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Abstract: Antibiotic resistance is a significant and pressing issue in the medical field, as numerous
strains of infectious bacteria have become resistant to commonly prescribed antibiotics. Staphylococcus
aureus is a bacterium that poses a grave threat, as it is responsible for a large number of nosocomial
infections and has high mortality rates worldwide. Gausemycin A is a new lipoglycopeptide antibiotic
that has considerable efficacy against multidrug-resistant S. aureus strains. Although the cellular
targets of gausemycin A have been previously identified, detailing the molecular processes of action
is still needed. We performed gene expression analysis to identify molecular mechanisms that
may be involved in bacterial resistance to gausemycin A. In the present study, we observed that
gausemycin A-resistant S. aureus in the late-exponential phase showed an increased expression
of genes involved in cell wall turnover (sceD), membrane charge (dltA), phospholipid metabolism
(pgsA), the two-component stress-response system (vraS), and the Clp proteolytic system (clpX). The
increased expression of these genes implies that changes in the cell wall and cell membrane are
essential for the bacterial resistance to gausemycin A. In the stationary phase, we observed a decrease
in the expression of genes involved in the phospholipid metabolism (mprF) and Clp proteolytic
system (clpX).

Keywords: gausemycin A; lipoglycopeptide; peptide antibiotics; antimicrobial peptide; Staphylococ-
cus aureus; antibiotic resistance

1. Introduction

The issue of antibiotic resistance among pathogenic microorganisms is reaching alarm-
ing levels worldwide. This growing problem poses a significant threat to public health as
it reduces the effectiveness of antibiotics in treating infectious diseases [1]. Staphylococcus
aureus is a major human pathogen that causes serious infections worldwide, often with
severe consequences, including high morbidity and mortality [2]. Of particular concern is
S. aureus’s high capacity to acquire and accumulate mechanisms of antibiotic resistance. As
a result, the emergence of drug-resistant strains of S. aureus is becoming an increasingly
significant public health concern. The rise in antibiotic resistance among Gram-positive
pathogens, including S. aureus, has driven the development of new antibiotics that are
effective against multidrug-resistant (MDR) strains. One promising approach is the use of
peptide antibiotics [3], which offer a unique mode of action and are less likely to induce
resistance in bacteria. Consequently, peptide antibiotics have the potential to provide a
valuable therapeutic option for combating MDR pathogens like S. aureus. Gausemycin A
is a novel member of the lipoglycopeptide family of natural peptide antibiotics produced
by Streptomyces sp. INA-As-5812 [4]. It exhibits significant activity against Gram-positive
bacteria, including methicillin-resistant S. aureus (MRSA), which is notorious for its high
level of antibiotic resistance. The proposed mechanism includes disruption of the integrity
of the bacterial membrane in a Ca-dependent manner, making it similar to daptomycin [5,6].
The precise mechanism of resistance to gausemycin A is not yet fully understood, although
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certain features of the resistance phenotype have been identified. Previous research has
demonstrated that S. aureus is capable of developing resistance to gausemycin A [7], which
is characterized by an additional reduction in susceptibility to daptomycin [7]. Further
studies are necessary to better understand the resistance profile of gausemycin A and its
implications for the treatment of multidrug-resistant Gram-positive infections.

The molecular mechanisms that control the integrated response of a microbial cell to
antibiotic-induced stress may be associated with changes in the expression of one gene or a
group of genes that ensure cell survival and proliferation. For this, candidate genes were
selected that could potentially be involved in the formation of resistance to gausemycin A.
The dltABCD operon plays a significant role in the addition of D-alanine to teichoic acids
in Gram-positive bacteria [8]. Mutations in the dlt operon or alterations in the expression
of its genes can lead to an increase in the positive charge on the cell surface of S. aureus.
This phenomenon is due to modifications in the composition of teichoic acids, which are
involved in the regulation of cell wall integrity and resistance to antimicrobial peptides.
These changes may confer resistance to antibiotics such as daptomycin.

