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Abstract: Undigested dietary and endogenous proteins, as well as unabsorbed amino acids, can
move from the terminal part of the ileum into the large intestine, where they meet a dense microbial
population. Exfoliated cells and mucus released from the large intestine epithelium also supply
nitrogenous material to this microbial population. The bacteria in the large intestine luminal fluid
release amino acids from the available proteins, and amino acids are then used for bacterial protein
synthesis, energy production, and in other various catabolic pathways. The resulting metabolic
intermediaries and end products can then accumulate in the colorectal fluid, and their concentrations
appear to depend on different parameters, including microbiota composition and metabolic activity,
substrate availability, and the capacity of absorptive colonocytes to absorb these metabolites. The
aim of the present review is to present how amino acid-derived bacterial metabolites can affect
microbial communication between both commensal and pathogenic microorganisms, as well as their
metabolism, physiology, and growth.

Keywords: amino acids; intestinal bacterial metabolites; colorectal fluid; microbial communication;
microbial physiology

1. Introduction

The process of protein digestion in the small intestine is efficient, with a yield equal
to or even above 90% for most alimentary proteins [1]. Following protein digestion in the
small intestinal luminal fluid by pancreatic proteases, peptides are further degraded by
epithelial peptidases, and released oligopeptides and amino acids are finally absorbed in
the portal blood through the small intestine epithelium [2–4].

A minor part of undigested or not fully digested proteins, together with other ni-
trogenous compounds, can move from the terminal part of the ileum to the large intestine.
Indeed, it has been estimated in volunteers that between 1.5 and 5 g of nitrogen are
transferred every day through the ileo-caecal junction [5–9], with the major parts of this
nitrogenous material being proteins and, to a much lesser extent, peptides, while the minor
parts of this nitrogenous material are made of amino acids, urea, ammonia, nitrate, and
other compounds [8]. Regarding peptides, it has been shown that these compounds are
more rapidly absorbed in the small intestine than free amino acids [10,11]. Of note, the
nitrogenous material recovered in the distal small intestine is not only originating from the
diet but also from endogenous sources, including proteins present in the exocrine secretion,
in the fully mature exfoliated enterocytes, and in the mucus layer released in the luminal
fluid [12]. It has been determined that roughly 40% of the nitrogenous material transferred
to the large intestine is from alimentation, while the remaining 60% is of endogenous
origin [9].

By using a conversion factor between nitrogen and protein equal to 6.25 [13], it can
be calculated as an approximation that roughly between 4 and 12 g of alimentary proteins
escape digestion in the small intestine. This estimation fits rather well with the mean
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protein consumption in Western countries, which averages 85 g per day [14,15]. Indeed,
if we assume a mean protein digestibility efficiency of approximately 90% [16], we can
calculate that 8 g of alimentary proteins would be recovered in the large intestine, a value
within the 4–12 g range as calculated above.

In addition to the nitrogenous material originating from the small intestine, exfoliation
of fully mature colonic epithelial cells and mucus renewal in the large intestine may also
contribute to the global amount of nitrogenous compounds available for the microbial
population present in the colorectal fluid (Figure 1). In the large intestine luminal fluid,
this nitrogenous material meets a dense population of microbes in a context of extended
transit [17]. A part of the water in the luminal fluid contained within the large intestine is
progressively absorbed by the epithelial cells from the proximal to the distal part, resulting
in a median value of water content in the human fecal material equal to 75% of the total
mass [18].
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Figure 1. Schematic representation of the metabolic fate of undigested endogenous/dietary proteins
and free amino acids in the large intestine luminal fluid. Undigested proteins are substrates for
bacterial proteases and peptidases which release amino acids. Amino acids are little absorbed by
the colonic epithelium, but are likely mostly used for bacterial protein synthesis, energy metabolism
and other metabolic pathways, then releasing numerous bacterial metabolites. Several among these
amino acid-derived metabolites have been shown to be active on the biology of microorganisms in
terms of signaling, metabolism, physiology, and growth.

