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Abstract: Yeasts have been a part of human life since ancient times in the fermentation of many
natural products used for food. In addition, in the 20th century, they became powerful tools to
elucidate the functions of eukaryotic cells as soon as the techniques of molecular biology developed.
Our molecular understandings of metabolism, cellular transport, DNA repair, gene expression and
regulation, and the cell division cycle have all been obtained through biochemistry and genetic
analysis using different yeasts. In this review, we summarize the role that yeasts have had in
biological discoveries, the use of yeasts as biological tools, as well as past and on-going research
projects on HMGB proteins along the way from yeast to cancer.
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1. Introduction

Biological discoveries affecting human life have been made using model systems that are
easy to grow and manipulate in laboratories. The bacteria Escherichia coli, Saccharomyces cerevisiae,
and Schizosaccharomyces pombe yeasts; the nematode Caenorhabditis elegans; the zebrafish
Danio rerio; the fly Drosophila melanogaster; and the mouse Mus musculus are widely known
as studied models [1]. Without any doubt, unicellular organisms—prokaryotes and
eukaryotes—were the pioneers among them.

During the 20th century, yeasts were widely used in research. Initially, they were
used in genetic approaches based on the study of the phenotypes of their mutants; then,
yeast mutants were used to clone genes of other species by complementation. Now, yeasts
are widely known as cellular factories to express heterologous proteins [2,3]. Knowledge
of the molecular biology of yeasts and the development of recombinant DNA and yeast
transformation techniques also allowed for their use as molecular tools and in medical
research [4].

In the era of omics, we cannot forget that the S. cerevisiae eukaryotic genome was the
first to be fully sequenced; a few years later, a set of yeast strains with deletions of most of
its annotated open reading frames (ORF) was made available and this knowledge opened
new doors to numerous functional analyses of genes that were completely unknown until
then [5–7].

Despite the time that has elapsed from their first uses, nowadays yeasts are still
powerful allies in biological research; as an example of their current applications, we
summarize the history of the study of HMGB proteins in our laboratory, which over the
years has led us from the study of the transcriptional regulation of hypoxic genes to the
search for molecular markers and therapies for cancer.
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2. Conventional and “Non-Conventional” Yeast Models

Among the yeasts most used as biological models, we must mention S. cerevisiae,
which divides by budding; S. pombe, which divides by medial fission, and is thus com-
monly referred to as “the fission yeast”; and Candida albicans, which causes millions of
mucosal and systemic infections per year. The first paper that can be found in PUBMed
related to yeasts was published in 1919; in the paper, authored by Leslie Herbert Lampitt
from the University of Birmingham, S. cerevisiae is used to study nitrogen metabolism [8].
Since then, the number of publications in PUBMed referencing these three yeasts in-
creased substantially (Figure 1). In addition, other non-conventional yeasts, which have
many applications in biotechnology—such as Kluyveromyces lactis, Yarrowia lipolytica, and
Hansenula polymorpha—have also been extensively studied, although the number of pub-
lished papers is minor by order of magnitude (Figure 1). The use of non-conventional
yeasts was early envisaged as a fruitful alternative for heterologous protein production,
since some species exhibit favorable traits such as high-level secretion or strong and tightly
regulated promoters, offering significant advantages over S. cerevisiae [9]. Nowadays, spe-
cific yeast strains are considered to hold potential value for effective metabolic engineering
in the new era of synthetic biology to generate effective yeast cell factories [10].
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Proliferative cells from tumors preferentially metabolize glucose to lactate, even in
the presence of oxygen—a process known as the Warburg effect. In this process, the
switch between different isoforms of the pyruvate kinase enzyme, which catalyzes a
rate limiting step of glycolysis, is determinant [11]. These tumor cells have an energetic
metabolism closer to a yeast model such as S. cerevisiae, in which fermentative metabolism
predominates over respiration due to catabolite repression, which diminishes the expression
of genes related to cellular respiration [12]. However, slow-cycling tumor cells have a
metabolism more dependent on mitochondria and oxidative phosphorylation [13,14], and
increasing evidence demonstrates that cancer stem cells rely preferentially on oxidative
phosphorylation for obtaining energy [15]. In K. lactis, catabolite repression is absent and
the metabolism is predominantly respiratory [16,17], similarly to slow-cycling tumor cells,
cancer stem cells, or non-cancerous cells.

