayed [127]. The XYNII- and XylA-displaying strain was used for
direct ethanol production from birchwood xylan. The strain could produce D-xylose
using the displayed enzymes, and fermentation of D-xylose was achieved by introducing
the oxidoreductase-based enzymes NAD(P)H-dependent D-xylose reductase and xylitol
dehydrogenase [128]. However, these enzymes cause intracellular redox imbalance and

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
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accumulation of by-products. An increase in cytosolic xylitol and glycerol leads to a
decrease in the yield of ethanol [129,130].

Another route for the production of xylose involving isomerase (XI), which is predom-
inantly derived from bacteria and catalyzes the isomerization of D-xylose into D-xylulose,
has been investigated [131]. XI does not require coenzymes for isomerization. Moreover,
using XI, higher theoretical yields (0.51 g ethanol/g xylose) can be achieved compared
with the conventional pathway (0.46 g ethanol/g xylose) [132]. Ota et al. developed Sac-
charomyces cerevisiae displaying xylose isomerase (XylC) from Clostridium cellulovorans that
can simultaneously isomerize and ferment D-xylose [133]. D-xylose isomerization in the
cultivation medium has the potential to utilize D-xylose because D-xylulose is promptly
absorbed by yeast cells via different uptake routes, unlike D-xylose uptake [134,135]. Nev-
ertheless, ethanol production was low in this study [133] because of the limited catalytic
activity of XylC.

To enhance the catalytic activity of enzymes, it is important to optimize the concen-
tration of specific cofactors because metal cations such as Co2+, Mg2+, or Mn2+ increase
the activity and stability of XIs [136]. To improve the cell surface enzymatic activity of
XylC-displaying yeast, specific metal cations have also been studied [137]. In this study,
XylC-displaying yeast cells were cultivated and incubated in buffered solutions containing
D-xylose and the following metal ions: Mn2+, Fe2+, Fe3+, Co2+, Co3+, Ni2+, Cu2+, and
Mg2+. Co2+ markedly improved the catalytic activity of XylC on the yeast cell surface by
46-fold. As a result, Co2+ supplementation was introduced in the coculture system using
two yeast strains, i.e., xylan-degrading Saccharomyces cerevisiae strain, which codisplays
an endo-1,4-β-xylanase from Saccharophagus degradans 2–40 [138] and a β-xylosidase from
Aspergillus niger [139], and a Saccharomyces cerevisiae strain that displays XylC (Figure 2).
Supplementation of 3 mM Co2+ was the most effective cofactor for ethanol fermenta-
tion. In addition, the ethanol production rate and consumption rate of D-xylose were
38 ± 7.1 mg ethanol·g-cell−1·h−1 and 150 ± 3.6 mg xylose·g-cell−1·h−1, respectively. They
were prominently improved compared with fermentation without Co2+ supplementation
(6.3 ± 0.79 mg ethanol xylose·g-cell−1·h−1 and 56 ± 2.7 mg xylose·g-cell−1·h−1, 6.0- and
2.7-fold, respectively) [137].

Various enzymes from different microbial species may be an effective solution for
fermenting xylan derived from macroalgae into ethanol. For example, the degradation of
macroalgal xylan by xylanases from microbes such as Cryptococcus and Thermomyces has
been investigated [140].

6.5. Bioethanol Production from Alginate and Mannitol

Introduction of the DEH transporter and components of the DEH metabolic pathway
(DehR, KdgK, and KdgpA) into Saccharomyces cerevisiae is required for DEH assimilation
because Saccharomyces cerevisiae cannot assimilate DEH. Enquist-Newmam et al. constructed
a Saccharomyces cerevisiae strain that can use both DEH and mannitol [141]. To screen
for a DEH transporter, the Saccharomyces cerevisiae strain BAL2193 was constructed by
genomically integrating genes for DEH assimilation (dehR from Sphingomonas sp. strain A1,
kdgK from Saccharophagus degradans, and kdgpA from Vibrio splendidus). Codon-optimized
dehR from Vibrio harveyi, kdgK from Escherichia coli, and kdgpA from Vibrio splendidus were
selected for engineering Saccharomyces cerevisiae using an enzymatic assay of the cell lysate
and ethanol productivity. The resulting strain produced 36 g/L ethanol from a 98 g/L sugar
mixture (alginate and mannitol). The metabolically modified Saccharomyces cerevisiae could
generate ethanol from DEH and mannitol; however, unmodified Saccharomyces cerevisiae
lacked the ability to utilize alginate [141].
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Figure 2. Coculture system designed for xylan saccharification and ethanol fermentation. The system
is based on both xylanase-displaying strains and xylose isomerase-displaying strains. Xylan is
degraded to D-xylose by the Xyn11B- and XlnD-codisplaying strain. This figure has been adapted
from a previous study [137].

