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Abstract: Biodegradable polymers offer a potential solution to marine pollution caused by plastic
waste. The marine biofilms that formed on the surfaces of poly(lactide acid) (PLA) and poly(3-
hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were studied. Bioplastics were exposed for 6 months
to marine conditions in the Mediterranean Sea, and the biofilms that formed on their surfaces were
assessed. The presence of specific PLA and PHBV degraders was also studied. PHBV showed
extensive areas with microbial accumulations and this led to higher microbial surface densities
than PLA (4.75 vs. 5.16 log CFU/cm2). Both polymers’ surfaces showed a wide variety of microbial
structures, including bacteria, fungi, unicellular algae and choanoflagellates. A high bacterial diversity
was observed, with differences between the two polymers, particularly at the phylum level, with
over 70% of bacteria affiliated to three phyla. Differences in metagenome functions were also
detected, revealing a higher presence of proteins involved in PHBV biodegradation in PHBV biofilms.
Four bacterial isolates belonging to the Proteobacteria class were identified as PHBV degraders,
demonstrating the presence of species involved in the biodegradation of this polymer in seawater.
No PLA degraders were detected, confirming its low biodegradability in marine environments. This
was a pilot study to establish a baseline for further studies aimed at comprehending the marine
biodegradation of biopolymers.

Keywords: 16S rRNA; bacterial community; biodegradable plastics; biodegradation; seawater

1. Introduction

Despite the efforts made by the international community to improve plastic waste
disposal and sensitize society to the problems that their incorrect removal causes, a vast
volume of residues enters the oceans each year (around 11 million tons) [1]. Accumulation
of plastic wastes in the marine environment represents a global problem, affecting aquatic
wildlife and human health [2,3]. In this context, the demand for biodegradable polymers is
increasing, as they represent an alternative to non-biodegradable plastics that might help
to partially mitigate these problems. They are particularly promising to counteract the
current massive usage of single-use and short-shelf-life plastic products (e.g., food serving
utensils and packaging). Thus, the production of biodegradable plastics is expected to rise
from 1.2 to 1.8 million tons by 2025 and their potential fields of application to increasingly
diversify [4]. However, the pre-assumed biodegradability of biopolymers can be misleading
and result in inappropriate post-shelf-life management, which could increase their presence
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in the environment. One of the key issues is that, to be considered as biodegradable, a
biopolymer only has to prove that it can biodegrade under a certain single condition, which
does not ensure that this material does likewise under all conditions.

Poly(lactide acid) (PLA) and polyhydroxyalkanoates (PHAs) are considered the main
contributors to the increase in biodegradable polymer demand [4–6]. These polymers pos-
sess thermoplastic processing capacity and, while PLA is obtained through the fermentation
of starch as lactic acid, followed by chemical polymerization, PHAs are synthetized in vivo
by microorganisms as intracellular carbon and energy storage [4,7–9]. PLA exhibits high
mechanical strength but poor heat resistance and brittle fracture behavior, along with being
a moderate barrier to gases and organic-compounds barrier [10,11]. On the other hand,
PHAs display balanced mechanical properties in terms of stiffness and tensile strength but
low toughness, together with relatively high water-vapor- and moderate oxygen-barrier
properties [12,13]. Both can be categorized as bioplastics, since they are derived from
renewable sources. However, their degradation behavior is significantly different. PHAs
possess excellent biodegradation features that have been widely studied in different ter-
restrial environments [7], and they exhibit also good biodegradation in marine conditions,
although the available literature is more limited and reported results quite inconsistent. For
instance, [8] reported a weight loss of 36% in poly(3-hydroxybuyrate-co-3-hydroxyvalerate)
(PHBV) samples after 180 days of exposure to natural marine conditions, while [14] ob-
served that after 160 of exposure, the residual weight of different PHA samples was around
56%; and of 10% after 4 weeks in the case of [15]. PLA only biodegrades if temperature
conditions are above its glass transition temperature (under industrial compositing), and
its biodegradation is limited when exposed to natural and aquatic conditions [9,16]. As an
example, biodegradation of PLA films was very low after immersion in seawater [17,18].

As the market for bioplastics grows and expands, their potential release into the envi-
ronment becomes meaningful. In fact, an increase in PLA contamination in the environment
has been observed in the last few years [9]. Consequently, an understanding of biopolymers’
biodegradation behavior in natural conditions, especially in the marine ecosystem, where
degradation is considerably slower, is crucial [5,16]. Since biodegradation is a combination
of abiotic and biotic phenomena leading to an ultimate material mineralization by microbial
enzymes, the distribution, amount and type of the naturally-occurring microorganisms
present on plastic surfaces (biofilm) are key factors in the overall process [8]. In the case of
marine conditions, existent marine microbiota are strongly influenced by an interplay of
abiotic factors, within which the type of polymer is a key factor [5,19]. Due to the essential
contribution of the microbial biofilm covering plastic surfaces to the biodegradation pro-
cess, this paper puts emphasis on the marine biofilms that form on PHBV and PLA films,
to elucidate the microbiological aspects of their marine biodegradation and establish a
baseline for further studies. It was expected that the different compositions and properties
of the materials would lead to significant differences in the biofilm microbial compositions.

