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Abstract: Efficient feed utilization in dairy cows is crucial for economic and environmental reasons.
The rumen microbiota plays a significant role in feed efficiency, but studies utilizing microbial data
to predict host phenotype are limited. In this study, 87 primiparous Nordic Red dairy cows were
ranked for feed efficiency during their early lactation based on residual energy intake, and the rumen
liquid microbial ecosystem was subsequently evaluated using 16S rRNA amplicon and metagenome
sequencing. The study used amplicon data to build an extreme gradient boosting model, demon-
strating that taxonomic microbial variation can predict efficiency (rtest = 0.55). Prediction interpreters
and microbial network revealed that predictions were based on microbial consortia and the efficient
animals had more of the highly interacting microbes and consortia. Rumen metagenome data was
used to evaluate carbohydrate-active enzymes and metabolic pathway differences between efficiency
phenotypes. The study showed that an efficient rumen had a higher abundance of glycoside hydro-
lases, while an inefficient rumen had more glycosyl transferases. Enrichment of metabolic pathways
was observed in the inefficient group, while efficient animals emphasized bacterial environmental
sensing and motility over microbial growth. The results suggest that inter-kingdom interactions
should be further analyzed to understand their association with the feed efficiency of animals.

Keywords: ruminants; feed efficiency; rumen bacteria; metagenomics; prediction

1. Introduction

Improving feed efficiency of dairy cows has become increasingly important for both
economic and environmental reasons. Feed accounts for a significant portion of total milk
production costs; therefore, improving feed utilization could enhance the profitability of
milk production. Furthermore, improving feed efficiency in dairy production reduces
nutrient and greenhouse gas emissions and decreases the need for land and resources to
produce feed [1–3]. Several studies have demonstrated genetic variation among cows in
their feed efficiency [4–6]. This finding suggests that feed efficiency should be included in
the breeding goals of dairy cattle. However, choosing suitable feed efficiency traits can be
challenging [7,8]. Efficiency can be defined as ratio of (energy corrected) milk yield to feed
(or energy) intake [3]. These measures can be problematic because they favor dairy cows
with long and deep energy deficits in early lactation [3,9]. Alternative measures estimate
net feed efficiency or metabolic efficiency of the cow. It is defined as the difference between
a cow’s actual feed (or energy) intake and its expected feed (or energy) requirements [3].
Residual energy intake (REI) is calculated as the residual from a regression model of energy
intake on energy sinks for milk production, maintenance, and body weight change [9],
where cows with low REI values indicate more efficient energy utilization.
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There is growing interest in understanding the associations between animal perfor-
mance efficiency and the rumen microbiota. This interest is not surprising, given that
symbiotic microorganisms in the rumen are responsible for feed digestion and production
of volatile fatty acids (VFA). The host absorbs and utilizes these VFA as an energy source,
while the microbial cells, after being washed out of the rumen, become a source of protein
for the animal. With the development of high throughput sequencing techniques that
allow screening of environmental samples, multiple studies have demonstrated that rumen
microbiota is affected by diet [10,11], or breed [12–14], and can be associated with methane
emissions [15–17] or feed efficiency [18,19]. For instance, Jewell et al. [18] studied Holstein
cows over a 2-lactation period and observed that inefficient cows had a higher abundance
of Butyrivibrio, while efficient animals had more Coprococcus. Similarly, higher abundance of
Megasphaera elsdenii and Coprococcus were linked with animal efficiency in [19]. Differential
abundance of Methanobrevibacter species in efficient and inefficient Texel cross Scottish Black-
face sheep [20], and Holstein cows [19] have been reported as well. Paz et al. [21] suggested
that approximately 20% of the variation in feed efficiency traits could be explained by the
rumen microbiome in beef cattle. However, it is difficult to draw more general conclusions
on the associations between individual microbial taxa and animal efficiency phenotype
from individual studies due to diet having a significant effect on the composition of the
rumen microbiome. Recent larger cohort studies suggest that, rather than abundances of
individual taxa, the lower taxonomic diversity of rumen bacterial ecosystem, as well as less
diverse functional potential of the rumen microbiome [19,22], or differences in microbial
functional capacities [13,23] could explain differences between efficient and inefficient
animals. All these observations suggest that rumen microbial function is one of the factors
that influences animal feed efficiency.

Research exploring the relationship between microbiota and feed efficiency is often
constrained by small sample size. These limitations not only reduce statistical power, but
also impede the utilization of more advanced machine learning methods that could provide
predictions and more comprehensive insights. Several studies have therefore attempted to
identify microbial biomarkers that could be used to identify more efficient animals without
testing predictive power [20,24–26]. However, Clemmons et al. [27] identified biomarkers
for high and low feed efficient steers and reached acceptable predictive classification
accuracy based on biochemical and taxonomical markers using the random forest algorithm.
Furthermore, Delgado et al. [28] used whole metagenome sequencing with enrichment
analysis to identify associated microbial contigs and identified strong correlations within
the study population and used LASSO regression to predict feed efficiency in an unrelated
sample. While regression, linear discriminant analysis, and random forests are considered
the most robust machine learning methods, gradient boosting and neural networks are
recognized for their greater precision when tuned carefully [29,30]. Although these methods
have been successfully applied in transcriptome analysis [31,32], they are underutilized in
rumen microbiome research.

The aims of this study were to explore the association between the rumen microbiome
and feed efficiency in a cohort of 87 Nordic Red dairy cows and to elucidate on the
usefulness of rumen microbiota in predicting feed efficiency phenotype. We were able to
predict feed efficiency trait based on rumen microbial composition and were able to link
these to variation in microbial processes in dairy cow rumen.

2. Materials and Methods
2.1. Animals, Experimental Design, and Diet

All experimental procedures were approved by the Project Authorization Board (Regional
Administrative Agency for Southern Finland, Hämeenlinna, Finland; ESAVI/9532/2018 and
ESAVI/11796/2014) in accordance with the guidelines established by the European Commu-
nity Council Directive 86/609/EEC. Eighty-seven primiparous Nordic Red dairy cows from
Luke research barn in Finland were studied for their energy use efficiency. Animal data and
sample collection were conducted during the 2018–2020 period, excluding summertime when
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cows were on pasture. Twenty-one cows were enrolled in the study in 2018, twenty-eight in
2019, and thirty-eight animals in 2020, respectively.