Takagi et al., focused on secreted alginate lyases (Alg7D and Alg18J) and lipobox-
containing cell-surface-attached alginate lyases (Alg7A and Alg7K) in Saccharophagus
degradans and displayed them on Saccharomyces cerevisiae W303-1A [142]. Alg7A-, Alg7D-
, and Alg18J-displaying strains exhibited endolytic alginate lyase activity, whereas the
Alg7K-displaying strain exhibited exolytic alginate lyase activity. In addition to inves-
tigating the substrate specificity of the displayed alginate lyases, they produced yeasts
codisplaying endolytic and exolytic alginate lyases. The degradation efficiency of these
codisplaying strains was significantly higher than that of single alginate lyase-displaying
strains. The Alg7A- and Alg7K-codisplaying strain had the highest alginate-degrading
activity, producing 1.98 g/L reducing sugars [142].

Yeast molecular display technology has been further improved for direct ethanol pro-
duction from alginate and mannitol in brown macroalgae (Figure 3) [143]. First, the genes
encoding the components of the DEH pathway that produce ethanol directly from alginate
and mannitol were examined. Then, the genes encoding Alg7A and Alg7K from Saccharoph-
agus degradans, DHT1 from Asteromyces cruciatus, dehR from Vibrio splendidus, and kdgK from
Escherichia coli were examined. Furthermore, mannitol-metabolizing capacity was enhanced
to control the redox balance during prolonged cultivation using a medium with mannitol
as the sole carbon source. The resulting strain, alginate- and mannitol-assimilating (AM1),
was cultivated in a medium containing 6% (w/v) of total sugar (approximately 1:2 ratio of
alginate/mannitol). The strain could directly produce ethanol from alginate and mannitol
and obtained 8.8 g/L of ethanol (Figure 4), with yields of up to 32% of the theoretical
yield [143].
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Figure 4. Direct ethanol production from alginate and mannitol using the alginate- and mannitol-
assimilating strain. This figure has been adapted from a previous study [143].

Alginate is initially degraded into oligosaccharides by Alg7A. These oligosaccharides
are then sequentially degraded into monosaccharides by Alg7K. DEH is transported into
the cytoplasmic space by the DEH transporter. Mannitol is converted to D-fructose by
mannitol-2-dehydrogenase. This figure has been adapted from a previous study [143].

As another platform for bioethanol production using macroalgae, a cocultivation
system using two different Saccharomyces cerevisiae strains, i.e., the cellulase-displaying
strain (CDY) and AM1 strain, has recently been developed. The yeast CDY strain for
ethanol production from glucan codisplays the cellulases endoglucanase, cellobiohydrolase,
and BG on its cell surface [144].

Sasaki et al., developed a system using the Saccharomyces cerevisiae strains CDY and
AM1 [145]. In the study, the acid hydrolysate of the brown macroalga Ecklonia kurome was
used as the carbon source in the fermentation medium. The inoculation rate of cocultivated
yeast is important for simultaneous utilization because there are varying amounts of
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carbohydrate components in brown algae. The cocultivation rate of the AM1 and CDY
strains (4:1) was 2.10 ± 0.70 g/L of ethanol production. This yield was slightly higher
than that produced by a monoculture of the AM1 strain and 2.1-fold higher than that
produced by a monoculture of the CDY strain. In addition, peaks in mannitol, laminarin,
and alginate stores in brown macroalgae appear around July, September, and from January
to March, respectively [146,147]. Therefore, the harvesting season is also an important
factor that should be examined to improve the production efficiency of ethanol and genetic
and metabolic engineering.