The sceD gene encodes a lytic transglycosylase (SceD) that plays a crucial role in the
control of cell wall expansion, remodeling, and daughter cell separation. Additionally, SceD
is involved in peptidoglycan turnover, which is essential for the maintenance of cell wall
integrity and the regulation of bacterial shape. Consequently, alterations in SceD function
can affect these critical processes, potentially leading to changes in cell morphology and
antibiotic susceptibility. In particular, autolysin cleaves the cell wall in such a way as to
support the integrity of the cell wall during cell division [9]. A proteomic study showed that
the amount of SceD protein was increased in the cell wall fraction of strains with reduced
sensitivity to vancomycin, and changes in its expression and activity were responsible for
changes in the rate of cell wall turnover and changes in the peptidoglycan structure [10].

The walK gene, also known as yycG, encodes for the synthesis of a histidine kinase
sensor and belongs to the two-component regulatory system WalR/WalK (YycF/YycG).
This system has an impact on the synthesis of several Gram-positive proteins, including
proteins involved in cell wall metabolism and permeability [11]. The mprF gene encodes
lysylphosphatidylglycerol synthetase (MprF), a bifunctional bacterial enzyme that syn-
thesizes the positively charged lipid lysyl-phosphatidylglycerol (LysPG) and translocates
it subsequently from the inner membrane leaflet to the outer membrane leaflet by the
flippase domain of the MprF protein, causing an increased net positive charge on the
cytoplasmic membrane [12,13]. Eventually, this process leads to an increase in the positive
surface charge of the cell membrane and can serve as a protective barrier against antibiotic
binding [14]. When cell wall biosynthesis is inhibited by antibiotics, S. aureus responds
by rapidly activating a group of genes called “cell wall stress stimulon”. Some of these
genes are controlled by the three-component system VraTSR. The vraS and vraR genes play
a critical role in regulating antibiotic resistance.

In addition, resistance to gausemycin A may be associated with genes encoding en-
zymes involved in phospholipid metabolism, such as phosphatidylglycerol and cardiolipin
synthetases (PgsA and Cls, respectively) [15]. The Clp proteolytic system is a molecular
mechanism in S. aureus that plays an important role in both virulence and environmen-
tal adaptation of bacteria. The ClpX is an ATP-dependent specificity component of the
ClpXP protease, which regulates numerous intracellular proteins in the stability of cell wall
hydrolases, thereby controlling cell wall metabolism [16,17].

The purpose of this study was to explore the quantitative expression levels of several
genes involved in different aspects of bacterial cell physiology, including cell wall turnover
(sceD), membrane charge regulation (mprF and dltA), phospholipid metabolism (pgsA),
two-component regulatory systems responsible for maintaining cell envelope homeostasis
(walK, vraS) and the proteolytic system (clpX). This investigation was conducted to better
understand the molecular mechanisms underlying the resistance of gram-positive bacteria
to gausemycin A and other lipoglycopeptides.
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2. Materials and Methods
2.1. Bacterial Strains, Media, and Growth Conditions

S. aureus GAU-S (Gausemycin A-susceptible) and S. aureus GAU-R (gausemycin A-
resistant) strains were grown in Mueller Hinton Broth with 50 mg/mL CaCl2 in the absence
of gausemycin A. Cells were collected at mid-exponential, late-exponential, and stationary
growth phases, then diluted to an optical density corresponding to 106 CFU/mL.

2.2. Minimum Inhibitory Concentration

The minimum inhibitory concentration (MIC) was determined following the Clinical
and Laboratory Standards Institute guidelines in the 96-well plate, containing 90 µL of
inoculum prepared in growth media at 106 CFU/mL with 10 µL of two-fold dilutions of the
antibiotics. The plates were incubated for 24 h without shaking at 37 ◦C. All experiments
were performed in biological triplicates. The bacterial growth was assessed by scanning
the absorbance data at 600 nm obtained using a spectrophotometer (Multiscan GO, Thermo
Fisher Scientific, Waltham, MA, USA).

2.3. Spa Typing and MLST

The procedure was carried out as previously described [18]. The Spa types have
been defined using spaTyper 1.0 (https://cge.cbs.dtu.dk/services/spatyper, accessed
on 30 April 2023). The MLST STs were assigned the publicly available MLST server
(https://cge.cbs.dtu.dk/services/MLST, accessed on 30 April 2023). The characteristics of
the strains are shown in Table 1.

Table 1. Characteristics of the study strains.