Cows were housed in a tie-stall barn and were fed grass silage and concentrate mix,
provided through the feeding stations, as described by [33]. The mean composition of grass
silage and concentrate mix during data collection period are presented in Supplementary
Table S1. The proportion of concentrate in the diet was adjusted based on the stage of
lactation and the digestibility of the grass silage. The mean feed and nutrient intake of the
cows from calving to rumen sampling during the different years are given in Supplementary
Table S2.

2.2. Sampling and Data Recording

The body weight (kg) of the cows was recorded using a walk-through static scale (Pellon
Group Oy, Ylihärmä, Finland) on their return from milking. Daily milk yield (kg/day), milk
composition (%), and dry matter intake (kg/day) were monitored as described by [33]. All
feeds were sampled and analyzed to obtain metabolizable energy and nutritional values
for the feeds. Rumen liquid samples from each cow were collected when animals were on
average 148 (SD 18) days in milk (DIM). Rumen liquid (ca. 500 mL) was collected ca. 3 h
after morning feeding via esophagus using Ruminator device (Profs Products, Wittybreut,
Germany). Immediately after collection, rumen liquid was strained through two layers of
cheesecloth, a subsample of 5 mL was mixed with 0.5 mL of saturated HgCl2 and 2.0 mL of
1 M NaOH solutions and stored at−20 ◦C for subsequent volatile fatty acid (VFA) analysis by
gas chromatography as described by [34]. For rumen microbial community determination,
rumen liquid was aliquoted into 2 mL tubes, snap frozen in dry ice, and stored at −80 ◦C
until DNA extraction.

2.3. DNA Extraction, Sequencing

Total DNA was extracted from 0.5 mL of rumen liquid using DNeasy Power Soil Pro kit
(Qiagen, Hilden, Germany) and following manufacturer’s protocol with initial homogeniza-
tion and mechanical cell disruption performed by bead beating at 6 m/s × 1 min × 3 times
in FastPrep (MP Biomedicals, Solon, OH, USA). Rumen bacterial community composition
of all 87 cows was determined using universal primers 515F and 806R [35] for 16S rRNA
gene V4 region amplicon sequencing. Sequencing library was prepared as described by [36]
and sequenced in Finnish Functional Genomics Centre (Turku, Finland) on Illumina MiSeq
platform by using 2 × 300 bp chemistry. For shotgun-metagenome sequencing 32 sam-
ples were shortlisted based on REI values to represent 11 lowest (L), 10 middle (M), and
11 highest (H) samples maximizing among group differences. The M group had the five
highest of the lower median half and the five lowest of the high median half, respectively.
For all samples 2 × 150 bp libraries were prepared using the NexteraXT DNA Library
Preparation Kit (Illumina, San Diego, CA, USA), following the manufacturer’s guidelines.
Sequencing was performed at the LaBSSAH-CIBIO Next Generation Sequencing Facility of
the University of Trento on the Illumina NovaSeq 6000 platform (Illumina Inc., San Diego,
CA, USA) following manufacturer’s protocols.

2.4. Sequencing Data Processing

16S rRNA gene amplicons. Demultiplexing of sequences, adapter removal, and
sorting sequences by barcode were performed by the sequencing center. Sequencing
data were processed using Qiime 2 [37]. Briefly, quality control, filtering of chimeric
reads, and clustering of bacterial sequences into amplicon sequence variants (ASV) were
performed using DADA2 [38]. ASVs with less than 10 reads in total were removed. Bacterial
ASV taxonomy was assigned using the Silva 138 database [39]. After quality filtering,
2,635,661 reads (mean 30,294/animal) remained for subsequent analyses.

Shotgun-metagenomes. Sequencing resulted in 10.5–140.7 GB per sample. Raw lane-
wise sequencing reads were concatenated per sample and quality trimmed with fastp [40],
using a hard trimming of 12bp at the 5′-end, automatic adapter removal and a quality
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filtering of ≥Q15. Quality trimmed fastq-files were then concatenated into a single file-
pair and MEGAHIT [41] was used to construct the metagenome assembly, setting the
minimum k-mer size to 31. The created metagenome assembly contained approximately
28.3 MM contigs, with an average length of 629bp and a N50 length of 742bp. In total,
37.1 MM genes on the assembled contigs were predicted with Prodigal [42] and, from them,
24 MM could be annotated with eggNOG-mapper [43]. The trimmed reads were aligned
against the assembled metagenome with Bowtie 2 [44] and predicted genes were quantified
with featureCounts [45]. The complete data processing pipeline was implemented in
Snakemake [46] and is available on GitHub [47].

2.5. Statistical Analyses

Body weight (BW) (kg), dry matter intake (DMI) (kg/d), metabolizable energy intake
(ME MJ/d), and energy corrected milk (ECM) (kg/d) were calculated as average over all
daily observations. The ECM was calculated according to [48]. Residual energy intake (REI)
was calculated over DIM 3–100 period by fitting a multiple linear regression model with
ECM output, metabolic body weight (BW0.75), and piecewise regressions of BW gain or
BW loss on the total metabolizable energy intake (ME MJ/d), as described in detail by [9].
Thereafter, the daily residuals from the prediction equations were defined to be REI. For
descriptive analysis, animals were divided into three REI groups, which contained the
lowest (L), middle (M), and the highest (H) third of samples based on three equally spaced
quantile groups of the original REI values.

General microbiota composition analyses were performed with microbiome v. 1.12.0 [49]
and phyloseq v. 1.34.0 [50] R-packages. The analyses included only ASVs that had rela-
tive abundance above 0.1% in at least half of the samples, reducing the total number
of ASV from 14,755 to 80. The R packages were used to calculate and test Simpson–
Gini, Simpson evenness diversity parameters (alpha-function), Bray–Curtis dissimilarities
(divergence-function), produce non-metric multidimensional scaling (NMDS) ordination
(ordinate-function), and composition plots (plot_composition). Permutational multivariate
analysis of variance was done using adonis-function in vegan v.2.5.7 R-package [51] to assess
multivariate differentiation between years and between three REI groups. Differentiation
between groups in diversity estimates were done with non-parametric Kruskal–Wallis and,
where group differences existed, further explored with pairwise Wilcoxon tests. Correla-
tion tests were performed as two-sided test using cor.test function in the standard R stats
package. Phylogenetic UPGMA tree was based on Jukes and Cantor [52] distance as in ape
v. 5.7 [53] and tested using adonis-function in vegan, as above.