The gut microbiota is composed of a vast population of bacteria but also of archaea [19],
viruses [20,21], and fungi [22]. Protozoans in the intestine, although classically not included
as part of the microbiota itself, represent a heterogeneous group of eukaryotic organisms,
with some of them being considered as parasites [23]. The term gut ecosystem usually
refers to the biological community of microorganisms living in the exogenous environment
of the gut. The metabolism of proteins and amino acids by the intestinal microbes has been
mostly studied for the bacterial part of the intestinal microbiota [24,25], and as explained
in the following paragraph, these compounds are used in bacteria in both anabolic and
catabolic pathways.

2. Bacteria in the Large Intestinal Luminal Fluid Release Amino Acids from
Undigested Proteins and Used Them for Protein Synthesis, Energy Production,
and Other Catabolic Pathways Which Release Various Bacterial Metabolites

In the luminal fluid of the large intestine, proteins and peptides are degraded by the
bacterial proteases and peptidases, then released as amino acids [26–28]. The proteolytic
activities in the large intestine have been mainly attributed to the genera Bacteroides, Clostrid-
ium, Propionibacterium, Fusobacterium, Streptococcus, and Lactobacillus [29]. Some bacteria,
such as lactic acid bacteria, have developed proteolytic systems, presumably to compen-
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sate for their reduced or even absent capabilities to synthesize amino acids [30]. These
proteolytic systems include extracellular proteases that degrade proteins into oligopep-
tides, and this degradation is followed by the entry of oligopeptides within bacteria via
dedicated transporters. Furthermore, intracellular peptidases degrade the peptides into
amino acids [31,32]. Amino acids and their corresponding metabolites can be imported
and exported from the bacteria via transmembrane proteins [33,34], allowing regulation
of the concentration of these compounds in the bacterial cells and allowing exchanges of
amino acids and related metabolites between bacterial species. Efflux systems for some
amino acids such as lysine, arginine, threonine, cysteine, leucine, isoleucine, and valine
have been studied in the bacteria E. coli and Corynebacterium glutamicum [35,36].

In the large intestine, amino acids resulting from the transfer of amino acids from
the small to the large intestine, together with amino acids released from proteins and
peptides that have not been digested in the small intestine and amino acids released
from endogenous proteins and peptides in the large intestine, are used by the intestinal
microbiota for their metabolism. Amino acid availability for microbial metabolism in
the large intestine is presumably little decreased by amino acid absorption through the
colonocytes since, except in the neonatal period [37,38], the colonic mucosa does not absorb
amino acids to any significant extent [39]. However, several amino acid transporters, as well
as the peptide transporter PepT1 have been identified in the large intestine epithelium [40],
suggesting that small amounts of amino acids would be transported inside and/or through
colonocytes [39].

Since approximately half of the bacterial biomass in the colon is lost every day by
defecation [41], the rapid growth of bacteria within the large intestine luminal fluid requires
extensive amounts of substrates, including amino acids, that are mainly provided by the
host. This intense bacterial metabolism and associated anabolism are possible only if the
required substrates are provided in sufficient quantities [24]. Many metabolic pathways
involved in amino acid synthesis in bacteria are conserved in the different bacterial lineages,
including those bacteria that inhabit the large intestine [42,43]. However, major differences
remain when comparing the metabolic capacities for amino acid synthesis at the level of
species and strains. As presented above, some bacteria, such as lactic acid bacteria, possess
low or even absent capacities for amino acid biosynthesis. Another illustrative example
of such bacteria is represented by Clostridium perfringens, which displays no metabolic
capacity for the synthesis of glutamate, arginine, histidine, lysine, methionine, serine,
threonine, aromatic, and branched-chain amino acids [44], thus depending on the host for
the supply of these amino acids for their metabolic needs. Lactobacillus johnsonii is another
gut bacterium that is unable to perform the synthesis of almost all amino acids due to the
lack of numerous anabolic pathways required for amino acid synthesis [45]. Other intestinal
bacteria, including Enterococcus faecalis and Streptococcus agalactiae, perform the synthesis of
only a few specific amino acids in mammals (including humans) [46]. In sharp contrast,
other intestinal bacteria such as Clostridium acetobutylicum are equipped with a complete set
of genes required for the biosynthesis of all amino acids [47]. However, it is important to
keep in mind that the sole presence of genes implicated in one given amino acid synthesis
within one given bacterium does not allow for a conclusion on the functionality of the
corresponding metabolic pathways. A typical example of such limitation is given by the
common gut bacterium Lactococcus lactis, for which the genes allowing the synthesis of the
20 amino acids have been identified but which requires supplementation with isoleucine,
valine, leucine, histidine, methionine, and glutamate for growth since genes involved in
the biosynthetic pathways corresponding to these amino acids have been demonstrated to
be non-functional due to point mutations [48,49].