S. aureus Strains Spa Type MLST

MIC µg/mL (Broth Microdilution
Method) of Selected Antibiotics

Daptomycin Gausemycin A

GAU-R t3297 ST464 5.00 >200

GAU-S t3297 ST464 1.25 2.5

2.4. RNA Extraction and Reverse Transcription into cDNA

Total RNA was extracted using the RNeasy Mini kit (Qiagen) according to the man-
ufacturer’s instructions. Total RNA concentration was assessed using Qubit 4.0 (Thermo
Fisher Scientific), and the quality of the RNA extracted was estimated using TapeSta-
tion 4150 (Agilent Technologies, Santa Clara, CA, USA). The Agilent TapeStation 4150
(Agilent Technologies, USA) system, which is an automated instrument for nucleic acid
gel electrophoresis, assigns RNA Integrity Number (RIN) values ranging from 1 to 10,
with 10 being the highest quality. Only samples with preserved 16S and 23S peaks and
RIN values > 8 were selected for gene expression analyses. The RIN values > 8 indicate
intact, high-quality RNA samples for downstream applications [19]. Total RNA was further
treated with DNase I (New England Biolabs, Ipswich, MA, USA) followed by the RNA
Clean & lConcentrator-5 kit (Zymo Research, Seattle, WA, USA), according to the instruc-
tion manual. DNase I-treated RNA from each sample was reverse-transcribed to cDNA
using the iScript reversed transcription supermix for RT-qPCR reagent (Bio-Rad, Hercules,
CA, USA) in accordance with the manufacturer’s protocol.

2.5. Gene Expression Analysis

qRT-PCR was performed with a Roche LightCycler 96 system using an SsoAdvanced
Universal SYBR Green Supermix (Bio-Rad Laboratories). RT-PCR reaction mix with a
volume of 20 µL was prepared with 300 nM of each primer (final concentration) and 50 ng
of template RNA. A protocol with the following thermal cycling conditions was used: DNA
denaturation at 95 ◦C for 3 min, followed by 40 cycles of denaturation at 95 ◦C for 10 s and
annealing/extension at 60 ◦C for 15 s. After the last amplification cycle, a melting-curve

https://cge.cbs.dtu.dk/services/spatyper
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analysis was carried out with heating from 65 to 95 ◦C in increments of 0.5 ◦C/s. Negative
controls (without template or reverse transcriptase enzyme) were included in each run.
The characteristics of the primers of both reference and target genes are reported in Table
S1. Gene-specific were designed using the online service “Integrated DNA technologies”
(https://www.idtdna.com/Primerquest/Home/Index, accessed on 30 April 2023) and
gene sequences present in the GenBank database. Fold changes in the gene expression
levels were normalized in relation to the levels of gyrB mRNA. The relative changes in gene
expression were quantified using the Pfaffl method [20]:

gene expression ratio = (Etarget)∆Cttarget(control-sample)/(Ereference)∆Ct reference (control-sample),

where Etarget is the amplification efficiency of target (gene of interest), Ereference is the
amplification efficiency of reference (gyrB), Ct is the point at which the fluorescence rises
above the background fluorescence, ∆Cttarget is the Ct deviation of the control minus the
sample of the target gene transcript, and ∆Ctreference is the Ct deviation of the control minus
the sample of the reference gene transcript.

2.6. Statistical Analysis

The results obtained were analyzed using the Origin 2021 software (OriginLab Cor-
poration, Northampton, MA, USA) and statistically evaluated. The significance of the
differences between the pairs was determined using the paired-sample Student’s t-test.

3. Results
3.1. Comparison of Gene Expression between the GAU-S and GAU-R Strains

The relative quantitative expression as a ratio of transcripts of GAU-R versus its
parent strain GAU-S was evaluated during mid-exponential, late-exponential, and station-
ary growth phases in drug-free conditions using RT-qPCR. During the mid-exponential
phase, a marked increase in gene expression was observed in GAU-R compared to GAU-S.
Specifically, the genes vraS (a two-component sensor histidine kinase), dltA (a subunit
of the D-alanine–poly(phosphoribitol) ligase), and clpX (an ATP-dependent Clp protease
ATP-binding subunit) showed a 4.53, 8.71, and 6.23-fold increase in expression, respectively
(see Table 2).

Table 2. Fold change in the gene expression of GAU-R relative to its parent strain GAU-S.