Predictor engineering. The machine learning model was based on two types of
summary variables. First, so-called archetype components were estimated by generalized
low rank model (GLRM) which is a generalization of PCA and matrix factorization [54].
Estimation was performed with h2o v.1.5.2.1 R-package [55]. GLRM Y matrix rows, or
archetypal traits, represent microbial community profiles. GRLM X matrix quantifies the
presence of these archetypal traits in the samples. The data can be reconstructed from the
matrix product XY. The Y matrix was constrained to non-negative values. Limiting to the
components explaining more than 1/n(ASV) share resulted in using 26 GLRM archetype
components explaining 65% of the variance in ASV frequencies. Components were included
after exponential transformation with caret v.6.0.90 [56]. In addition, Gini–Simpson and
Simpson evenness estimates were included as a second type of summary variable. All
predictors were centered and scaled before model training.

Extreme gradient boosting modeling. Extreme gradient boosting is an ensemble
machine learning method based on a series of decision trees [57] and was performed using
xgboost v.1.5.2.1 R-package [58]. For this, data was randomly split in 8:1:1 proportion
to training, validation, and test data sets. Initial tuning assessing tree depths from 1 to
7 with learning rate 0.1 and up to 10 rounds of boosting was done to find the approximate
tree depth. Subsequently, two rounds of sequential tuning were done for learning rate
(0.01–0.4), predictor subsampling (0.3–1), tree depth (2–3), sample subsampling (0.3–1), and
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minimum number of samples per node (1–4), running 1000 boosting rounds and choosing
the parameter based on convergence and the lowest root mean square error in validation
data. The final model hyperparameters were 26 rounds of trees having a depth of two and
at least two samples per node. Moreover, a learning rate of 0.05 was used and the trees
were constructed without subsampling among the predictors using only a random 80%
subsample of the training set for the generation of a tree. The final model was constructed
with the xgboost implementation in caret v.6.0.90 [56], using 100 repeated cross validations.

Prediction interpreters. The predictor impact was analyzed using sample-wise Shap-
ley additive explanation estimates (SHAP) and global accumulated local effects (ALE)
estimates. SHAP values refer to the additive contribution of each predictor trait to the
sample prediction and the predictor-wise mean of the absolute values is a way to evaluate
their importance. Estimation was done using SHAPforxgboost v.0.1.1 [59]. The ALE profiles,
which give the global main effect for the predictors, were obtained using ALEPlot v.1.1 R-
package [60]. A conditional inference tree model was fitted on the machine learning model
and the data using TreeSurrogate-function in iml v. 0.10.1 [61]. The constructed surrogate
tree model and comparison between the full machine learning model and surrogate model
was plotted using ggparty v. 1.0.0 [62].

Network analysis. REI-associated ASV variation was analyzed based on reconstructed
data. Reconstruction was done by matrix multiplication of GLRM matrices including only
the five strongly REI associated archetype components. Sparse Gaussian graphical model
network tuned with extended Bayesian information criterion was drawn using the scaled
data with EBICglasso-function in qgraph v.1.9.2 [63]. The network was plotted with ggraph
v.2.0.5 [64], which internally used igraph v.1.2.11 [65]. igraph was used in calculation of hub
scores. Network node sizes in the fr-layout network were proportional to taxon hub scores.
Coefficients of association between ASV frequency and REI values were estimated by linear
regression with offset equal to the mean value. Network modules were determined using
cutreeDynamic-function in dynamicTreeCut v.1.63 [66]. The input tree was UPGMA-tree
based on partial correlation distance (1—partial correlation). The minimum number of
ASVs per module was set to 10, and deepSplit parameter to 2. Cluster correlation with
REI coefficients was assessed using Pearson correlation and p-values were estimated using
corPvalueStudent in WGCNA v.1.70-3 [67,68]. Descriptive cluster names were based on the
taxa of the nodes with the highest hub score values, where possible. Differentiation between
clusters in archetype component values were done with non-parametric Kruskal–Wallis
and Wilcoxon tests.

Shotgun-metagenome data processing. The shotgun-metagenome gene quantifica-
tion and annotation post-processing was done in R4.2.1 supported by the R-package
data.table [69]. The downstream analysis was based on highly abundant predicted genes.
Highly abundant genes were determined by applying a trimmed mean of M-values normal-
ization (TMM) to the data and filtering out genes with a total sum of standardized values
smaller than the 95% quantile across the total sum of all abundances. In total, 1.2 MM fil-
tered genes were evaluated for differential abundances using a generalized Mann–Whitney
test for directional alternatives as described by Fischer et al. [70] and implemented in the
R-package gMWT [71]. Let FL, FM, and FH be the cumulative distribution functions of
abundances for a specific gene g (double index omitted for simplicity) for the groups L-,
M-, and H-REI, then, the underlying directional testing problem is H0 : FL = FM = FH vs.
H1 : FL ≤st FM ≤st FH and H2 : FL ≤st FM ≤st FH with ≤st being the stochastic ordering
that is not equal for at least one comparison. Directional alternatives were preferred for
the shotgun-metagenome data analysis over a global test, for example, Kruskal–Wallis, as
directional alternatives reassemble the underlying assumption better and avoid umbrella-
type results, where intermediate samples would have highest/lowest abundance values.
The false discovery rate (FDR) of those tests was controlled with the Benjamini–Hochberg
method. Carbohydrate-active enzyme (CAZy) classes as well as the Kyoto Encyclopedia
of Genes and Genomes (KEGG) ortholog abundances per sample and group were sum-
marized by summing over the abundances of the corresponding identified genes. For the
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KEGG pathway enrichment analysis a dataset of all KEGG orthologs (KO) per pathway
was created and assessed for differences in KO abundances between the groups using
the generalized Mann–Whitney test for directional alternatives. Then, a one-sided Fisher
exact test was used to assess for an enrichment of significant differentially abundant KOs
(p-value ≤ 0.1) for each pathway. For this, a 2 × 2 contingency table was created for each
pathway, indicating the amount of significant and non-significant KO within a pathway
gene-set as well as the overall KO universe. The KO universe is here the total set of detected
KO that are also present in any pathway. Based on the total number of (non)-significant KO
the hypergeometric distribution was used to calculate the probability to obtain by chance
at least the number of observed significant KO in the pathway gene-set. This probability
is then the associated p-value for the enrichment test. Further, the enrichment tests were
adjusted for multiple testing, by using an FDR of 0.05. The required functions for testing
and visualization are implemented in the R-package GenomicTools [72]. Term-gene graph
was constructed in pathfindR v.1.6.4 [73].

