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To date, much discussion has been had on severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) lung infection associated with COVID-19 onset, of which the major
manifestation is characterized by a “cytokine storm” [1] and acute respiratory distress
syndrome (ARDS) in severely affected patients (Figure 1).
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To date, much discussion has been had on severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) lung infection associated with COVID-19 onset, of which the 
major manifestation is characterized by a “cytokine storm” [1] and acute respiratory 
distress syndrome (ARDS) in severely affected patients (Figure 1). 

 
Figure 1. Schematic representation of SARS-CoV-2 infection effects on the immune (innate and 
adaptive), renal, metabolic, bone, gastrointestinal, cardiovascular, respiratory, bone, female and 
male reproductive systems. 

ARDS reflects dramatic microvascular endothelial cell (mEC) dysfunction, which 
encompasses changes in vascular permeability, inflammation, activation of procoagulant 
pathways and disruption of the alveolar–capillary barrier [2,3] (Figure 1). The study 
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Figure 1. Schematic representation of SARS-CoV-2 infection effects on the immune (innate and
adaptive), renal, metabolic, bone, gastrointestinal, cardiovascular, respiratory, bone, female and male
reproductive systems.

ARDS reflects dramatic microvascular endothelial cell (mEC) dysfunction, which
encompasses changes in vascular permeability, inflammation, activation of procoagulant
pathways and disruption of the alveolar–capillary barrier [2,3] (Figure 1). The study
conducted by Caccuri et al. confirms that the SARS-CoV-2 infection of human lung mi-
crovascular ECs (HL-mECs) sustains inflammatory and vascular dysfunction, leading to
vascular detriment and leakage [4]. Having uncovered the intracellular expression of viral
RNA and proteins in the absence of cytopathic effects and infectious viral progeny release,
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researchers have been able to demonstrate that HL-mECs support an abortive SARS-CoV-2
replication. This occurs without the presence of ACE2 expression, which is necessary for
the active replication of SARS-CoV-2 in ECs [5].

This observation is implicit of the ability of SARS-CoV-2 to employ an alternative
receptor to infect HL-mECs, even though a low-level expression of ACE2 cannot be com-
pletely disregarded. Many viruses have an arginine-glycine-aspartic acid (RGD) motif on
the viral envelope, recognized by integrins, that is critical in the mechanisms behind virus
infection and cell internalization [6,7]. In particular, it was reported that the conserved
RGD motif may be a mechanism by which SARS-CoV-2 interacts with integrins. Microarray
analysis revealed that following infection, HL-mECs release many pro-inflammatory and
pro-angiogenic molecules, which induces the development of an angiogenic phenotype in
HL-mECs. The modification of SARS-CoV-2-infected HL-mECs to inflammatory and angio-
genic responses was validated by proteome analysis, which also unveiled the expression of
antiviral molecules, among which are annexin A6 and MX1.

Considering that ARDS represents one of the major causes of mortality for severe
COVID-19 subjects, a therapy based on pulmonary rehabilitation (PR), known to be effective
against multiple pulmonary diseases [8,9], has been exploited for COVID-19 treatments [10].
The primary benefits of PR involve the improvement of physical performance, quantified
as the functional independence measurement (FIM) and 6 min walking distance (6-MWD),
and the wellbeing of patients, described using the feeling thermometer (FT) parameter.
However, since not all patients benefit from the PR treatment to the same extent, such as
some post-COVID-19 patients, further studies are necessary to identify the reasons for this
difference in response to therapy in order to develop optimized concepts within PR [11].

Although the respiratory tract represents the main site of entry for the virus, the
spectrum of the clinical manifestation of SARS-CoV-2 is wide, since the primary infection
could lead to important systemic effects [7].

Theoretically, SARS-CoV-2 can directly invade any organ system that expresses the
ACE2 receptor, resulting in symptoms that are vague or unusual [12]. In fact, as the
pandemic spread and new SARS-CoV-2 variants arose, more COVID-19 patients expe-
rienced several nonspecific or unusual extra-pulmonary symptoms involving different
body systems, including systemic inflammation, hypercoagulability and renin–angiotensin–
aldosterone system dysregulation (RAAS) [13]. In particular, SARS-CoV-2 infection has
been described in association to renal complication, including nephropathies associated
with systemic SARS-CoV-2 infection, rhabdomyolysis-associated tubular toxicity and car-
diorenal syndrome (such as renal hypoperfusion, hypotension, nephrotoxic drug interac-
tions and venous congestion) [14,15] (Figure 1). In fact, SARS-CoV-2 is able to modulate
ACE2 expression in several cells of the cardiovascular system, such as cardiomyocytes,
fibroblast and pericytes, triggering the neurohumoral system and resulting in defective
contractibility, among other significant cardiac morbidities [16–18] (Figure 1).