Bacteria may incorporate the available amino acids into proteins or may use them
as energy substrates and in various catabolic pathways [50] (Figure 1). Most gut bacteria
utilize amino acids and ammonia as preferred nitrogen sources, and amino acids such as
glutamine, glutamate, asparagine, aspartate, lysine, serine, threonine, arginine, glycine,
histidine, and branched-chain amino acids are preferred substrates for degradation by gut
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bacteria, with numerous products being formed, notably ammonia, short-chain fatty acids,
branched-chain fatty acids, phenols, indoles, organic acids, amines, and various gaseous
compounds [51].

In healthy adults, the distal part of the intestinal tract harbors large communities
of obligate anaerobes [52,53]. In the virtual absence of oxygen or other suitable electron
acceptors, only strict or facultative anaerobic bacteria, such as Clostridia and Fusobacteria,
can utilize amino acids as energy sources, thus fermenting amino acids and producing
mainly branched-chain fatty acids and ammonia [54], as well as short-chain fatty acids,
hydrogen (H2), carbon dioxide (CO2), hydrogen sulfide (H2S), and various organic com-
pounds [55,56] as listed above. Several mechanisms for amino acid degradation have been
described in anaerobic bacteria, including the Strickland reaction that is operative in several
proteolytic Clostridia. This latter reaction involves the coupled oxidation and reduction of
amino acids to organic acids. Other fermentation pathways described in various Clostridia
as well as in Fusobacterium spp. and Acidaminococcus spp. involve amino acids that act
as electron donors or acceptors [57,58]. The genus Clostridium contains specific amino
acid degradation pathways, such as B1-dependent aminomutases, selenium-containing
oxidoreductases, and oxygen-sensitive 2-hydroxyacyl-CoA dehydratases [59]. Amino acids
can also be decarboxylated, ultimately yielding biogenic amines and polyamines. Of note,
luminal parameters such as pH can modulate the catalytic activity of different bacterial
enzymes such as deaminases and decarboxylases, thus affecting the production of specific
metabolic end products [55].

Some amino acids, depending on the bacterial species considered, may be utilized
for specific metabolic pathways. For instance, Clostridium stricklandii preferentially uses
threonine, arginine, and serine as carbon sources and for energy production, but little
utilizes glutamate, aspartate, and aromatic amino acids for such purposes and uses lysine
as fuel only in the stationary growth phase [59]. The ratio of available carbohydrates
over proteins is central for fixing substrate utilization by the gut microbiota in different
contexts of substrate availability [54], and in humans, higher availability of complex carbo-
hydrates (like plant fibers and resistant starch) lowers the process of protein fermentation
by the intestinal bacteria, as determined by measuring several amino acid-derived bacterial
metabolites in feces [60–62]. In addition, when fermentable carbohydrates are abundant
for intestinal bacteria, amino acids are mostly used for anabolic metabolism but little for
energy production [63]. On the other hand, in a context of low availability of fermentable
carbohydrates, several amino acids are used by intestinal bacteria for energy production,
thus supporting bacteria growth [42,50,64]. Due to high carbohydrate fermentation in the
proximal colon, there is a progressive decrease in carbohydrate availability in the more
median and distal parts of the colon, thus resulting in higher protein degradation and
amino acid utilization [65]. Differential use of substrates when comparing different bac-
terial species has been documented. For instance, most genera in the phylum Firmicutes
preferentially use proteins among the available substrates for their metabolism [66].