3. Results
3.1. REI Association with VFA, Alpha, and Beta Diversities

In total, 87 Nordic Red primiparous dairy cows with REI estimates ranging between
−33.4 and 21.3 were included in this study. Kruskal–Wallis test indicated year differ-
ences and Wilcoxon test indicated the 2019 samples to have significantly larger values
(Supplementary Figure S1). The REI group differences were assessed in the same way. The
average total VFA was 109 mmol/L and varied from 87 to 143 mmol/L. Of the individual
VFAs, acetate was significantly higher (p < 0.01), while propionate and isovalerate were
significantly lower (p = 0.02) in H-REI (less efficient) compared to L-REI (efficient) groups
(Table 1, Supplementary Figure S2). There were significant differences in concentrations of
five individual VFAs between the years, but not in total VFA concentration (Supplementary
Figure S2).

Table 1. Animal numbers in groups (n), and medians and interquartile ranges across the animals
for residual energy intake (REI), mean energy corrected milk (ECM), mean bodyweight (BW), mean
dry matter intake (DMI), total volatile fatty acids (tVFA), acetate (Acetate), isovalerate (Isovalerate),
propionate (Propionate), and Gini–Simpson diversity (Gini–Simpson), Simpson evenness (Evenness),
and beta diversity (Beta) per group and overall.

L-REI [−33.4, −9.17] M-REI (−9.17, −0.9] H-REI (−0.9, 21.3] All

n 29 30 28 87

REI * −14.3 (7.2) −4.6 (4.8) 5.1 (7.1) −4.6 (14.5)

ECM 30.6 (4.9) 30.7 (4.1) 29.5 (2.7) 30.26 (4.3)

BW 614 (107) 604 (61) 589 (80) 601 (81)

DMI 20.1 (2.8) 20.6 (1.9) 21.1 (1.5) 20.7 (2.0)

tVFA (mmol/L) 109 (16) 109 (17) 107 (14) 108 (16)

Acetate (mmol/mol) 650 (20) B 655 (24) AB 659 (27) A 654 (24)

Isovalerate (mmol/mol) 10.8 (3.7) A 10.4 (3.3) AB 9 (4.1) B 10.3 (3.5)

Propionate (mmol/mol) 190 (19) A 187 (19) AB 182 (16) B 187 (18.5)

Gini–Simpson 0.975 (0.008) 0.979 (0.008) 0.977 (0.007) 0.978 (0.009)

Evenness 0.800 (0.065) 0.823 (0.057) 0.817 (0.038) 0.817 (0.050)

Beta 0.353 (0.126) A 0.316 (0.103) B 0.339 (0.136) A 0.335 (0.133)
A,B Within a row, medians without a common superscript differ (pairwise Wilcoxon test p < 0.05). * Used in setting
up REI groups, therefore differentiation among REI groups was not evaluated.
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Alpha diversity, evaluated as Gini–Simpson diversity index, ranged from 0.951 to
0.986 and Simpson evenness from 0.40 to 0.90. There were indicatively positive correlations
between REI and Gini–Simpson diversity or Simpson evenness with correlation 0.14 (p = 0.2)
or 0.19 (p = 0.07), respectively. There was non-significant negative correlation (−0.14, p = 0.2)
between REI and beta diversity.

Rumen microbiota uniformity across the years and REI groups was studied using
permutational multivariate analysis of variance. There was differentiation between the
years (p < 0.002) but not between REI groups (p = 0.35). A more detailed analysis was done
to understand this observation (Table 1, Supplementary Figure S1). Among the years, there
were significant differences in Simpson evenness (p = 0.03) and beta diversity (p = 0.006)
but not in Gini–Simpson diversity. Among the REI groups, there were no differences
in either alpha diversity measure, but L-REI and H-REI groups had significantly higher
beta diversity than the M-REI group. The larger dispersion among L-REI and H-REI
groups was reflected in the contour of REI values using NMDS ordination coordinates
(Figure 1) as presence of the most extreme REI peaks and valleys further from the center.
The 2019 samples clustered together agreeing with the observed lower beta diversity. The
results indicated that there was significant multivariate differentiation between the years,
and it was due to differences in beta diversity.
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3.2. Predicting REI from Rumen Microbiota

Machine learning model predicting REI proved the link to rumen microbiota com-
position. The final machine learning model predictions for the training, validation, and
test data had strong correlation with the phenotypically estimated (0.88, 0.60, and 0.55,
respectively, see Supplementary Figure S3) and warranted close inspection of the model.