Gene Mid-Exponential Phase p-Value Late-Exponential Phase p-Value Stationary Phase p-Value

vraS 4.53 up 0.003508 6.19 up 0.000015 1.48 down 0.004713

mprF 1.56 up 0.007591 1.30 up 0.060267 5.5 down 0.015934

sceD 1.54 down 0.331873 3.79 up 0.002776 1.47 up 0.004713

dltA 8.72 up 0.000002 4.58 up 0.000109 0.71 down 0.001534

walK 2.35 up 0.000133 1.93 up 0.0011 1.12 up 0.190768

pgsA 3.39 up 0.000553 8.32 up 0.007331 0.36 down 0.002019

clpX 6.24 up 0.000112 10.25 up 0.000085 6.78 down 0.003211

In addition, several other genes showed significant upregulation in GAU-R relative
to GAU-S during the mid-exponential phase. These included mprF (a bifunctional lysyl-
phosphatidylglycerol flippase/synthetase), walK (a cell wall metabolism sensor histidine
kinase), and pgsA (a CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase).
Conversely, the gene encoding transglycosylase (sceD) was found to be downregulated in
GAU-R compared to GAU-S during this same phase. Notably, the genes vraS, pgsA, and
clpX continued to show significant upregulation in GAU-R during the late-exponential
phase, with fold changes of 6.19, 8.31, and 10.25, respectively (Table 2).

Conversely, during the stationary growth phase, both mprF and clpX showed a statisti-
cally significant reduced expression in GAU-R compared to GAU-S, with fold changes of

https://www.idtdna.com/Primerquest/Home/Index
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5.52 and 6.77, respectively (see Table 2). Overall, the results indicate that the gausemycin
A-resistant variant exhibits an increased expression of vraS, pgsA, dltA, and clpX genes
relative to its parent gausemycin A-susceptible strain.

3.2. The Gene Expression Depending on Growth Phase

Bacterial growth is subject to dynamic changes in cell density, nutrient availability,
pH, and other physical and chemical factors. To account for these changes, we analyzed
growth-phase-dependent gene expression profiles (Figure 1). In the GAU-susceptible strain,
we observed that vraS exhibited the highest transcript level during the mid-exponential
phase, with decreasing transcriptional activity as growth progressed. Conversely, the high-
est and lowest transcriptional activity of clpX was observed during the late-exponential
and stationary growth phases, respectively. Interestingly, we observed that the transcript
level of walK increased from the mid-exponential phase to the stationary growth phase. Ad-
ditionally, mprF and pgsA showed the highest transcriptional activity during the stationary
growth phase, while sceD was most active during the mid-exponential phase. Furthermore,
we observed that dltA expression was elevated from the mid-exponential phase to the
stationary growth phase (Figure 1). However, it should be noted that the differences in
expression levels between the growth phases were not always statistically significant.
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Figure 1. Expression analysis of genes: mprF (phosphatidylglycerol lysyltransferase), pgsA (CDP-
diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase), sceD (transglycosylase), dltA D-
Alanine–(poly(phosphoribitol) ligase subunit 1), vraS (sensor histidine kinase), clpX (ATP-dependent
Clp protease ATP-binding subunit), walK (cell wall metabolism sensor histidine kinase). Transcript
levels of the target genes were determined with RT-qPCR in relation to gyrB (DNA gyrase subunit
B) expression. All values presented in this study represent the mean of three independent replicate
cultures for each strain, and error bars indicate the standard deviation of comparisons between
the replicates. The growth phases analyzed were mid-exponential, late-exponential, and stationary.
(* p < 0.05, ** p < 0.005, *** p < 0.0005, ns—not significant). p-Value was derived by comparing the
gene expression of GAU-R relative to its parent strain GAU-S.
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In the GAU-resistant strain, all of the studied genes exhibited the highest transcript
level during the late-exponential phase, with significantly reduced transcriptional activity
in the stationary phase. Notably, the differences in expression levels between growth phases
were not always statistically significant for vraS and mprF (Supplementary Table S2). These
results suggest that the growth phase strongly influences gene expression.

4. Discussion

The molecular mechanisms underlying the development of a gausemycin A-resistant
phenotype and cross-resistance to daptomycin are not well understood. In our previous
study, after 20 passages, the mutant strain S. aureus GAU-R was characterized by an increase
in the MIC of gausemycin A from 2.5 to 200 µg/mL [7]. In the present study, we aimed
to elucidate the mechanism underlying the acquisition of gausemycin A resistance by S.
aureus. Our results demonstrate that this process is complex and involves changes in the
expression of genes involved in cell wall and cell membrane homeostasis.