PHBV and PLA films were exposed to natural marine conditions in the western
Mediterranean Sea for 6 months and the microbiota established on their surfaces were
described and quantified through scanning electron microscopy (SEM), microbial counts
and 16S rRNA gene amplicon sequencing. The biodegradation capabilities of different
microbial isolates were also assessed.

2. Materials and Methods
2.1. Materials

PHBV commercial grade ENMAT Y100P (3 wt % valerate content, melting point
170–176 ◦C, density 1.23 g/cm3) and PLA commercial grade PLE 005 (melting point 175 ◦C,
density 1.24 g/cm3) were supplied in pellet form by Tianan Biologic Material Co. (Ningbo,
China) and NaturePlast (Ifs, France), respectively. Pellets were dried at 60 ◦C in a PIovan
DPA 10 dehumidifying dryer (Santa Maria di Sala, VE, Italy) and extruded in a single-screw
extruder (Haake Rheomex 252p, Karlsruhe, Germany) with a calendering system, to obtain
film of 400 µm thickness. The temperature profile from hopper to fishtail nozzle was set at
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140/165/175/170 ◦C for PHBV and at 160/170/180/190 ◦C for PLA and the rotation speed
at 100 rpm.

2.2. Experimental Setup

Thirteen film pieces (4 × 4 cm) of each material were cut, disinfected with ethanol and
cleaned to remove impurities. Subsequently, they were placed inside custom-made fine
meshed nylon bags which were introduced into semi-open cages. Bags were located in a
submarine station sited in waters close to Calpe Port (38◦37′54.4′′ N 0◦04′19.5′′ E, Calpe,
Spain) (Figure 1) and exposed during a 6-month period (September 2020 to March 2021).
Two or three replicates of each material were retrieved monthly. After each extraction,
nylon bags were transported to the Institute of Environment and Marine Science Research
(Calpe, Spain) where they were stored at 4 ◦C and sent to the Polymers and Advanced
Materials Laboratory (Castelló, Spain). Samples were analyzed within a maximum of 24 h
after extraction.
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Figure 1. Submarine station sited in waters close to Calpe Port (Calpe, Spain) and experimental setup.

2.3. Analysis of Biofilms by Scanning Electron Microscopy (SEM)

Qualitative composition and distribution of the biofilm formed on the film pieces’
surfaces were analyzed by SEM using a high-resolution field-emission JEOL 7001F micro-
scope. Samples were coated by sputtering a thin layer of platinum and observed using
an accelerating voltage of 5 kV. The observed microbial structures were compared with
those described in previous works, and taxonomic classification, if possible, was based on
morphological observations.

2.4. Quantification of Microbial Colonization and Dynamics

Each film piece was scraped with a sterile scalpel blade to ensure the maximum
amount of biofilm was recovered. Each piece and the detached biofilm were placed in
tubes containing 20 mL of phosphate-buffered saline (NaCl 8 g/L, KCl 0.2 g/L, Na2HPO4
1.4 g/L, KH2PO4 0.2 g/L) and vigorously shaken for 1 min. Biofilm suspensions were
serially diluted by duplicate and spread on marine agar (MA) and potato dextrose agar
with 50% of natural seawater (PDA) (Laboratorios Conda, S.A., Madrid, Spain) for the
quantification of cultivable heterotrophic marine bacteria and marine yeasts and molds,
respectively. Both media were supplemented either with cycloheximide (0.01 g/L) or
streptomycin sulfate salt (0.05 g/L) (Merck Life Science S.L., Madrid, Spain) to suppress
molds or bacteria growth, respectively. MA and PDA plates were incubated at 26 ◦C for 4
and 6 days and colony forming units (CFU) were counted. Results were expressed as log
CFU/cm2 material.
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2.5. Analysis of Biofilm Diversity and Composition by Amplicon Sequencing
2.5.1. Amplicon Library Preparation and Sequencing

After 6 months of exposure, from 3 replicates per material, 5 circular pieces of 0.3 cm2

were cut with a hole puncher and placed in cryotubes containing DNA/RNA Shield
stabilization solution (Zymo Research Corporation, Tustin, CA, USA). Samples were sent
to Microomics Systems S.L. (Barcelona, Spain) where they were frozen at −80 ◦C until
analyzed. DNA was extracted using the DNeasy PowerLyzer PowerSoil Kit (Qiagen,
Hilden, Germany) following the manufacturer’s instructions. The extraction tubes were
agitated using Tissue lyser II (Qiagen, Hilden, Germany) at 30 Hz/s for 10 min. Mock
community DNA was included as positive control for library preparation (Zymobiomics
Microbial Community DNA, ZymoResearch, Irvine, CA, USA) and to ensure quality control.
Samples were amplified using 16S rRNA V3-V4 regions specific primers (V3-V4-Forward 5′-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′, V3-
V4 Reverse 5′GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTAT-
CTAATCC-3′). Amplicon library preparation was performed as previously reported [20].
Negative controls included sample collection buffer, DNA extraction and PCR amplification
blank. Sequencing was performed using an Illumina MiSeq (2 × 300 bp).