The predictor importance estimates from the SHAP analysis suggested archetype
components (Archs) 4, 13, 5, 1, and 24 to have the strongest impacts on predictions, while
the importance of the remaining predictors decreased more gradually. Simpson evenness
and Gini–Simpson diversity indices ranked 11th and 16th among the 28 predictors (Supple-
mentary Figure S4), suggesting that several specific ASV assemblages were more important
than the overall ASV diversity (Supplementary Figure S5). ALE plot implied the main
effects happen as REI changes within one standard deviation from the mean transformed
Arch value (Figure 2). Moreover, the stronger effects occur on positive component values,
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which biologically means presence of a specific minor microbial sub-community. Only
Arch1 and Arch12 showed opposite patterns, suggesting a larger deviation from the mean
due to the loss of a common microbial subcommunity. The ALE importance calculated as
the differences on minimum and maximum value suggested higher impacts for Archs 4, 5,
13, 24, 9, 12, 1, 20, and 2, with Simpson evenness and Gini–Simpson diversity ranked 10th
and 23rd. The predictor importance ranks were similar in both evaluation methods.
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A simplified inference tree model was used to capture the main REI associations and
was composed of a set of five sample classifying criteria (Figure 3). The coefficient of
determination between this simple model and the full model was 0.61. These five archetype
components provided the most condensed model explaining the main associations.
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3.3. Interpretation of the Association Results

The surrogate model results were used to explore the underlying biology from mi-
crobial taxonomic data. At genus level, the ASVs were affiliated with 11 genera, among
which Prevotella, Succinovibrionaceae UCG-002, and Lachnospiraceae NK3A20 group were the
most abundant in all studied animals. In particular, the Prevotella and Succinovibrionaceae
UCG-002 abundances varied strongly, but independently from REI. Despite ASV level data
being associated with REI variation, the genus level taxonomy did not reveal simple rumen
microbiota association with REI estimates (Figure 4A). The GLRM analysis enabled recon-
structing data based on the important REI associated components only. The reconstructed
composition appears more homogenous than the original data but did not indicate simple
genus level association to REI either (Figure 4B).
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As the next step the REI-associated variation at ASV level was explored and patterns of
association between clusters of ASVs and REI phenotype were observed. Co-occurrence net-
work (Figure 5) revealed a sparse network containing only 12% of the possible connections,
and the partial correlations were nearly exclusively positive, with a single exception for a
Prevotella-Paraprevotella pair. The co-occurrence module search identified five ASV clusters
that differ in their association to REI phenotype. One cluster was central in the network con-
taining the four highest ASV-hub scores and was named Central cluster, other clusters were
named according to the taxonomy of ASVs with the highest hub score values. The clusters
were also significantly associated with archetype clusters (Supplementary Figure S6). In-
creased abundances in Methanobrevibacter cluster (REI correlation 0.48, p < 0.01, associated
to Arch4) and Prevotella-Succinivibrionaceae cluster (0.26, p = 0.02, Arch1) were associated
with H-REI, while higher proportion of Prevotellaceae cluster (−0.35, p < 0.01, Arch12)
and Central cluster (−0.33, p < 0.01, Arch2) were associated with L-REI. Ruminococcaceae-
Lachnospiraceae cluster (Arch24) did not have an independent main effect on REI. Overall,
the L-REI cows were beneficially associated with more networked bacteria in the rumen.
The hub taxa in the network contributed towards feed efficiency (REI correlation −0.43,
p < 0.0001) between hub score and REI coefficient.
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Most genera spanned several co-occurrence clusters. Therefore, a phylogenetic tree
was created to explore the association between phylogenetic distances between ASVs
and co-occurrence clusters (Supplementary Figure S7). Analysis demonstrated that phy-
logenetic distances were not independent of the co-occurrence clusters (p = 0.002) and
particularly Succinivibrionaceae and Prevotella showed some evidence of association between
phylogeny and functionality above the ASV-level. As an example, Prevotella-affiliated ASVs
in the Methanobrevibacter co-occurrence cluster appear to be limited within a phylogenetic
subclade.

3.4. Differences in Microbial Functional Capacities between H-REI and L-REI Groups

Of all annotated genes, 2.5% (601,708) were identified to code for carbohydrate-active
enzymes (CAZymes). In total, 71 CAZy families were observed in this data set. Among
them, 29 were affiliated with Glycoside hydrolases (GH), followed by 19 Glycosyl trans-
ferases (GT), 2 Carbohydrate esterases (CE), and 2 Polysaccharide lyases (PL), respectively.
There were also 19 clusters, represented by more than one CAZy family. Among the
CAZymes, several families of cellulases (GH5, GH6, GH9, GH95), hemicellulases (GH8,
GH23, GH26, GH28, GH43), debranching enzymes (GH33, GH51, GH77), and a large
group of oligosaccharides degrading enzymes (GH3, GH13, GH18, GH20, GH29, GH31,
GH32, GH38, GH57, GH94) were observed. Among them, GH13, GH31, and GH3 were
the most abundant families. GTs were the second most prominent CAZymes group with
enzymes belonging to 19 families, among which GT5, GT51, GT20, GT35, GT36, GT2, and
GT4 were the more abundant. The minor groups were CEs and PLs, with CE1 and CE10 as
well as PL8 and PL11 families present in this data set (Supplementary Figure S8). From
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the total set, abundances of 25 CAZy families were significantly (FDR < 0.05) different
between H- and L-REI groups. These differences were related to the significantly higher
abundance of carbohydrate-degrading enzymes from the GH3, CBM48-GH13, GH31-GH97,
GH43, GH57, GH8 families and higher abundance of several GT families (GT51, GT2-GT4,
GT19) in L-REI cows. On the other hand, H-REI group had significantly higher enrichment
of GT66 involved in glycan biosynthesis, GT5 and GT39 involved in starch and sucrose
metabolism, or GT2 involved in lipopolysaccharide biosynthesis (Figure 6), suggesting that
L-REI animals demonstrated higher capability to degrade complex carbohydrates, while
H-REI cows showed higher capacity for processing polysaccharides.
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Figure 6. Abundances of CAZy families that were identified as significantly (FDR < 0.05) different
between H-REI and L-REI groups.

In total, 37.1 MM genes were predicted from the shotgun-metagenome. Of those,
35.3% were not present in the eggNOG database and were removed from further functional
analysis. The remaining 24 MM were filtered based on their overall abundance level, leaving
a set of 1.2 MM highly abundant genes for the downstream analysis. In total, 18,084 genes
of this set were significantly higher in abundance (DA) in the H-REI group and 8729 in the
L-REI cows. A principal component analysis based on the DA genes separated the L- and H-
REI groups (Supplementary Figure S9). In total, 478 KEGG pathways were identified in the
data set, which belonged to four first level KEGG functional categories. Based on the read
abundances, 54–60% belonged to the “metabolism”, 14–18% to “organismal systems”, while
8–10% were affiliated with “genetic information processing”, “environmental information
processing”, and “cellular processes”, respectively (Supplementary Table S3). The pathway
completeness analysis was performed based on the coverage of KOs, associated with the
pathways, and demonstrated 52.4% (IQR: 40.3%–67.0%) completeness (Supplementary
Figure S10). KO abundances for all the 12,946 identified KOs were then calculated by
summing over all TMM normalized gene abundances associated with individual KOs. In
total, 3882 (592) KOs were more abundant in the H-REI (L-REI) group.