Two-component systems (TCSs) are a primary strategy used by bacteria to adapt to
changing environments via signal transduction. It was previously established that genetic
changes in two-component regulatory systems are strongly associated with phenotypes
resistant to peptide antibiotics [21]. WalRK (also called YycFG) is a regulatory system
controlling the expression of genes involved in cell wall metabolism, thereby controlling
autolysis, biofilm formation, and virulence [22,23]. Previous studies have shown that
overexpression of the WalKR two-component regulatory system positively regulates dif-
ferential gene expression related to cell wall integrity (lytM and sceD), surface charge
(mprF and dltABCD), poly-glucosamine biofilm formation (icaAD), and downregulation
of cell-wall-associated proteins (CWAPs) such as Coa and ClfB [24–27]. According to the
results of Howden B.P. et al. (2011), the impacts of the single substitutions in either WalR
or WalK dramatically change the bacterial cell physiology, with significant reductions in
autolytic activity and increases in cell wall thickness linked to the insertion of WalR or WalK
alleles [28]. The walK gene is known to positively regulate differential gene expression
related to cell wall integrity, surface charge, biofilm formation, and downregulation of
certain proteins. Our study found a 2.35-fold increase in walK gene expression during the
mid-exponential growth phase and a 1.93-fold increase during the late-exponential growth
phase. These results are consistent with a study by Kuroda et al. (2019), which reported
increased expression of walK in vancomycin-resistant S. aureus [21].

The expression of the sceD gene, which encodes lytic transglycosylase, was upregulated
in GAU-R compared with GAU-S, with a 3.78-fold increase in the late-exponential growth
phase. This finding is consistent with the results of McEvoy et al. (2013), who also observed
increased expression of sceD for vancomycin-resistant S. aureus [29]. Therefore, we suggest
that the expression of genes involved in cell wall metabolism could play a critical role in
the development of the GAU-R phenotype.

Another tactic used by S. aureus to increase the positive surface charge is to increase
the expression of the dlt and mprF genes [30]. The dltABCD operon contributes to the
net positive surface charge by d-alanylating wall teichoic acids through distinct effector
mechanisms [31]. We observed the increased expression of the dltA gene for GAU-R in the
mid-exponential growth phase (8.71-fold, Table 2). The multiple-peptide resistance factor
(MprF) is a membrane protein that consists of a C-terminal enzymatic domain responsible
for aminoacylating the headgroup of phosphatidylglycerol (PG) and a hydrophobic N-
terminal domain responsible for flipping the modified lipid to the external side of the
cytoplasmic membrane. The mprF gene, similar to the dlt operon, contributes to the overall
positive cell surface charge involved in the transformation of PG into a positively charged
lysyl-PG, followed by its translocation to the outer surface of the cytoplasmic membrane. A
correlation between the presence of MprF and a decrease in the activity of peptide antibiotics
such as daptomycin (lipopeptide) and vancomycin (glycopeptide) against resistant bacteria
was determined. We found markedly increased mprF expression in GAU-R in the mid-
exponential and in the late-exponential phases (1.56 and 1.30-fold, respectively; Table 2),
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which is consistent with previous work showing that high expression of mprF and dltABCD
can promote the formation of daptomycin without mprF mutation [14,32,33]. Thus, the
associated effect of both the mprF and dltABCD mechanisms could result in reduced access
of calcium-gausemycin A complex to its membrane target.

The study also examined another gene involved in the production of membrane
phospholipids called CDP-diacylglycerol-glycerol-3-phosphate-3-phosphatidyltransferase
(pgsA). PgsA, which is an enzyme embedded in the membrane, catalyzes the primary
reaction in the biosynthesis of phosphatidylglycerol through the phosphatidylglycerol
phosphate (PGP) synthase reaction. Phosphatidylglycerol carries a negative charge, while
Lys-PG is positively charged. The enzyme MprF can convert one to the other. The conver-
sion of phosphatidylglycerol to Lys-PG or vice versa can cause an increase in either positive
or negative charge, thereby altering the overall charge of the bacterial membrane. This
change can enhance bacterial resistance to certain antibiotics, such as cationic antimicrobial
peptides, especially daptomycin [34,35]. In the late-exponential phase, the expression level
of the pgsA gene in the GAU-R strain increased by 8.31-fold, as demonstrated in this study.
In our previous work, we also found that the S. aureus GAU-R strain had a slightly more
negative relative net charge, as measured with zeta potential, compared to the S. aureus
GAU-S strain [7]. Other studies have reported increased levels of lysyl-PG and decreased
levels of PG in daptomycin-resistant isolates [36,37], which sets gausemycin A apart from
daptomycin in terms of action.