2.5.2. Sequence Processing and Analysis

Raw, demultiplexed forward and reverse reads were processed using the methods and
pipelines implemented in QIIME2 version 2020.11, with default parameters unless stated
otherwise [21]. DADA2 was used for quality filtering, denoising, pair-end merging and
amplicon sequence variant calling (ASV, i.e., phylotypes) using QIIME DADA2 denoise-
paired method [22]. Details are provided in Appendix A. OTU tables were used to calculate
unweighted and weighted Unifrac distances to compare community structures [23]. Alpha
diversity metrics calculated were: observed operational taxonomic units (OTUs) number
(i.e., richness) and Pielou‘s evenness index. To assess the OTUs distribution in the biofilms,
Venn diagrams were plotted using an online tool [24].

Potential functional profiles for sequenced samples were predicted using PICRUSt2 [20].
Phylotypes were placed into a reference tree containing 20,000 full 16S rRNA genes from
prokaryotic genomes in the Integrated Microbial Genomes (IMG) database. Functional
annotation of genomes was based on the Clusters of Orthologous Groups of proteins (COG)
database. To infer the abundance of each gene family (i.e., COGs functions) per sample, the
abundances of phylotypes were corrected by their 16S rRNA gene copy number and then
multiplied by their functional predictions.

2.6. Screening of Biopolymer Degraders

For the detection of isolates able to specifically degrade the biopolymers, the clear
zone method was used. This method involves inoculating the isolates onto agar containing
the polymer. After incubation, the development of a clear zone around the colonies
is considered an indication of polymer depolymerization [25,26]. MA and PDA plates
incorporating the powdered biopolymers (20 g/L) were prepared. To this end, polymers
were ground by cryogenic milling under liquid nitrogen and subsequent sieving through
a 250 µm mesh. Different bacteria, yeasts and molds observed on microbial count plates
corresponding to the last sampling time were selected and sub-cultured 3 times until pure
cultures were obtained. Each isolated bacteria and yeast was inoculated in liquid medium
and incubated at 26 ◦C for 48 h. Aliquots of 5 µL from each culture were deposited by
duplicate on the corresponding plates. For fungi, 25 mm2 agar squares were cut from the
outer edge of 5-day old active cultures using a sterile scalpel blade and placed on PDA.
Plates were incubated at room temperature and observed after 5, 10 and 15 days to check
the presence of clearance zones surrounding the colonies. Isolates which tested positive
for biodegradation were individually re-inoculated on fresh medium and the appearance
of clearing zones was monitored again. Different known bacterial strains were also tested
following the same methodology [27–29]. Those showing degradative activity were used



Microorganisms 2023, 11, 1461 5 of 19

as positive controls in the screening experiment. Tested strains were acquired from the
Spanish Type Collection (CECT, University of Valencia, Valencia, Spain).

2.7. Molecular Identification of Biopolymer Degraders

Bacterial isolates which tested positive (Section 2.6) were identified by means of the
16S rRNA marker gene. Briefly, “colony PCR” was performed using 27F and 1492R primers
to amplify the 16S rRNA gene [30]. Amplicons were sequenced by Sanger sequencing.
Control quality of sequences was done manually, and sequence ends were trimmed to
avoid low quality bases. High quality sequences (600–800 bp length) were used as the query
for a basic local alignment search tool (BLAST) search against the NCBI 16S ribosomal RNA
sequences database. Best-hit results were used to assign a taxonomy label to isolates.

2.8. Statistical Analysis

Analysis of variance (ANOVA) was applied to microbial counts and significant differ-
ences were determined using the least significant difference (LSD) test (p < 0.05). Differential
abundance of taxa was tested by the Mann–Whitney (or Kruskal–Wallis) non-parametric
test on relative abundance of taxa (total sum scale). After Kruskal–Wallis, Conover’s
test with the FDR Benjamini–Hochberg correction was added for pairwise comparison.
Alpha-diversity comparisons were performed using Kruskal–Wallis non-parametric test.
Beta-diversity distance matrices and ASV tables were used to calculate principal coordinates
(PCoA) and construct ordination plots. The analysis of differential relative abundances
of COGs was performed with the Kruskal–Wallis test. The FDR Benjamini–Hochberg
correction was used to correct for multiple comparisons. The R packages Biodiversity R
version 2.11-1, PMCMR version 4.3, RVAideMemoire version 0.9-7, vegan version 2.5-5, and
‘pheatmap’ version 1.0.12 of R software package version 3.6.0 (http://www.R-project.org,
accessed on 10 May 2023) were used.