Relatively few nutritional intervention studies in volunteers have examined the effects
of increasing the amounts of proteins in the diet on the gut microbiota composition and
metabolic activity. In several of these studies, the dietary protein intake between the
groups of volunteers was not the sole parameter modified, since modifications of energy
and/or fiber were noticed in these studies. These two latter parameters are known to
affect the gut microbiota composition [67–72], rendering correct interpretation of the results
obtained from these studies difficult. Three studies have used high-protein diets without
modification of dietary fiber or energy intake [73–75]. In these latter studies, the high-
protein diets were made isocaloric by decreasing the amount of carbohydrates in the
diet. Under such conditions, these three studies found little change in the fecal and
rectal-associated bacterial composition after several weeks of consumption of the high-
protein diet. In contrast, in the three studies, marked changes in the amino acid-derived
bacterial metabolites were recorded both in feces and urine, reinforcing the view that
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luminal substrate availability is central to fixing bacterial metabolite concentrations in the
luminal fluids.

However, substrate availability is not the sole parameter that influences the con-
centrations of amino acid-derived bacterial metabolites in biological fluids. Microbial
composition and its overall metabolic activity, as well as the absorption of bacterial metabo-
lites through colonocytes, are also believed to influence the luminal concentrations of
these compounds [24]. Incidentally, approximately half of the metabolic pathways used
by the intestinal bacteria do not occur in the cells of the host, and the largest group of
such metabolic pathways involves pathways related to amino acid metabolism [76]. Other
physiological parameters, such as transit time, may also influence the concentrations of
amino acid-derived metabolites in the colon. Indeed, longer transit times are associated
with higher levels of protein fermentation [77,78].

Finally, as explained above, the utilization of the different amino acids by the intesti-
nal bacteria produces numerous amino acid-derived metabolites that are detected in the
different biological fluids [24], and several of them, as detailed in the next paragraph, have
been shown to play a role in the biology of intestinal microbes.

Although the rate of amino acid catabolism by the bacteria of the large intestine rep-
resents a major parameter to determine the concentrations of several amino acid-derived
bacterial metabolites in the colorectal fluid, the rate of bacterial amino acid synthesis
also likely plays a role in fixing such concentrations. In fact, intestinal bacteria use bacte-
rial metabolites that are produced during amino acid catabolism (such as ammonia and
hydrogen sulfide) [42] in the process of amino acid synthesis (Figure 1).

3. Amino Acid-Derived Bacterial Metabolites Are Involved in the Biology of
Intestinal Microbes

Several amino acid-derived bacterial metabolites have been shown to be implicated
in microbial communication and in microbial metabolism, physiology, and growth. Of
note, as presented below, these effects involve both commensal and pathogenic intestinal
microorganisms.

3.1. Lactate, Formate, Succinate and Oxaloacetate

During the catabolism of amino acids, the intestinal bacteria produce numerous
organic acids, including lactate, formate, succinate, and oxaloacetate [29,50]. Indeed, high-
protein diet consumption increases the amounts of organic acids in the large intestine
luminal content [79]. Of note, these organic acids are not exclusively produced by the
intestinal microbiota from amino acids but also from carbohydrates [80–82]. Among these
organic acids, lactate is used as carbon and an energy source by indigenous bacteria,
including Salmonella and Campylobacter [83]. Formate, which is secreted by the pathogenic
bacteria Shigella flexneri, has been shown to promote the expression of genes involved in
their virulence [84]. Oxaloacetate, when produced by Escherichia coli helps the parasite
Entamoeba histolytica to survive in the large intestine [85] (Figure 2).