In the KEGG pathway enrichment analysis there were 29 pathways more abundant
in H-REI cows and 3 pathways enriched in the L-REI group. All these pathways be-
longed to the first level KEGG functional categories “genetic information processing”,
“environmental information processing”, and “cellular processes”. Among “genetic in-
formation processing”, at the second level of KEGG categories, the H-REI cows were
enriched in metabolic pathways related to “transcription” processes (03040 Spliceosome),
“translation” processes (03010 Ribosome, 03013 Nucleocytoplasmic transport, 03015 mRNA
surveillance pathway and 03008 Ribosome biogenesis in eucaryotes), and “folding, sorting,
and degradation” (04141 Protein processing in endoplasmic reticulum, 04120 Ubiquitin
mediated proteolysis, 03050 Proteasome). Among the “cellular processes”, the H-REI
group was enriched in “cell growth and death” (04110 cell cycle, 04111 cell cycle-yeast,
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04113 meiosis-yeast, 04114 oocyte meiosis, 04218 cellular senescence) and “transport and
catabolism” (04144 endocytosis, 04142 lysosome, 04137 mitophagy-animal) pathways. On
the other hand, under the “cellular processes” category, the L-REI group was enriched in
“cell motility” (02030 bacterial chemotaxis, 02040 flagellar assembly) pathways and under
“environmental information processing” category in “signal transduction” (02020 two-
component system) metabolic pathway (Figure 7). The completeness of these pathways
as well as KO-wise ratio values between the L-REI and H-REI groups are visualized in
Supplementary Figure S11.
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Figure 7. Term-gene graph showing enriched KEGG pathways connected to their orthologs. Red
color indicates enriched pathways in L-REI individuals, and blue indicates enrichment in H-REI
individuals. The KEGG pathways are solid and the orthologs are semi-transparent, respectively.
The term node size reflects the negative logarithm of the enrichment test p-value, which ranged
from 10−6 (e.g., Proteasome) to 0.002 (Long-term potentiation; Mitophagy-animal). Few terms
were shortened for visual clarity: Long-term potentiation (L.-t. potentiation), Protein processing in
endoplasmic reticulum (Protein processing in ER), mRNA surveillance pathway (mRNA surveillance),
and Progesterone-mediated oocyte maturation (Pr. oocyte maturation). Human disease terms were
not included.

4. Discussion

In this study, a cohort of 87 primiparous Nordic Red dairy cows was used to investi-
gate if rumen microbiome composition and function can be used as indicators for animal
feed efficiency trait. By using gradient boosting, multiple microbial networks were identi-
fied that were positively or negatively associated with the efficiency phenotype of Nordic
Red dairy cows, and they were used for predicting the phenotype. This suggests that
microbial consortia, not individual taxa, significantly influence feed efficiency. Further, mi-
crobial metagenomic analysis demonstrated interdependence between microbial functional
potential and dairy cow efficiency.

The microorganisms in the ecosystem can be defined as generalists or specialists,
with generalists having a broad functional capability to adapt to wide ecological space,
whereas specialists are restricted to a narrow range of resources and conditions [74]. It is
recognized that different functional and metabolic capabilities, conducted by networks of
such microorganisms, are needed to occupy distinct ecological niches in the rumen but it
is their collective interaction that will influence the host’s digestive processes and energy
production. In this study, several ASVs were observed in multiple sub-networks and could
represent generalists of rumen ecosystem. For example, Lachnospiraceae NK3A20 group,
Ruminococcaceae UCG-001, Christensenellaceae R-7 group, and Acetitomaculum, all represen-
tatives of Firmicutes, were detected in both H- and L-REI related networks. Similarly,
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many Prevotella-affiliated ASVs, most of them not defined deeper than at genus level,
occurred across the networks. Some general roles have been reported for these genera.
Lachnospiraceae NK3A20 group is most phylogenetically related to Butyrivibrio [75], a bac-
terial genus that can degrade xylan found in plant cell walls and produce butyrate [76].
Ruminococcaceae family consists of mainly fibrolytic organisms, but some species can utilize
starch [77]. Christensenellaceae R-7 group can degrade carbohydrates, amino acids, and car-
boxylic acids, producing acetate and a small amount of butyrate [78], while Acetitomaculum
can utilize hydrogen to reduce carbon dioxide to form acetate [79]. The presence of such mi-
croorganisms in several networks may show a common interdependence between primary
and secondary metabolizers, where end or intermediate activities of one microorganism
produces substrates to be utilized by another member of the ecosystem.

In contrast, the ASVs classified under Prevotella bryantii, Paraprevotella, and Rikenel-
laceae RC9 gut group, all representatives of Bacteroidota, and Succiniclasticum (Firmicutes),
were observed only within L-REI associated networks and could indicate more specialized
functions inside the network. Members of Prevotellaceae have been observed to have both
positive and negative association with feed efficiency [18,80] or methane [81]. Prevotella
strains are genetically and metabolically diverse [82], capable of utilizing starch, protein,
hemicellulose, pectin to generate acetate, succinate, and propionate. This variation in sub-
strate preferences allows them to occupy distinct niches within the rumen ecosystem and
form unique interactions with other microorganisms, impacting animal performance in an
either positive or negative manner. Paraprevotella, known to be isolated from human feces,
can produce succinate and acetate as end products of glucose metabolism [83]. Succiniclas-
ticum ruminis is a common inhabitant of the rumen and can ferment succinate to propionate
without a requirement for other carbohydrates [84]. Myer et al. [85] observed higher abun-
dance of Succiniclasticum spp. among efficient steers, while Clemmons et al. [86] detected
a greater concentration of succinate/methylmalonate in efficient beef cattle. Rikenellaceae
RC9 gut group are members of the Rikenellaceae family which can produce propionate,
acetate, and/or succinate as a fermentation product. The Rikenellaceae RC9 gut group was
positively correlated with growth performance in beef [14]. Although more evidence is
needed, microbial interactions involved in propionate synthesis through the succinate
pathway could be linked with feed efficiency in Nordic Red dairy cows. Shabat et al. [19]
observed the opposite, where the succinate pathway was associated with non-efficient
cows, but the acrylate pathway was enriched in efficient animals. The differences between
the studies may be due to the higher proportion of concentrate in the diet by [19] that could
have led to a higher abundance of lactic acid utilizing bacteria in the rumen as compared to
the diet in this study, indicating that functional potential of rumen microbiome can serve as
a proxy for feed efficiency only among herds managed under similar dietary conditions.