3. Results and Discussion
3.1. Analysis of Biofilms by SEM

Biofilms are mini-ecosystems composed of complex communities of microorganisms,
which may include bacteria, archaea, eukaryotic microorganisms and microscopic animals,
surrounded by a matrix of extrapolymeric substances (EPSs) whose function is to facilitate
cell adhesion while offering protection [5,31–34]. Figure 2 shows the surface of plastic
samples after a 6-month exposure. The most prevalent microbial structures in the biofilms
were rod-shape (rs) (Figure 2a–c,e) and coccoid (cc) (Figure 2a,d,g,i) cells, which likely
corresponded to bacilli and cocci bacteria and, to a lesser extent, to yeasts. Elongated cells
(ec) (Figure 2d,h) and fungal spores (sp) (Figure 2b,f) were also observed, together with
tubular structures (tb) (Figure 2b,c), which might be fungal hyphae [33]. In some cases, cells
seemed to be embedded within the biofilm and surrounded by EPSs (Figure 2d,e). Samples
showed extensive areas covered by dense layers of three-dimensional EPSs, especially
the PHBV-based films (Figure 2e,g,i), which agrees with our results in terms of microbial
biofilm quantification (Section 3.2). On PLA samples, cells tended to be individually
distributed or forming smaller aggregates (Figure 2a–c), whereas PHBV samples showed a
rougher surface with evident pits and cracks, probably because of biological degradation
processes (Figure 2e–i). Similar microbial structures and typical distributions have been
widely described by other authors studying marine biofilms formed on petroleum-based
macro- and microplastics surfaces [33,35–37]. Studies focused on bio-based plastics are
scarcer and, to our knowledge, no in-depth comparisons between the two most relevant
biopolymers (PLA and PHBV) have been carried out previously. For instance, Zhang et al.
(2021) studied PLA biofilms, but they compared them with those formed on conventional
plastics, reporting no significant differences.

http://www.R-project.org
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Figure 2. Scanning electron microscopy images of PLA (a–c) and PHBV (d–i) films exposed to a
marine environment for 6 months. Arrows indicate identified microbial structures. cc: Coccoid cell;
db: diplobacilli; ec: elongated cell; rs: rod shape; sp: sporous; tb: tubular.

Diatoms were also among the most abundant organisms colonizing samples, as they
are considerable on plastic debris [38]. Examples of pennate and centric diatoms, pre-
sumably of the Nitzschia and Actinoptychus genera, are depicted in Figure 3a–c. These
microalgae are considered a key factor in biofilm formation, as they produce EPSs (mu-
cilaginous polysaccharides) for their own adhesion [38–40]. Additionally, these EPSs could
facilitate other organisms’ attachment to plastic surfaces. It is also thought that the pro-
duction of other extracellular compounds, particularly dissolved organic carbon, could
help bacterial development [40]. Moreover, diatoms may be an important food source
for invertebrate grazers which, in turn, might exert an indirect physical degradation of
the materials [37,41]. Other unicellular algae detected were coccolithophores (Figure 3d),
presumably belonging to Emiliania huxleyi species [37,42]. The main hypothesis is that
coccolithophores would use plastic merely as a physical support [37]. Other biological
structures frequently recognized were choanoflagellates (Figure 3e), probably belonging
to the Acanthoeca spectabilis species, one of the most common choanoflagellates found in
marine biofilms [43,44]. These organisms are aquatic bacterivorous filter feeders, which
by the presence of flagella create water currents to feed themselves [39,43]. The incidence
of foraminifera (Figure 3f–h), bryozoan (Figure 3j) and polychaete tubes (Figure 3k) was
also quite frequent. The presence of regular and extended linear grooves found on some
samples, mainly on those from PHBV, suggests the occasional occurrence of grazers, which
could cause increased physical deterioration on plastic surfaces. These grooves create
cavities that could have favored the accumulation of bacterial degraders, promoting bio-
plastic biodegradation. No polymer-dependent preferential specificity was observed for the
diatoms, coccolithophores, choanoflagellates, foraminifera and bryozoans since all of them
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were found indiscriminately on PLA and PHBV samples at this stage of biofilm formation.
This could be attributed to the level of maturity of the studied biofilms, since it has been
reported that microbial communities across different surfaces converge as biofilms mature,
resulting in minimal differences [45].
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Figure 3. Scanning electron microscopy images showing examples of organisms visualized on
PLA (a,e,i,k) and PHBV (b–d,f–h,j,k) films exposed to marine environment for 6 months, includ-
ing pennate and radial diatoms (a–c), cocolitophores (d: Emiliania huxleyi), unicellular and colo-
nial choanoflagellates (e: Acanthoeca spectabilis), foraminifera (f–h), unidentified structures (i), bry-
ozoans (j) and polychaete tubs (k).

3.2. Quantification of Microbial Colonization and Dynamics

After 1 month, biofilm formation was visually confirmed, especially on PHBV sam-
ples (Figure S1b). As exposure time progressed, the biofilm became thicker and more
homogeneously distributed. By the end of the experiment, all samples were covered by an
abundant layer of organic matter (Figure S1c,f).