This latter result is of notable importance given that this parasite can trigger a strong
inflammatory response upon invasion of the colonic mucosa. In addition, this study shows
that communication between bacterial species and parasites through dedicated metabolites
may occur in the large intestine. Lastly, succinate produced by the gut microbiota has been
shown to promote infection by Clostridium difficile after antibiotic treatment [86]. Further-
more, Clostridium butyricum appears to be able to prevent Clostridium difficile proliferation
by diminishing the succinate concentration in the large intestine luminal content [87]. Inter-
estingly, this latter decreased succinate concentration is apparently the net result of overall
modifications of the microbiota’s metabolic activity [87].
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3.2. p-Cresol

The metabolite p-cresol (4-methylphenol) is produced by the intestinal microbiota of
the large intestine from the amino acid tyrosine [88]. From in vitro analysis, it has been
shown that among the bacteria present in the human gut, specific families of bacteria,
namely Fusobacteriaceae, Enterobacteriaceae, Clostridium, and Coriobacteriaceae are strong
p-cresol producers [89]. As expected, by increasing the protein content in the diet of
mammals, an increased p-cresol concentration is measured in the feces [90]. On the contrary,
the fecal excretion of p-cresol is diminished when the diet is enriched with undigestible
polysaccharides [60].

Of major interest, the production of p-cresol by Clostridium difficile gives this bacterium
a competitive advantage over other gut bacteria such as Escherichia coli, Klebsiella oxytoca,
and Bacteroides thetaiomicron [91,92]. By using a model of Clostridium difficile infection
in rodents, it has been demonstrated that excessive p-cresol production affects the gut
microbiota diversity [91]. Furthermore, by removing the capacity of Clostridium difficile to
produce p-cresol, the capacity of this bacterium to recolonize the intestine after an initial
infection is diminished [91] (Figure 2). These results are carrying potential applications
as Clostridium difficile is a major cause of diarrhea and inflammation in patients following
long-term antibiotic treatment [93].

3.3. Indole

Indole is produced from tryptophan by various Gram-positive and Gram-negative
species, including Escherichia coli, Proteus vulgaris, Clostridium spp. and Bacteroides spp. [94–96].
Indole diminishes cell motility and aggregation in L. monocytogenes [97] (Figure 2). Indole
diminishes the virulence of Pseudomonas aeroginosa [98], of Salmonella enterica [99], and the
virulence and growth of the fungal species Candida albicans [100]. In another study, indole
was found to be bacteriostatic against lactic acid bacteria while affecting their survival [101].
Of note, indole mitigates cytotoxicity by Klebsellia spp. by suppressing toxin production by
this bacterium [102]. In addition, indole impairs the ability of enteropathogenic Escherichia
coli to enhance its virulence activity in response to Vibrio cholerae [103]. Lastly, Clostridium
difficile, which itself is not considered an indole producer, increases indole production by
other gut bacteria [104]. By doing so, Clostridium difficile increases the concentration of indole
within the intestinal fluid, then limiting growth of indole-sensitive bacteria, and finally
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adversely improving Clostridium difficile growth and persistence within the intestinal luminal
content [104].

Thus, if there is little doubt that indole is involved in intestinal microbe physiology
and growth, the beneficial versus deleterious effects of this bacterial metabolite for gut
health appears to depend on the overall colorectal ecosystem characteristics.

3.4. Skatole

Skatole is produced by the intestinal microbiota from tryptophan [54]. This bacterial
metabolite has been shown to display a marked inhibitory effect on enterohemorrhagic
Escherichia coli biofilm formation [105] (Figure 2). Briefly, biofilms are structures formed by
the colon microbiota that are in contact with the mucosal surface and that play a role in the
modulation of epithelial barrier function [106].