3. Yeasts as Biological Tools

Traditionally, yeasts have been used as a “factory” to produce molecules of therapeutic
value, such as vaccines or products of industrial interest. This approach has been facilitated
by the ease of their cultivation and handling, the possibility of genetic modifications to
produce heterologous proteins, and because many of the selected yeast strains are safe and
belong to the category of harmless organisms known as GRAS (generally recognized as
safe), a concept created in 1958 by the American FDA (Food and Drug Administration) [18].
However, beyond their biotechnological use, yeasts have allowed the development of
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diverse screening methods quite common in molecular laboratories, including the yeast
two-hybrid system or the yeast surface display.

The yeast two-hybrid (Y2H) system was first published in 1989 [19]. Since then, it has
become a powerful and affordable tool for the detection of protein–protein interactions
in the postgenomic era. The detection of a given protein–protein interaction is possible
through the co-expression in a yeast strain, which carries the necessary mutations to make
selections, of two chimeric proteins. If there is interaction, they reconstruct a transcriptional
activator with its DNA-binding domain directed to a promoter, and its activation domain
is able to activate the transcriptional machinery so that this positive interaction can be
recognized, and even quantified, by the expression of a reporter gene [20]. The two-
hybrid method has been the starting point of many other variants. One is the yeast
mono-hybrid that allows the detection of interactions between protein and DNA [21].
The triple hybrid (Y3H) technology was originally developed for studying protein–small
molecule interactions [22]. The Y3H is an extension of the Y2H but introducing a third
hybrid component, usually a small molecule that can make possible or interfere with the
protein–protein interaction, or a RNA molecule allowing the detection of protein–RNA
interactions. All these methods allow the study of interactions between proteins of any
other biological origin in the yeast model; for this reason, the Y2H has been extensively
used in pharmacological screenings for novel drugs [23,24].

Engineered yeasts with functional proteins displayed on the surface have many poten-
tial applications, not only for high-throughput library screening but also in biocatalysis,
as biological sorbents, oral vaccines, etc. [25]. Interestingly, proteins anchored in the
membrane are more resistant to degradation or denaturation by extreme pH or elevated
temperature; therefore, they maintain functional properties better than the corresponding
free forms. For biocatalysis, an additional advantage of cell-surface display technology is
that it can be used with substrates that cannot enter the cell, for instance, large polymers
of cellulose or hemicellulose. For advanced biocatalysis, the multi-enzyme cell surface
co-display also allows the expression at a short distance, compatible with the efficient
transfer of substrates, of the whole set of enzymes involved in a metabolic pathway [26].
It is important to highlight that when used in high-throughput library screening, this
technology allows easy recovery of the proteins or small molecules bound to the target
surface protein by dissociation and filtration or centrifugation, avoiding other necessary
high-cost processes of purification when molecules are inside the cells.

Although yeast cell surface display was first developed in S. cerevisiae [27], it was later
adapted to other yeasts, such as Yarrowia lipolytica [28] or Pichia pastoris [29,30]. In surface
display, the protein or peptide of interest is expressed in yeast fused to a secretory signal
and to an anchor protein, which will guide it along the secretory pathway and immobilize
it in the cell wall, respectively. Several anchors and improvements can be used in yeast
surface cell display, as recently reviewed [31,32].

The use of yeast systems as biological tools is of great relevance in the study of molec-
ular mechanisms of cancer-related processes, the testing of new anti-cancer medicaments,
and the characterization of resistance mechanisms [33–36].

4. Outstanding Milestones for Yeast Thanksgiving and Their Relation to
Cancer Research

It is impossible to make a detailed summary of all the scientific discoveries in which
yeasts have been involved, and of the many scientists and laboratories that participated in
these studies. The understanding of many of these processes has later been transferred to
multicellular organisms, making it possible to explain complex mechanisms that allow cell
homeostasis and that, when deregulated, cause a wide variety of diseases.