Another microbial network that was associated with a disadvantageous impact on REI
had Methanobrevibacter ruminantium as a hub microbe in the cluster. Methane production
is considered a significant energy loss and feed efficient animals have been observed to
produce less methane, but the results are not conclusive [23,87]. Nevertheless, higher
abundance of Methanobrevibacter was detected in inefficient cows [19,28], while different
Methanobrevibacter species have been enriched in efficient and inefficient sheep [20]. It has
been demonstrated that no direct correlation exists between the abundance of archaea and
methane emissions. We hypothesize that a significantly higher concentration of acetate
and higher abundance of archaea in H-REI cows indicate higher concentration of H2 in
the rumen available for utilization. Redirecting H2 uptake for propionate synthesis, as
visible in L-REI cows, or presence of alternative H2 consumption pathways, could be linked
with more efficient energy utilization and at least partially explain the differences between
efficient and less efficient animals in this study.

The use of microbial network analysis as a multivariate biomarker for animal per-
formance efficiency studies has its own limitations. Previous research demonstrated the
importance of the diet on the formation of microbial networks, where changing forage to
concentrate ratio or addition of oil to the diet influences which microbial taxa function
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as main information hubs within the networks [11]. This suggests that microbial interac-
tions within the rumen ecosystem are not static but dynamic and will be affected by the
diurnal rhythm, feeding regime, and dietary composition, therefore, making generalized
conclusions from independent studies may be difficult.

Ruminants’ ability to deconstruct structural plant polysaccharides into fermentable
sugars is dependent on the large diversity of polysaccharide degrading enzymes, produced
by the rumen microorganisms. Therefore, we explored if animals managed similarly and
fed the same diet but showing differences in residual energy efficiency express differ-
ences in CAZymes composition. The most abundant GH13 and GH31 families were not
significantly different between the L- and H-REI groups, while more differences were
observed among less abundant CAZy families. L-REI cows had a higher abundance of
1,4-alpha-glucan branching enzyme [EC:2.4.1.18] (CBM48-GH13) that converts amylose
into amylopectin and, based on eggNOG database, was produced by bacteria, fungi, and
protozoa. In addition, they had more of beta-glucosidase [EC:3.2.1.21] (GH3), arabinan
endo-1,5-alpha-L-arabinosidase [EC:3.2.1.99] (GH43), alpha-glucosidase [EC:3.2.1.20], glu-
can 1,4-alpha-glucosidase [EC:3.2.1.3] (GH31-GH97), and oligosaccharide reducing-end
xylanase [EC:3.2.1.156] (GH8) all involved in carbohydrate metabolism and transport,
and stemming mainly from Bacteroidota. Our observations suggest that both prokaryotic
and eukaryotic hosts contributed to the higher abundance of plant degrading enzymes in
L-REI cows.

Contrary to L-REI cows, H-REI group was enriched in several GTs. Similar enrichment
of GTs has been observed among feed inefficient beef cattle [22]. Glycosyltransferases
are required for the transfer of sugars to a variety of important biomolecules, including
glycans, lipids, peptides, and small molecules. Among the more abundant GTs in H-REI
cows was starch synthase [EC:2.4.1.21] (GT5), involved in glycogen synthesis. In the
environment, where flow of nutrients is not stable, many microorganisms accumulate
glycogen as carbon and energy reserve and utilize it when environmental glucose supply
is temporarily depleted [88]. Capability to synthesize and utilize glycogen supports mi-
crobial cells undergoing various physiological transitions, e.g., between planktonic and
biofilm lifestyles or enable them to occupy more diverse niches [89]. In addition, the
H-REI group was also enriched in CDP-glycerol glycerophosphotransferase [EC:2.7.8.12]
(GT2) involved in the biosynthesis of poly glycerol phosphate teichoic acids in bacterial
cell walls, dolichyl-diphosphooligosaccharide protein glycosyltransferase [EC:2.4.99.18]
(GT66) involved in glycoprotein synthesis and dolichyl-phosphate-mannose-protein man-
nosyltransferase [EC:2.4.1.109] (GT39) that transfers mannosyl residues to the hydroxy
group of serine or threonine residues, producing cell-wall mannoproteins. This suggests
that in H-REI animals more of the microbial functional capacity was directed towards
accumulation of energy sources and cell destruction/multiplication processes as compared
to the rumen of efficient cows.

At the overall KEGG pathway level, no differences between L- and H-REI groups were
detected in the predominant “metabolism” category, which is affiliated with metabolic
processes related to carbohydrate, lipid, amino acid, or nucleotide metabolism, among
others. Contrary to these results, enrichment of several pathways related to amino acid
metabolisms was observed among inefficient beef steers [22], while some genes from
the carbohydrate metabolism pathway were identified as predictive for feed efficiency
in beef [90]. Considering that the concentrate proportion in the diet of beef cattle is
generally higher compared to the diet of dairy cows, these observations could suggest that
rumen microbiome functions, differentiating animals by feed efficiency phenotype, are diet
dependent.