3.5. Hydrogen Sulfide

Hydrogen sulfide (H2S) is produced by numerous bacterial species in the large in-
testine from both dietary and endogenous S-containing substrates [107]. These substrates
include cysteine, but also sulfate, taurine, and sulfomucins [108–111]. By using in vitro
tests with human fecal material, it has been found that, for instance, production of H2S is
greatly enhanced by sulfur-containing amino acids but much more modestly by inorganic
sulfate [112]. In addition, H2S production is diminished by fermentable fibers [112], and
there is a positive relationship between dietary protein intake and H2S production by the
intestinal microbiota [113,114].

The protective role of H2S in bacteria was suggested more than six decades ago.
Indeed, H2S produced by Desulfovibrio desulfuricans was demonstrated to be the diffusible
factor responsible for protecting Pseudomonas aeruginosa from heavy metal toxicity (for
instance, mercury) [115]. Similarly, H2S produced by Escherichia coli contributes to the
protection of Staphilococcus aureus against mercuric chloride toxicity [116]. Much more
recently, and in the context of the study of resistance to antibiotics, H2S has been shown
to be a protective agent in bacteria such as Pseudomonas aeruginosa (found in human fecal
samples [117]), Staphylococcus aureus (found in human intestine [118]), and Escherichia
coli against the action of numerous antibiotics [119,120] (Figure 2). Sequestration of Fe2+

ions by H2S counteracts oxidative stress triggered by antibiotics in Escherichia coli [121].
Furthermore, H2S has been shown to be involved in the maintenance of redox homeostasis
in bacteria and to protect bacteria against the oxidative stress triggered by the antibiotic
ampicillin [122]. Also of major importance, cystathionine-G-lyase has been identified as the
primary enzymatic activity that generates H2S in Staphylococcus aureus and Pseudomonas
aeruginosa, and inhibition of this activity potentiates the efficiency of bactericidal antibiotics
against both pathogens in in vitro and in vivo models of infection [123].

However, H2S is apparently not a bacterial metabolite that limits the efficiency of
antibiotics against all pathogenic bacteria. Indeed, for instance, the pathogenic bacteria
Acinetobacter baumannii, which is found in the intestinal tract [124] and does not produce
H2S, is sensitive to exogenous H2S since, in these bacteria, this compound reinforces
the effects of several classes of antibiotics [125]. Thus, the H2S-mediated protection or
sensitization of intestinal bacteria to the bactericidal effects of several antibiotics apparently
depends on the bacterial species examined.

Lastly, in another context, the implication of H2S in the resistance to infection by
pathogenic bacteria has been recently suggested [126]. Indeed, in this latter study, the
production of sulfide from taurine appears to be involved in the enhanced capacity of
commensal bacteria to counteract pathogen infection.

3.6. Polyamines

Polyamines are small aliphatic amines that are produced by the intestinal microbiota
from amino acids. The precursors for putrescine, spermidine, and spermine synthesis in
bacteria are ornithine, arginine, and methionine, respectively, while agmatine is produced
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from arginine and cadaverine is produced from lysine [127]. The polyamines putrescine,
spermidine, and spermine play a central role in bacterial growth [128] (Figure 2).

Regarding cadaverine, experimental works suggest that this polyamine plays a major
role in the pathogenesis of Shigella infections [129]. In addition, cadaverine can prevent
the escape of Shigella flexneri from the phagolysosome, and such an effect likely represents
a way to connect the control of bacterial dissemination and neutrophil transepithelial
signaling [130].

The polyamines agmatine and spermidine have been shown to be implicated in
biofilm formation [131], while spermine inhibits Vibrio cholerae biofilm formation [132].
Spermidine reinforces the production of the bacterial genotoxin colibactin [133]. Lastly, one
study reported that putrescine, cadaverine, spermidine, and spermine can modulate Vibrio
cholerae virulence properties [134].

3.7. Gamma-Amino Butyric Acid, Norepinephrine, and Serotonin

Several bacterial species present in the mammalian gut, including the human gut,
produce metabolites such as gamma-amino butyric acid, norepinephrine, and serotonin
from different amino acids. These bacterial metabolites are well known to also be produced
by the host with neurotransmitter functions [24]. There are emerging data that indicate that
these metabolites are involved in the adaptation of bacteria to changes in their environment
as well as in the modulation of bacterial physiology and growth. This is an exciting area of
research, as it strongly suggests a very long evolutionary history for the functions of these
compounds in the living world.