To quantify the growth of biofilms on PLA and PHBV over time, samples were taken
every month and quantification of heterotrophic cultivable bacteria, molds and yeasts
was performed (Figure 4). After 1 month of exposure, the culturable bacteria CFUs/cm2

significantly differed from one material to another (p < 0.05). PHBV samples presented
a bacterial surface density (BSD) of 4.51 log CFU/cm2, more than one logarithmic unit
higher than on PLA, which had 3.18 log CFU/cm2. A similar trend was observed for molds
and yeasts, with values of 4.12 and 2.77 log CFU/cm2 for PHBV and PLA, respectively.
A significant increase (p < 0.05) in bacterial population took place after 2 months on PLA
samples, where the BSD showed a more than one log-fold increase. In the case of PHBV,
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variations in the BSD over time were not statistically significant (p > 0.05). From that
point on, the bacterial population size remained stable and only small variations were
observed. By the end of the experiment, according to statistical analysis, differences
between the materials were not significant (p > 0.05), although PHBV samples tended to
have higher population sizes, with a final BSD of 5.16 log CFU/cm2. Less variation was
observed in fungal population sizes. Higher CFU/cm2 was observed on PHBV than on
PLA biofilms during the first 4 months, and no differences were observed at the longest
exposure times. Bacteria CFUs were higher than mold and yeast CFUs at every sampled
time point, revealing that bacteria constitute the predominant taxa in the biofilms on both
biopolymers, as previously reported [32]. This is consistent with the fact that fungi are less
often found in aquatic systems [7]. Observational and quantitative results obtained from
6 months of exposure agree with those already shown for microplastics and bioplastics in
freshwater and marine conditions in laboratory experiments [25,46,47]. It is important to
acknowledge that culture-dependent techniques, such as plate counts, can only quantify
the strains that are capable of being cultured. As a result, these results may not accurately
represent the actual number of microorganisms present in the biofilms. However, they do
provide a means to compare different samples and draw comparisons between them.
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within the same polymer indicate significant differences over time according to the least significant
difference (LSD) test.

It can be concluded that PHBV provided a more favorable support for further attach-
ment of microorganisms than PLA. In this sense, PHBV would not be only a physical
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support matrix but also a potential source of nutrients for bacteria, which would favor
their multiplication [47]. This is the first time differential results between PLA and PHBV
have been demonstrated in situ, since up to now, only comparations between one or the
other and conventional plastics have been carried out, and mainly using laboratory closed
systems [47].

3.3. Analysis of Biofilm Diversity and Composition by Amplicon Sequencing

To gain a deeper insight into the bacterial diversity and taxonomic and functional
profiles of the PHBV and PLA biofilms, amplicon sequencing of the V3-V4 regions of the
16S rRNA gene was used. A total of 4522 phylotypes were detected and alpha-diversity
analysis revealed that no significant differences were observed for richness and evenness
between PHBV and PLA biofilms (Table 1). However, PLA biofilms showed a trend towards
higher values for both metrics, which would indicate a higher diversity and uniformity.

Table 1. Median values for alpha-diversity metrics and Kruskal–Wallis non-parametric test p values.
p values < 0.05 indicate significant differences between the compared experimental groups.

Observed OTUs Pielou’s Evenness Index

PLA 1231 0.93
PHBV 693 0.92
p value 0.28 0.05

The structure of a biofilm’s bacterial communities was visualized in terms of beta
diversity by principal coordinate analysis (PCoA) based on unweighted Unifrac distances
(Figure 5). Significant differences between PHBV and PLA biofilms’ communities were
observed (Mann–Whitney test, p < 0.05) (Figure S2). Unweighted Unifrac distance is based
not only on shared phylotypes, but also on the phylogenetic distances between them,
indicating putative genomic and functional variation between PLA and PHBV biofilms. In
agreement with this, a deep look into the distribution of phylotypes showed that PLA and
PHBV biofilms shared 142 phylotypes (there being 2549 phylotypes exclusively found in
PLA biofilms and 1652 in those on PHBV) (Figure S3).
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Taxonomic classification of phylotypes showed that over 70% of the observed bacteria
were affiliated to three phyla (Figure 6a). Proteobacteria was the most abundant phylum,
followed by Bacteroidota and Planctomycetota. These taxa have already been described
among the most frequent phyla colonizing substrates in marine ecosystems [48–51]. Sta-
tistical analysis revealed a significantly higher abundance of Bacteroidota reads on PLA
samples, while no significant differences between materials were observed for Proteobacte-
ria and Planctomycetota. Verrucomicrobiota, Acidobacteriota and Chloroflexi were also
observed in both PLA and PHA, with a relative abundance value equal to or lower than
10%. Within the Proteobacteria phylum, the Gammaproteobacteria and Alphaproteobacte-
ria classes displayed the highest relative abundances (Figure 6b). Gammaproteobacteria
(19%) dominated in PLA biofilms and Alphaproteobacteria was the most prevalent in
PHBV samples (20%). Within the Bacteriodota phylum, the Bacteroidia class was the most
abundant, being significantly more abundant in PLA biofilms. Planctomycetes was the
dominant class within Planctomycetota. It has been previously reported that Alpha- and
Gammaproteobacteria are pioneer colonizers on non-biopolymer plastics in marine systems,
while Bacteroidia have been considered as secondary colonizers [52,53]. Several authors
have reported that Bacteroidota and Proteobacteria, specifically the Gammaproteobacteria
and Alphaproteobacteria classes, are the main phyla in the biofilms of floating plastics in
the Atlantic and Mediterranean Seas [28,50]. As regards biopolymers-based plastics, many
descriptions of in vitro biofilms have been reported. For instance, [47] observed a predom-
inance of Gammaproteobacteria and Alphaproteobacteria in the first and later stages of
biofilm development on polyethylene and PHBV in open-circuit aquariums with natural
seawater, and found that the community structure of PHBV biofilms significantly differed
from the petroleum-based polymer types. For their part, [25] described Proteobacteria and
Bacteroidota as the dominant phyla in PHBH biofilms in laboratory freshwater experiments.
Our results are in line with these observations, while also being, to our knowledge, the first
time significant differences between PLA and PHBV have been reported.
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present in PLA and PHBV biofilms. Less abundant taxa (relative abundance lower than 1%) were
grouped into the category “Others”. An asterisk (*) indicates “unassigned”.