There is a big spectrum of more than 200 different human cancers but, theoretically,
all the mechanisms that allow a normal cell to transform into a cancerous one by dividing
and changing its microenvironment to generate the tumor have common characteristics.
This is because cancer cells accumulate defects in regulatory circuits, which govern normal
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cell proliferation and homeostasis. Hanahan and Weinberg enumerated all these shared
traits and originally defined six cancer hallmarks [37] that were later extended to eight
and two enabling capabilities. With the advances of research in various fields, a new core
of cancer hallmarks has recently been proposed: sustaining proliferative signaling, evad-
ing growth suppressors, non-mutational epigenetic reprogramming, avoiding immune
destruction, enabling replicative immortality, tumor promoting inflammation, polymor-
phic microbiomes, activating invasion and metastasis, inducing or accessing vasculature,
senescent cells, genome instability and mutation, resisting cell death, deregulating cellular
metabolism, and unlocking phenotypic plasticity [38].

Despite their simplicity compared with mammalian cells, the discoveries and applica-
tions of research carried out using yeast cells have had a profound impact on the study of
cancer (Figure 2), as shown with some examples below, and do not represent an exhaustive
repertoire of all the implications of yeast research in this field.
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Complex structures that the cell needs to obtain energy for its metabolic reactions
or that are necessary for the synthesis of proteins were first solved in bacteria or yeast.
The structure of the ATPase from S. cerevisiae mitochondria, solved in 1997 after John E.
Walker received the Nobel Prize in Chemistry, validated the earlier proposal of a rotational
motion of the F1 domain of this protein, which behaves as a molecular motor for energy
conversion of proton gradient to ATP [39]. Cancerous cells depend on ATP production
by glycolysis or oxidative phosphorylation to survive. In multiple cancers, slow-dividing
cancer cells generate ATP via mitochondrial oxidative phosphorylation [40]. Besides, cancer
stem cells, which are resistant to regular chemo- and radiotherapy, also rely on oxidative
phosphorylation for energy supply [40]. This knowledge can be used in therapy; i.e.,
Gboxin is an oxidative phosphorylation inhibitor that acts on Complex V (ATP synthase)
and targets glioblastomas [14].
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Venkatraman Ramakrishnan, Thomas A. Steitz, and Ada E. Yonath, for the Nobel Prize
in Chemistry 2009, studied the structure and function of the prokaryotic ribosome; only two
years later, the crystal structure of the eukaryotic S. cerevisiae ribosome was published by
Adam Ben-Shem [41]. A close interconnection between ribosome biogenesis and cell prolif-
eration has been reported, showing that up-regulated ribosome production down-regulates
p53 expression and activity, thus facilitating neoplastic transformation [42]. Research on
eukaryotic ribosome biogenesis and assembly was facilitated by the development of assays
for pre-rRNA processing and by genetic screens for ribosome assembly factors in yeast, as
well as by methods to purify and characterize assembly intermediates [43].

The discovery of the molecular basis of eukaryotic transcription is highly associated
with yeast. In 2006, the Nobel Prize in Chemistry was awarded to Roger D. Kornberg
for his research in this field [44–47]. Transcription controls diverse aspects of genomic
integrity by different mechanisms, which might be responsible for transcription-associated
mutation (TAM) and transcription-associated recombination (TAR) [48]. It was reported
that elevated levels of transcription in yeast are associated with increased spontaneous
mutation rates [49]. Evidence for TAR in eukaryotes was first shown with the HOT1
gene of S. cerevisiae [50]. Increasing evidence also supports that oncogenes, such as RAS,
and targeted cancer treatments, such as bromodomain and extra-terminal motif (BET)
bromodomain inhibitors, increase global transcription, leading to R-loop accumulation,
transcription–replication conflicts, and the activation of replication stress responses [51].

Yeast has also been a good model for studies on DNA repair mechanisms [52–55]. In
2015, the Nobel Prize in Chemistry was awarded jointly to Tomas Lindahl, Paul Modrich,
and Aziz Sancar for mechanistic studies of DNA repair [56]. Cancer cells tend to harbor
increased mutations in DNA Damage Response (DRR) genes, which restore the damaged
DNA, and often have fewer DDR pathways than normal cells; thus, they become more sus-
ceptible to compounds inhibiting those pathways compared to normal cells, a characteristic
that is useful in cancer therapy [57].