6.6. Recovery of Metal Ions

For a long time, various types of bacteria have been examined in studies on the
recovery of metal ions from aquatic environments [148–151]. Recently, algae have been
shown to exhibit absorption abilities [151]. At present, macroalgae have better performance
ability than microalgae, followed by cyanobacteria. For example, a study suggested that
brown macroalgae have the most potential as bioadsorbents, with Undaria pinnatifida having
an absorption ability of 0.6 mmol g−1 of total metals [152]. Another brown macroalga,
Fucus vesiculosus, exhibited high absorption ability for Hg, Pb, and Cd [153]. Biopolymers
derived from the alginate of Ecklonia sp. were suggested to be chelating materials for
Pb2+, Cu2+, Cd2+, As3+, and Ag+, which are considered environmental pollutants [154].
Absorption using macroalgae for toxic metals and rare earth elements such as La, Ce, Pr,
Nd, Eu, Gd, Tb, and Y, has also been investigated [155–158].

In a previous study on molecular display technology, metal-binding properties were
endowed on yeast cell surfaces, and the engineered yeast cells were regarded as bioadsor-
bents [159,160]. These bioadorbents were used to recover metal ions from the extracts of
macroalgae that absorb and enrich metal ions in the sea. The construction of yeast cells
with the ability to absorb heavy metal ions, metal-binding proteins, and peptides has been
demonstrated on the Saccharomyces cerevisiae cell surface. First, a hexa-histidine peptide
(hexa-His) [161] and the metal-binding protein yeast metallothionein (YMT) [162] were
displayed. The ability of the hexa-his- or YMT-displaying yeast strains to absorb Cu2+,
Ni2+, or Cd2+ was distinctively observed and enhanced compared with those of the control
host strain. In addition, these yeast strains grew even in media containing Cu2+ or Cd2+ at
toxic concentrations [161,162]. The separation process of cell-surface-bound heavy metal
ions from the yeast cell surface was also developed for practical application in the bioreme-
diation of contaminated hydrospheres. Furthermore, to enhance the utility of hexa-his- or
YMT-displaying yeast strains for the recovery of metal ions, a system of self-aggregation
of cells that bind to metal ions was introduced [163]. Because the Gts1 protein can induce
strong aggregation when overexpressed, GTS1 was expressed under the control of the
CUP1 promoter, which functions by increasing Cu2+ in the cells. Gts1-controlling aggre-
gation of the resulting yeast strain was successfully achieved in response to Cu2+ in the
medium. As another improvement in the metal-binding ability of Saccharomyces cerevisiae,
multiple YMTs were displayed tandemly; this strain had an enhanced ability to recover
metal ions depending on the frequency of tandem repeats [164]. The metal-binding ability
of Saccharomyces cerevisiae endowed by molecular display systems has been applied not
only to heavy metal ions but also to rare metal ions. For example, the ModE protein derived
from Escherichia coli was displayed on the yeast, and its molybdate-binding ability was
observed [165]. In addition, uranyl ions were recovered using yeast strains displaying NikR
mutant proteins from Escherichia coli [166]. Further development of these metal-binding
yeast strains could help in the recovery of various metal ions from extracts of macroalgae
and other types of macroalgae.

7. Summary

We provided an overview of the bioconversion of macroalgae, mainly brown macroal-
gae, using microbial biotechnology. Terrestrial natural resources have met the expectations
for food supply, energy, or valuable substances worldwide. To achieve sustainable develop-
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ment, biotechnological processes in particular have been developed and introduced into
various processes, including the manufacturing and energy industries. To promote sustain-
ability in these processes, it is not only important to use highly sophisticated technology
but also to select natural resources. Therefore, the use of macroalgae instead of conven-
tional terrestrial resources is considered suitable for these situations. Nevertheless, further
screening of microorganisms from different regions is warranted to convert macroalgae
into desirable feedstocks. In the future, genetic engineering, such as molecular display
technology, will continue to provide ecofriendly tools for energy production and will be
widely developed for the use of macroalgae.

Macroalgae contain several compounds for which there is high demand. A solution or
technology that can be employed to preserve their habitat and marine resources should be
discovered or developed to continue the harmonious use of macroalgae with the circle of
life [167].
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