Among other KEGG categories, we observed a higher number of enriched KEGG
pathways in H-REI cows as compared to L-REI animals, supporting previous observations
in Holstein cows [19] and beef [22] that less efficient animals have rumen microbiome
involved in more diverse metabolic activities. On the other hand, enrichment of various
pathways related to “transcription”, “translation”, “folding, sorting, and degradation”, or
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“signal transduction” and “cell growth and death” processes in H-REI cows could suggest
processes leading to more active microbial cell proliferation among prokaryotes but also
eukaryotes in rumen of less efficient animals. Higher expression levels of “translation”
and “transcription” pathways were also detected in less efficient beef metatranscriptome
data [13] and support our hypothesis. In addition, H-REI cows were enriched in “Phos-
phatidylinositol signaling system” (ko04070) (Supplementary Figure S12), as well as path-
ways related to autophagy (ko04138, ko04136), “endocytosis” (ko04144), and “lysosome”
(ko04142) which are related to the processes in eukaryotic cells. Phosphoinositides are
cellular phospholipids with a broad range of functions. They regulate ion channels, pumps,
and transporters and control processes related to cell proliferation, survival, vesicle traf-
ficking, membrane dynamics, autophagy, or cell division [91]. Rumen ciliate protozoa are
predators [92] and higher abundance of KOs related to processes involving endocytosis,
formation of phagolysosomes, and autophagy in this study, could be an indicator of higher
predatory activity of ciliate protozoa, engulfment, and recycling of cellular material in
the rumen of H-REI cows. Taken together, these observations suggest more emphasis on
growth of both prokaryotes and eukaryotes, due to possibly higher availability of simple
nutrients, at least transiently, in the ruminal environment of the H-REI cows. In addition,
differential abundance of eukaryote-related metabolic processes highlights the need to
assess the role of ruminal eukaryotes in understanding performance traits of animals.

The limited number of enriched KEGG pathways in L-REI cows had emphasis on bacte-
rial environmental sensing and motility (“ko02030 bacterial chemotaxis”, “ko02040 flagellar
assembly”). Similarly, motility processes were enhanced also in efficient beef [90]. Bacterial
chemotaxis plays a key role in many biological processes. It is the process by which cells
can sense chemical gradients in their environment and move towards more favorable
conditions through the motility of the flagella, which helps in search for nutrients but also
for their survival. Chemotaxis is important in biofilm formation, quorum sensing, bacterial
pathogenesis, or host infection [93]. To sense extracellular environment triggers, bacteria
utilize stimulus-response coupling signaling systems known as two-component systems
(TCS). Each TCS consists of two proteins, a sensor, and a response regulator [94] and their
interaction triggers changes in bacterial gene expression. Although the “ko02020 two-
component system” pathway was enriched in L-REI cows, there are hundreds of such
systems in bacteria and over-generalization of pathway importance should be avoided.
Nevertheless, in this study we observed examples of enrichment of different quorum
sensing TCS systems in L-REI and H-REI cows (Supplementary Figure S13). The L-REI
group had higher abundance of LytTR family sensory signal transduction system, found
primarily in Gram-positive bacteria, where they are involved in regulating a variety of
cellular processes, including virulence, competence, or bacteriocin production [95]. The
H-REI cows were enriched in the LuxR family, detected primarily in Gram-negative species
involved in regulating quorum sensing and the expression of genes involved in virulence,
biofilm formation, and antibiotic resistance. Taken together, these observations suggest that
the rumen of H-REI and L-REI form distinct types of niches with microorganisms facing
different challenges. Moreover, the results suggest more emphasis should be based on
between-kingdom interactions. The differences can be speculated to be influenced by cow
feeding or rumination behavior or the formation of diverse types of microbial communities
by change or through interaction with the host.

Machine learning algorithms refer to various data analysis methods often emphasizing
prediction rather than statistical significance. Despite the potential advantages of this ap-
proach, predicting phenotypes in in vivo feed efficiency studies has been challenging due
to difficulties in collecting large enough data sets (however, see [26,28,86]). In microbiome
data, the number of predictors often greatly exceeds the number of samples, which can
lead to model overfitting and limit cross-study comparison. Predictor number can be
reduced using only a coreset of more abundant microbes occurring widely, as this is not
expected to cause significant biases or false outcomes [96], although this is unlikely to be
sufficient alone. Analyses using higher taxonomic aggregates have been observed to loose
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predictive power [30] agreeing with current results. Hierarchical taxonomy-aware feature
engineering [97] has been suggested as a compromise where lower-level information is
combined to higher-level aggregates when it reduces the number of correlating features;
however, the method did not significantly reduce number of predictors currently. The
current study supports reducing the predictor number using more general unsupervised
multivariate methods encapsulating the largest amount of statistical variance or informa-
tion. Most machine learning methods are expected to suffer from high dimensionality;
in the current study it was seen in all the tested 20 supervised methods ranging from
clustering- and regression-based methods to neural nets during initial method selection.
Method comparison agreed with the common suggestion that for tabular data random
forests give acceptable quick results and gradient boosting methods give more accurate
results after careful model tuning. The initial correlations between phenotypic estimates
and predictions in the validation data were only around 0.3 for the better performing
methods, and the subsequent improvement to 0.6 for the validation data set was due to
hyperparameter adjustments to decrease overfitting, emphasizing the importance of model
tuning in gradient boosting. Despite successful phenotype rank prediction for the test
set (data not used in model training or in hypervariable tuning), the study is limited to
discovery research as no fully independent data was used for verification.

5. Conclusions

In a cohort of 87 Nordic Red dairy cows, it was demonstrated that rumen liquid
microbiota can be used to predict REI phenotype using a modern ensemble machine learn-
ing model. With associated methods explaining the model predictions, machine learning
helped reveal the underlying biology, and pointed towards the importance of specific
microbial interacting consortia instead of general diversity or individual taxa. It was also
demonstrated that rumen microbiome functional potential, evaluated through shotgun-
metagenome sequencing, discriminated between efficient and non-efficient animals, but
emphasized the need to study both prokaryotic and eukaryotic rumen community interac-
tions for a better understanding of their association with host production traits. It must be
pointed out that association does not imply causation, and the findings might not be readily
transferable to other populations and environmental conditions, therefore, replicating these
findings is necessary.
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order; Figure S5: Heat maps for the GLRM analysis; Figure S6: Box plot for values of archetype
components in the five co-occurrence clusters; Figure S7: Phylogenetic tree of ASVs annotated with
the taxonomical names; Figure S8: The abundance of CAZy families in the total data set; Figure S9:
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