At the family level, Flavobacteriaceae (Bacteroidia) (7.6 and 8.3% on PLA and PHBV),
Rhodobacteraceae (Alphaproteobacteria) (6.6 and 5.2% for PLA and PHBV) and Pirellu-
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laceae (Planctomycetes) (5.9 and 5.4% for PLA and PHBV), were the most abundant taxa
(Figure 6c). Overall, no statistically significant differences (p > 0.05) were observed for
these families between polymers. Several researchers have previously reported high abun-
dances of these families on a variety of biofilms grown on marine plastics in different
locations [19,25,44,49–51,54,55]. The Saprospiraceae (Bacteroidia) family relative abun-
dance was found to differ between PLA and PHBV (6.3 vs. 2.9%). Interestingly, this
group is known to comprise members capable of the hydrolysis and utilization of complex
organic carbon compounds. Within Saprospiraceae, Portibacter was more abundant in
PLA biofilms than in those on PHBV. Even if poorly characterized, this taxon has been
previously reported to colonize polyethylene, polyethylene terephthalate and PLA in the
marine plastisphere [56–58].

The most abundant genus on PLA samples was the uncultured group DEV007 (Verru-
comicrobiota), whose abundance (3.6%) was significantly higher than on PHBV (Figure 6d).
There are no previous reports of the association of this genus to plastics, although it is
known to be present in seawater, attached to nutrient-rich particles [59]. A non-cultured
Flavobacteriaceae genus was most abundant on PHBV samples (3.5%). Other relevant
genera were uncultured members of the Saprospiraceae and Rhodobacteriaceae families,
Blastopirellula (Pirellulaceae) and Aquibacter (Flavobacteriaceae). The presence of the
genera Blastopirellula and Aquibacter has been also described on plastic biofilms [54,55].

Bacterial groups with anaerobic and fermentative metabolisms were detected, suggest-
ing that anoxic conditions could occur within the biofilm at some point. One example is the
Anaerolineae group (Chloroflexi phylum), comprising 2 and 1% of sequences for PLA and
PHBV, respectively. Anaerolineae members have been reported to be associated to sponges
and marine sediments [60,61], and they were also detected on plastic debris collected in
the North Atlantic [44]. Other fermentative microorganisms observed in biofilms were
Parcubacteria, with 2% of relative abundance, and Latescibacteria and Desulfobacteria,
within the less abundant groups.

3.4. Inference of PLA and PHBV Biofilms’ Metagenomes

So far, the results have agreed with previous observations on marine biofilms: they
are highly diverse and complex systems formed by a succession of microbial populations.
Differences between PLA and PHBV microbial profiles were detected in the community
structures and in individual taxa abundances even at the phylum level. These differences
may be reflecting variation in the metabolic abilities of the biofilms. To try to demonstrate
this, metagenome functions were predicted by placing phylotypes into a reference tree,
which was used as the basis for functional predictions [62]. The functional annotations
were based on the COGs database (COG) and 4207 functions (i.e., clusters) were detected.

A comparison of the predicted metagenomes of PLA and PHBV biofilms showed dif-
ferences in the relative abundance of 1066 functions. Taking these differences into account,
the PLA and PHBV samples clustered apart, revealing distinct functional patterns (Figure 7).
Within the significantly different COGs, it stood out that the Poly(3-hydroxybutyrate)
depolymerase cluster was more abundant in the PHBV predicted metagenomes. COGs
comprising lysophospholipase, dienelactone hydrolase and a predicted esterase of the
alpha/beta hydrolase fold were also more abundant in PHBV samples (Table 2). These
are part of the alpha/beta-hydrolases superfamily and may also present depolymerase
activity [63,64]. Additionally, the COGs related with the patatin-like phospholipase/acyl
hydrolase functions were also more abundant in PHBV samples. These proteins have
been described in PHB granules of Cupriavidus necator where it is encoded in an operon
involved in poly-3-hydroxybutyrate utilization [65]. C. necator is a well-known bacteria
for the production of PHAs [65,66], which would explain the presence in its genome of
proteins involved in PHBV metabolization. In addition, COGs with thioesterase activity
and other carboxylesterases were also more abundant in PHBV metagenomes, which agrees
with hydroxybutyrate metabolism after depolymerization. Thioesterases transform 3-HB
in 3-HB-CoA, which can be used later through beta oxidation for the synthesis of acetyl-
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CoA [67,68]. The Acyl-ACP thioesterase COGs was more abundant in PLA metagenomes
(Table 2). Active sites of bacterial thioesterases are known to resemble those of serine
proteases, which have been identified as enzymes with PLA-degrading activities [69].
COG1647 and COG4947 related to lipase and esterase functions were also more abundant
in PLA samples. Even if these functions are not specific, their presence implies PLA degra-
dation ability in these biofilms. Polyhydroxyalkanoate synthesis regulator phasin COGs
were observed in both the PLA and PHBV predicted metagenomes, adding evidence of the
presence of polyester plastic metabolism.
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Table 2. Differential clusters of orthologous groups (COGs) of proteins involved in PHBV and PLA
depolymerization showing significantly different relative abundances in biofilms formed on PHBA
and PLA samples.