The use of yeast mutants has allowed the characterization of important biological
processes. Over his career, Paul Nurse used S. cerevisiae and. S. pombe models in many
experiments to study cell cycle control [58,59]; finally, in 1987, he cloned the cdc2 human
homolog by complementation of the S. pombe mutant [60]. Meanwhile, Lee Hartwell was
using S. cerevisiae defective mutants in the checkpoint, controlling the rate of progression
through S phase in response to DNA damage [61]. Therefore, the Nobel Prize in Physiol-
ogy or Medicine they shared in 2001 was definitively a “yeast prize” [62]. Undoubtedly,
the discovery of genes that control cell division in yeast and other eukaryotes had clear
implications in cancer research [63].

Aaron Ciechanover used yeast mutants to clone human homolog genes involved in
protein ubiquitination, previously studied in the budding yeast [64], and obtained the
Nobel prize in Chemistry in 2004 together with Avram Hershko and Irwin Rose. The
ubiquitin–proteasome system degrades abnormal or redundant proteins and regulates cell
proliferation, differentiation, metabolism, autophagy, and other physiological or patho-
logical processes including cancer [65]. Key substrates of the cell cycle are regulated by
ubiquitination mediated by the APC protein complex, and Cdc20 and Cdc20 homolog
1 (Cdh1) are coactivators responsible for ligating substrates and activating the ubiquitin
ligase activity of APC, forming two different E3 ubiquitin ligase complexes, APCCdc20 and
APCCdh1 [66]. Cdc20 is overexpressed in various cancer stem cells and malignant tumors,
and its inhibition has been proposed as a targeted therapy for cancer patients [67].

The discovery of the role of telomeres in maintaining chromosome integrity and
genetic stability, as well as their implications for cellular senescence, was also facilitated
using yeast models. Jack W. Szostak carried out pioneering studies in yeast that led him to
share the Nobel Prize in Physiology or Medicine with Elizabeth H. Blackburn and Carol W.
Greider in 2009 [68]. Genomic instability is the main cause of many of the alterations that
give rise to cancer hallmarks, and the length and stability of telomeres is a crucial factor
also widely studied in yeast. Elimination of telomeric DNA in S. cerevisiae caused those
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cells to undergo an arrest of cell cycle progression due to activation of the DNA damage
checkpoint [69]. The genes (EST) encoding different telomerase subunits, as well as the
template RNA component, were first characterized in S. cerevisiae [70–72]. Replicative
senescence elicited by activation of the checkpoint response is a state of stable, terminal
cell-cycle arrest that acts as a barrier against tumorigenesis. However, downregulation
of the checkpoint increases genomic instability, which, if coupled with re-stabilization of
telomeres, can drive tumorigenesis [73]. The checkpoint response can be overcome either
through mutational inactivation of its components or through “adaptation”, which is a
phenomenon originally described in yeast [69]. In cancer cells, re-stabilization of telomeres
is frequently caused by reactivation of telomerase, although it can also be produced by
recombination-based mechanisms, called “alternative lengthening of telomeres” (ALT),
which were also first described in yeast [74].

In the 1970s, Randy Schekman initiated a study on the genetic basis of vesicle traf-
fic using yeast as a model system; he identified yeast mutants with defective transport
machinery that caused phenotypes characterized by vesicles to pile up in certain parts of
the cell. He also characterized the mutated genes, clustering them in three classes that
control different facets of the cell’s transport system [75]. The Nobel Prize in Physiology or
Medicine 2013 was awarded jointly to James E. Rothman, Randy W. Schekman, and Thomas
C. Südhof for their discoveries in the field of vesicle traffic, a major transport system in our
cells [76]. Carcinogenesis from cells organized in epithelia involves the loss of cell polarity,
alteration of polarized protein presentation, dynamic cell morphology changes, increased
proliferation, and increased cell motility and invasion. Although mutations in vesicle
trafficking proteins may not be direct drivers of malignant transformation, the regulators
of membrane vesicle trafficking are essential mediators of changes that drive cancer cell
biology [77].