In addition, another major site of extrapulmonary infection of SARS-CoV-2 is repre-
sented by the gastrointestinal tract, due to the high expression of ACE2 in enterocytes.
The incipient manifestations of COVID-induced gastrointestinal (GI) problems include
vomiting, diarrhea, abdominal pain, bleeding, diminished appetite or a combination of the
former [19].

Another important aspect of the core of SARS-CoV-2 gastrointestinal infection is
the presence of several comorbidities in patients. Diabetes mellitus is among the most
frequently occurring of the major COVID-19 comorbidities [20–23], often associated to a
high risk of severe prognosis [24–26]. In fact, the excessive amounts of insulin produced
by diabetic patients seem to induce the PI3K/Akt/mTOR pathway, already active in
COVID-19, which promotes the release of tumor necrosis factor (TNF) and interleukin-6
(IL-6) [27–29], consequently aggravating the inflammatory status already altered in COVID-
19 patients [30]. Similarly to observations in pulmonary pathology, some therapeutic
strategies could exploit the treatment of certain comorbidities to improve the conditions
of COVID-19 patients, such as diabetes mellitus [20–22]. Among the main antidiabetic



Microorganisms 2023, 11, 1209 3 of 7

therapies, metformin is one of the most used, consisting of an oral hypoglycemic agent
inhibiting the PI3K/Akt/mTOR pathway [31–33] that causes inflammation in both diabetes
mellitus and COVID-19. For this reason, the use of metformin can be considered a potential
anti-inflammatory treatment to improve the prognosis of patients with both COVID-19 and
diabetes [34,35].

Nevertheless, besides the several therapeutic approaches, it has been demonstrated
that prevention is critical in decreasing infection rates and sequelae. Although vitamin D3
supplementation is still controversial in the prevention of infection [36,37], a meta-analysis
asserted that a low serum 25-hydroxyvitamin D3 [25(OH)D3] level was associated with
a higher risk of SARS-CoV-2 infection [38]. Similarly, Romero-Ibarguengoitia et al. [39]
showed that individuals with 25(OH)D3 levels between 20 and 100 ng/mL and vitamin D3
supplementation have a lower rate of SARS-CoV-2 infection, reinforcing the importance of
supplementation in the prevention of COVID-19.

The importance of therapies and prevention appears to be crucial in view of the ability
of SARS-CoV-2 to infect a wide range of tissues and organs. Recently, even more interest
has been paid to SARS-CoV-2 infection at the reproductive tract level. In particular, the
male reproductive system could present peculiar clinical manifestations in response to
SARS-CoV-2 infection, possibly leading to exacerbated conditions due to a stronger type
I immune response, characterized by a lower CD4/CD8 T cell ratio [40]. The increased
ACE2 expression, and the levels of transmembrane protease serine 2 (TMPRSS2) and
cathepsins [41,42] within the testes, and the deleterious role of testosterone in the interim of
infection, could impede spermatogenesis and cause male infertility [43] (Figure 1). Despite
SARS-CoV-2 infection potentially resulting in testicular damage and testosterone level
impairment, whether these consequences of certain severe COVID-19 cases is caused by
direct SARS-CoV-2 infection, indirect inflammatory and oxidative stress, or a combination
of these mechanisms, is not completely clear. The study conducted by Campos et al.
suggested that testicular damage observed in severe COVID-19 cases could be partly due to
a direct SARS-CoV-2 infection of testicular cells. In fact, in a study conducted in an animal
model, SARS-CoV-2 RNA was detected in the testes of golden Syrian hamsters infected
intranasally, which also showed signs of mild disease. Most of the viral RNA was found
during the first week following infection, without any significant histopathological damage.
Moreover, the hamster testes exposed to SARS-CoV-2 ex vivo were susceptible to infection,
as demonstrated by increasing virus titers in the medium and the presence of viral RNA
in the seminiferous tubules and the interstitium. In contrast, SARS-CoV-2 titers remained
stable in hpSertoli cells, suggesting that these cells might support low levels of SARS-CoV-2
infection [44].

Despite the female reproductive tract expressing low ACE2 levels than testes, SARS-
CoV-2 infection seriously considered within fertility clinics, as the infection has the potential
to be implicated in placental annexes. Because of the peculiar tolerogenic environment
needed to protect the semi-allogenic fetus from the maternal immune system attack during
pregnancy, a dysregulated inflammatory response to viruses may occur, probably due to
a defective interferon response known to be crucial in antiviral responses [45]. In fact, in
normal pregnancy and immunocompetent physiological conditions, IFN-γ plays a pivotal
immunomodulatory role [46], thus it might be supposed that SARS-CoV-2 infection could
affect the pregnancy course by specifically modulating IFN-γ levels. This hypothesis is
supported by Cennamo et al., who observed significantly lower IFN-γ amounts in the
peripheral and cord blood of pregnant COVID-19-infected women (Figure 1), suggesting
that this alteration, possibly due to SARS-CoV-2 infection as an attempt to subvert the IFN-γ
antiviral effect, could affect the fetal microenvironment, increasing the viral susceptibility
of newborns [47].