COG Description
Relative Abundance

PLA PHBV

COG0824 Acyl-CoA thioesterase FadM 1.42 × 10−3 1.50 × 10−3

COG0412 Dienelactone hydrolase 6.80 × 10−4 7.98 × 10−4

COG2267 Lysophospholipase, alpha-beta hydrolase superfamily 6.79 × 10−4 7.87 × 10−4

COG1946 Acyl-CoA thioesterase 2.14 × 10−4 3.01 × 10−4

COG3509 Poly(3-hydroxybutyrate) depolymerase 1.40 × 10−4 1.73 × 10−4

COG2272 Carboxylesterase type B 3.68 × 10−5 7.14 × 10−5

COG3320 Thioester reductase domain of alpha aminoadipate reductase Lys2
and NRPSs 2.70 × 10−5 5.49 × 10−5

COG5496 Predicted thioesterase 2.60 × 10−5 4.40 × 10−5

COG3545 Predicted esterase of the alpha/beta hydrolase fold 2.24 × 10−5 3.81 × 10−5

COG3621 Patatin-like phospholipase/acyl hydrolase 9.43 × 10−7 7.12 × 10−6

COG1647 Esterase/lipase 3.35 × 10−5 2.91 × 10−5

COG4947 Esterase/lipase superfamily enzyme 3.04 × 10−5 1.57 × 10−5

COG3884 Acyl-ACP thioesterase 2.84 × 10−5 2.02 × 10−5

COG3937 Polyhydroxyalkanoate synthesis regulator phasin A 7.12 × 10−6 8.98 × 10−7

3.5. Screening of Biopolymer Degraders

Up to 50 bacteria, 18 yeasts and 25 fungi isolates were obtained from the PHBV and
PLA samples. Figure S4 shows an example of the top and bottom sides of MA plates
amended with PHBV inoculated with isolated bacteria and incubated at room temperature
for 10 days. Four bacterial isolates showed evident clear zones around them, revealing
their ability to depolymerize PHBV (strains A11, B1, B9 and C2), at least under the tested
conditions. Of the known strains, three revealed PHBV-degrading activity: Bacillus sphaer-
icus, Bacillus megaterium and Pseudomonas fluorescens. Figure 8 shows the bottom part of
the plates inoculated with the individual strains and showing PHBV-degrading activity.
The four bacterial isolates started showing clear zones at the third day of incubation (data
not shown), which greatly increased in area and transparency during the following days.
In the case of B. sphaericus, B. megaterium and P. fluorescens, the appearance of clear halos
took longer, and by the end of the experiment, the clear zones were much less obvious.
These results indicate that the environmental isolates possess a more efficient metabolism to
biodegrade PHBV and that the isolated bacteria could potentially be responsible for PHBV
biodegradation. No clearing zones were observed around yeasts and fungi, indicating
that these particular isolates lack PHBV-degradative abilities. In the case of the screening
assays for the detection of PLA degraders, neither bacteria, nor yeasts nor fungi led to the
appearance of clearance zones on the plates, confirming the limited biodegradability of this
polymer in marine environments.

SEM micrographs together with microbial count data, and the results of the in vitro
clear-zone method together with the detection of genes encoding proteins related to PHBV
biodegradation, corroborate the presence of bacterial PHBV-degrading species in this
specific coastal zone environment. Therefore, it can be concluded that, when introduced
into seawater, PHBV pieces are enriched with a wide variety of microorganisms, among
which some specific bacteria start to biodegrade the polymer.

3.6. Molecular Identification of Biopolymer Degraders

Isolates showing PHBV-degrading activity were identified on the basis of their 16S
rRNA gene sequences (Table 3). Isolates A11, B1, B9 and C2 were identified as Vibrio kanaloae,
Pseudoalteromonas hodoensis, Microbulbifer agarilyticus and Ruegeria atlantica, respectively.
Similarities between the BLAST query and hit were greater than 99.5% in all cases. The
four species identified are members of the Proteobacteria phylum, revealing the importance
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of this particular bacterial group in the degradation of PHBV. To our knowledge, this is the
first time some of these specific species are reported as degraders of PHBV.
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Figure 8. Bottom side of marine agar supplemented with PHBV plates and showing the presence of
clearance zones incubated at room temperature for 14 days and inoculated with Bacillus megaterium
(a), Bacillus sphaericus (b), Pseudomonas fluorescens (c), strain A11 (d), strain B1 (e), strain B9 (f) and
strain C2 (g).