Gamma-amino butyric acid (GABA) is produced from glutamate by some intesti-
nal bacteria, including strains of Lactobacillus and Bifidobacterium, as well as Bacteroides
spp. [135–137]. GABA has been shown to be one component involved in bacterial acid
tolerance in the context of changing luminal pH through the maintenance of intracellular
pH [136,138,139] (Figure 2).

Regarding norepinephrine (also called noradrenaline), this bacterial metabolite is
produced by the intestinal microbiota from tyrosine by several bacterial species, such as
Bacillus subtilis, Escherichia coli, and Proteus vulgaris [140]. This bacterial metabolite affects
the growth, either positively or negatively, depending on the bacterial species considered,
of some anaerobic bacteria such as Fusobacterium nucleatum, Prevotella spp., Klebsiella pneu-
moniae, Pseudomonas aeruginosa, Enterobacter clocae, Shigella sonnei, and Staphylococcus aureus.
Norepinephrine increases the virulence of several anaerobic bacteria, such as Clostridium
perfringens [141–143].

Serotonin (5-hydroxy trypyamine) is produced from tryptophan by a vast number of
bacterial species, among which Escherichia coli, Bacteroides, Streptococcus, Bifidobacterium,
Lactococcus, Lactobacillus, and Propionibacterium [140]. Serotonin has been shown to promote
the colonization of Turicibacter sanguinis in the human gut [144].

3.8. 4-Hydroxyphenylacetate

The bacterial metabolite 4-hydroxyphenylacetate (HPA) is a metabolic intermediary
that is produced from tyrosine by phenol and p-cresol producers [89]. This compound
inhibits the growth of the foodborne pathogen Listeria monocytogenes (Figure 2), an effect
associated with alteration of the morphology of the bacteria and decreased expression of
several virulence genes [145].

4. Conclusions and Perspectives

As presented in the present review, the results from experimental studies clearly
indicate that numerous metabolites produced from amino acids of dietary and endogenous
origin by the intestinal microbiota, which are found in stools and in the luminal fluid of
the large intestine, are biologically active on microbes. The effects recorded are related
to communication between microbes and to the physiology, metabolism, and growth
of intestinal microorganisms. From the recorded effects of these bacterial metabolites on
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intestinal microbe biology, it is tempting to propose that the production of these compounds
is devoted in the very first place to the dialogue between microorganisms coexisting in the
mammalian intestinal colorectal luminal fluid.

However, the data obtained from experimental works are often characterized by
several limitations that need to be taken into consideration for correct interpretation and
future work. Firstly, the concentrations of the bacterial metabolites tested are not necessarily
within the range of concentrations that are present in the vicinity of microbes in the
colorectal fluid. Since this parameter is experimentally difficult to measure, the bacterial
concentrations used in experiments often refer to the concentrations measured in feces,
which represents an approximation of the concentrations within the rectal fluid but is likely
different from those in the different segments of the colon [24]. Secondly, the intestinal
luminal fluid contains a complex mixture of bacterial metabolites that can exert presumably
additive, synergistic, or opposite effects on the intestinal microbial population. In fact,
in most experimental works, the bacterial metabolites are tested individually, making it
difficult to extrapolate from experimental works to “real-life situations”.

With these reservations in mind, the emerging experimental data indicate that intesti-
nal bacteria produce several metabolites from amino acids that are involved in signaling
between them and other microbial species (either commensal or pathogenic), as well as
in the physiology and metabolism of these microorganisms, thus regulating their respec-
tive growth and biological activities. These data encourage clinical work in volunteers to
test in different situations the relevance of dietary (or pharmacological) interventions for
eventually controlling the colorectal microbial population and its metabolic activities in a
way that would be beneficial for the host intestinal health from a preventive or curative
perspective [24].
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