This evidence confirmed the importance of a correct activation of innate immune
response to efficiently counteract SARS-CoV-2 and infection susceptibility. Nevertheless,
the cytokine storm condition and/or immunosuppression becomes even more complicated
in COVID-19 patients with a peculiar immunological status, such as pregnancy.
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In fact, even if SARS-CoV-2 infection interferes with all tissues and cells previously
mentioned, the immune system is perhaps one of the most involved. In particular, it has
been reported that SARS-CoV-2 infection innate immune response modulation could result
in both immune hyperactivation or weakening [48].

As described by several studies, many cases of COVID-19 are characterized by a de-
creased innate immune response, with low monocyte levels [49], high neutrophil count [50]
and natural killer (NK) cell anergic status [51]. In particular, one of the first-line defenses
during viral infection is represented by innate antiviral systems, such RNA-sensors ac-
tivation, which include different pattern recognition receptors (PRRs), such as RG-I and
Toll-like receptors (TLRs). Rizzo et al. demonstrated that specific intracellular TLRs, TLR3
and TLR7, constitute important mediators of anti-viral response during SARS-CoV-2 infec-
tion, through the recognition of viral RNA genome. The authors used a Calu-3/MRC-5
3D in vitro lung model, and reported that, after SARS-CoV-2 infection, viral RNA genome
recognition by TLR3 and TLR7 led to peculiar responses in terms of production of pro-
inflammatory interleukins (ILs) and interferons (IFNs). Precisely, TLR3 engagement was
involved in IFN-α and IFN-β production and the secretion of pro-inflammatory cytokines
(IL-1 α, IL-1 β, IL-4, IL-6), while TLR7 activation regulates type-1 IFN, IFNγ and IFN-λ3
expression [52] (Figure 1). This study supported the role of these pathways in COVID-19
symptomatology and suggested TLRs as a potential target for new therapies.

Moreover, besides the activation of innate antiviral systems, such as RNA sensing,
the adaptive immune system also plays a central role during SARS-CoV-2 infection. Both
humoral and cellular-mediated responses are active mostly against the S1 domain of the
SARS-CoV-2 spike protein, with a major activation of CD4+ T cells that support antibody
generation too. Antibody responses to SARS-CoV-2, specifically immunoglobulin G (IgG),
are fundamental in providing protection against viral infection (Figure 1). Furthermore,
the induction of virus-specific neutralizing antibodies within the airways is considered the
main immune defense, following natural SARS-CoV-2 infection or vaccination [53].

As a matter of fact, a recent study indicates a direct correlation between SARS-CoV-2
neutralizing antibody titer, IgG amount and clinical COVID-19 outcomes. In particular, the
study showed that in some subjects, despite having high levels of anti-S1 IgG antibodies, a
re-infection may occur. This result indicates that the presence of adequate anti-S1 IgG titers,
but not of relevant neutralizing antibodies, represents a possible risk factor for SARS-CoV-2
re-infection [54], supporting the importance of an adequate humoral immune response in
SARS-CoV-2 infection resolution.

Conclusions

Since the occurrence of the new SARS-CoV-2 infection pandemic, more evidence
reported that the virus can infect several tissues and organs due to the diffuse expression of
SARS-CoV-2 receptors and new entry mechanisms exploited by new SARS-CoV-2 variants.

Nevertheless, even if the respiratory tract remains the main site of SARS-CoV-2 in-
fection, the spectrum of SARS-CoV-2 clinical manifestation is wide [43], and COVID-19
patients experience several complications and adverse manifestation aggravated by the
presence of comorbidities, such as diabetes mellitus [23].

In this view, the use of both existing therapies and prevention is crucial in decreasing
infection rates.

This is also true concerning the reproductive system and particularly pregnancy,
where SARS-CoV-2 can take advantage of the peculiar maternal immune system asset,
affecting pregnancy outcomes and the fetal microenvironment [47]. In fact, an efficient
immune activation is essential to counteract SARS-CoV-2 infection, at both innate and
acquired levels. Hence, the continuous monitoring of new variants of SARS-CoV-2 and
the increased knowledge of the mechanisms underlying both viral spread strategies and
immune response efficiency toward the infection, are fundamental in identifying potential
risk factors and developing more efficient strategies for prevention and treatment therapies.
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