Table 3. Identities of the PHBV degraders isolated from the surface of samples exposed to natural
marine environment for 6 months.

Isolate Identification Maximum Identity (%) NCBI Database (Accession Number)

A11 Vibrio kanaloae 100.0 NR_042468.1

B1 Pseudoalteromonas hodoensis 99.9 NR_126232.1

B9 Microbulbifer agarilyticus 99.5 NR_041001.1

C2 Ruegeria atlantica 99.7 NR_112615.1

V. kanaloae is a relevant plant pathogen [70]. Despite the pathogenicity of some
species, Vibrio spp. (Gammaproteobacteria) are known to have an active role in the miner-
alization of organic sediments and other biodegradable materials thanks to their arsenal
of extracellular hydrolytic enzymes. In fact, Vibrio strains have been reported to degrade
polyethylene plastic blends [71]. For its part, the genus Pseudoalteromonas (Gammapro-
teobacteria), has been described as a hydrocarbon degrader and is frequently detected in
plastic residues and in association with algae [50,72]. Specifically, P. hodoensis has been
studied for a wide variety of enzyme production [73]. Similarly, the genus Microbulbifer
(Gammaproteobacteria) has been of interest due to the production of enzymes related to
the degradation of polysaccharides present in algal cell walls [74]. Moreover, species of this
genus have been recently reported as plastic degraders [75,76]. Lastly, members of Ruegeria
sp. (Alphaproteobacteria) have been isolated from various marine environments, and some
species, such as R. lutea, have been reported to accumulate on PHB [77].

The 16S rRNA sequences from the isolates were compared with the sequences of
the biofilm-derived phylotypes (Table S1). BLAST results showed that the best hit for
isolate A11 was a phylotype classified within the genus Vibrio with 97.65% similarity. No
species-level classification was achieved for this phylotype. Isolate B1′s best hit was a
phylotype classified within genus Pseudoalteromonas with 95.77% similarity. The best hit
for isolate B9 was a phylotype assigned to an uncultured species of genus Eionea with
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90.70% similarity. The best hit (100% similarity) for isolate C2 was classified within genus
Ruegeria. Moreover, no phylotype was classified as V. kanaloae, P. hodoensis, M. agarilyticus
nor R. atlantica. These differences in taxonomy assignation were expected since isolate
sequences had a mean length of 730 bp while phylotypes had a 413.72 bp mean length.
Higher sensitivity in taxonomy classification is achieved with longer sequences. Phylotypes
classified as Vibrio were present in one PLA and one PHBV sample. The same pattern was
observed for Pseudoalteromonas phylotypes. As regards Ruegeria phylotypes, they were
present in all samples. Isolate B9 was not detected in the biofilm dataset since it did not get
a best hit with over 95% similarity.

4. Conclusions

To the best of our knowledge, this is the first study comparing the microbiological
aspects of the biodegradation of PLA and PHBV in real marine conditions. Based on our
observations, it can be concluded that bacteria were the predominant microorganisms in
the biofilms that formed on the surfaces of the bioplastics, and they were probably those
most responsible for PHBV degradation. Other microorganisms present in the biofilms,
however, could also indirectly participate in the overall process. After 6 months of exposure,
biofilms on PLA and PHBV shared a core microbiome, but significant differences were
observed between the polymers which suggested an effect of the biopolymer type on the
bacterial community composition and that colonization could be substrate-specific. The
presence of specific PHBV degraders, none of which had been previously described as
such, was confirmed, and this opened the possibility of further research in this field. The
understanding of the microbial diversity at this stage establishes a baseline to comprehend
the microbiological aspects behind the biodegradation of biopolymers in marine conditions.
However, considering that this work focuses on a relatively short period of exposure, longer
exposure times would be required to perform more in-depth studies aimed at assessing
the evolution over time of the biofilms’ composition. Moreover, better insight into the
interactions between microorganisms in general, and specifically into degraders for these
materials, will help to develop efficient approaches to a biopolymer’s end-life disposal.
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Appendix A

ASVs were aligned using the QIIME alignment mafft method [78]. The alignment was
used to create a tree and to calculate phylogenetic relations between ASVs using the QIIME
phylogeny fasttree method. ASV tables were subsampled without replacement to even sam-
ple sizes for diversity analysis using the QIIME diversity core-metrics-phylogenetic pipeline.
The smallest sample size was chosen for subsampling. Taxonomic assignment of ASVs
was performed using a Bayesian classifier trained with the Silva database (i.e., 99% OTUs
database) using the QIIME feature-classifier classify-sklearn method (Wang et al., 2007).
Phylotypes were filtered to discard contaminant Eukariota DNA-derived amplicons using
the basic local alignment search tool (BLAST) against the mentioned database with a 90%
identity cut-off.
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