In addition to changes in the membrane, it is suggested that alterations in the cell
wall also contribute to gausemycin A resistance. When cell wall biosynthesis is impeded
by either antibiotics or a depletion of the biosynthesis machinery, S. aureus responds by
quickly activating a group of genes called the cell wall stress stimulon [38]. A subset
of these genes is controlled by the three-component system VraTSR [39]. The VraTSR
system consists of VraS (sensor histidine kinase), VraR (response regulator), and VraT for
the stimulation and activation of VraTSR. The vraS and vraR genes play a crucial role in
the regulation of antibiotic resistance [40]. Activation of the three-component regulatory
system VraTSR reduces the sensitivity of staphylococci to vancomycin, daptomycin, and
oxacillin [41]. Quantitative analysis of the vraS gene expression showed an increase in the
level of transcriptional activity by 4.53 times in the mid-exponential phase and 6.19 times
in the late-exponential phase for GAU-R compared to GAU-S, as indicated in Table 2.

The Clp proteolytic system is a molecular machinery in S. aureus that plays a role
in both virulence and environmental adaptation. In recent years, several studies have
pointed to a link between Clp proteins and antibiotic resistance. The system consists of
the proteolytic subunit ClpP and the ATP-dependent protease ClpX [42]. Specifically, the
ClpXP system is responsible for the degradation of multiple proteins within the cell and
acts as a global regulator. ClpP and ClpX have been found to affect functions such as
low-temperature tolerance, biofilm formation, surface protein production, autoinducer pro-
duction, autolytic cleavage of daughter cells, high osmolarity growth, toxin production, and
hemoglobin binding [43–45]. RNA sequencing analysis (RNA-Seq) proves that ClpX has a
profound effect on cell physiology and demonstrates that ClpX primarily influences gene
expression through ClpXP-dependent pathways. ClpX appears to control the expression of
major virulence genes such as spa (protein A), nuc (nuclease), geh (glycerol ester hydrolase),
and SAUSA300_1890 (stafopain A protease). Several studies demonstrate that ClpX is
important for maintaining resistance to antimicrobial peptides, nisin, and the antibiotics
penicillin and daptomycin [46–48]. All of these antimicrobials interact with or target the
cell wall and/or cell membrane, as does gausemycin A. Our findings are consistent with a
recent report by Zou L. et al. (2021), which demonstrated that the loss of ClpXP protease
activity leads to a reduction in resistance to antimicrobials targeting the cell envelope [48].
In our study, we observed a more than 10-fold increase in the expression of the clpX gene in
the GAU-R mutant compared to the wild-type, as measured with qPCR in late-exponential
phase cultures (Table 2).
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5. Conclusions

Antibiotic resistance among Staphylococcus aureus is a worldwide problem. S. aureus is a
significant threat to human health that has been made worse by its continued development
of antibiotic resistance. New antimicrobials and treatment options are needed to combat
this, but developing such methods is challenging. Therefore, a better understanding of
common antibiotic targets, such as the cell wall and cell membrane, and how these targets
change in antibiotic-resistant strains, could provide valuable insights for the development of
new antibiotics. As far as we know, this is the first report that provides new insights into the
molecular mechanisms that contribute to the resistance of S. aureus to the lipoglycopeptide
antibiotic gausemycin A. Our data suggest that resistance to gausemycin A is complex and
stepwise, and it is currently difficult to isolate specific genes or groups of genes responsible
for the development of resistance. However, analysis of the expression profile of selected
genes has shown that the mechanisms underlying the development of the gausemycin A-
resistant phenotype involve modifications in the structure of the cytoplasmic membrane and
cell wall, which are controlled by different two-component regulatory systems (Figure 2).
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