In 2016, the Nobel Prize in Physiology or Medicine was awarded to Yoshinori Ohsumi
for his discoveries of the mechanisms of autophagy, in which baker´s yeast was used [78].
Autophagy is a physiological cellular process for the degradation of damaged proteins
and organelles that has important function during development, cell death, and tumor
suppression [79]. In cancer biology, autophagy plays dual roles in tumor promotion
and suppression [80]. Tumor suppressor factors are negatively regulated by mTOR and
AMPK, resulting in the induction of autophagy and suppression of cancer initiation [81].
In contrast, oncogenes may be activated by mTOR, class I PI3K, and AKT, resulting in
the suppression of autophagy and enhancement of cancer formation [82]. The cancer
microenvironment—including hypoxia, inflammation, and cytokines—is also affected by
autophagy, which supplies the demand for cellular energy and prevents cytotoxicity (re-
viewed in [80]). In early metastasis, autophagy also reduces invasion and migration of
cancer cells from origin sites. However, in advanced stages of metastasis, autophagy acts
in a pro-metastatic role via promotion of cancer-cell survival and colonization in secondary
sites (reviewed in [80]).

In relation to cancer hallmarks and by its connection to HMGB proteins, it is also
interesting to mention the importance of yeast studies in the elucidation of the rapamycin
signaling pathway (mTOR) [83–85]. mTOR is conserved from yeast to human and senses
coordinately diverse signals such as nutrients, oxygen, hormones, and stress, being deregu-
lated in multiple age-related diseases including cancer. mTOR regulates proliferation and
lifespan by controlling gene expression, ribosome biogenesis, proteostasis, and mitochon-
drial metabolism; therefore, deregulation of mTOR pathways also causes deregulation of
cellular metabolism [86]. Besides, rapamycin is a potent immunosuppressant that blocks
the G1/S transition in antigen-activated T cells and in yeast [87], which connects mTOR
activity and immune-scape. mTOR also controls autophagy [85], which is enhanced in
cancer [88], and has been considered a counterbalance to programed cell death, which
allows cancerous cells to resist cell death [89].
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5. The HMGB Proteins in Cancer

High Mobility Group B (HMGB) proteins are characterized by the presence of one
or more HMG-box domains of 65–85 amino acids. The HMG-box domain has a charac-
teristic L-shaped fold formed by three α-helices with an angle of ≈80◦ between the two
arms (Figure 3). HMGB proteins are conserved over their evolution from unicellular to
multicellular organisms (reviewed in [90]) and carry out diverse nuclear, cytoplasmic, and
extracellular functions. There are four HMGB human proteins, with HMGB1 and HMGB2
being the most studied. Although they have similar amino acid sequences, their functions
do not overlap [91].
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alignments of HMGB proteins. The amino acid frequency for each position of the HMG-box domain
is represented in Logo format based on the multiple alignment available in Supplementary File S1.
Amino acid sidechains that intercalate between the DNA base steps to induce the DNA kinks are
indicated in red.

HMGB1 cellular localization depends on post-translational modifications [92]. Acety-
lation/deacetylation of the nuclear localization signals of HMGB1 causes a shuttle between
the nucleus and the cytoplasm; other modifications, such as methylation, N-glycosylation,
phosphorylation, and oxidation, can regulate the translocation and release of HMGB1 to the
extracellular space in response to various stresses (recently reviewed in [93]). HMGB1 has
three different redox forms (all-thiol-HMGB1, disulfide-HMGB1, and oxidized HMGB1) in
reference to the reduced or oxidized state of three conserved cysteine’s: Cys23 and Cys45,
which can form intermolecular disulfide bonds, and Cys106 [94–96].

In the nucleus, HMGB proteins bind DNA through their HMG-boxes and regulate
multiple genomic processes such as DNA damage repair, nucleosome sliding, telomere
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homeostasis, and transcription; recent evidences demonstrate that they also bind RNAs.
Therefore, nuclear functions of HMGB proteins have broad regulatory impact on cells in
normal and disease states (reviewed in [97]). HMGB1 regulates autophagy and apopto-
sis [97]. In the cytoplasm, disulfide-HMGB1 binds to Beclin 1 and affects autophagosome
formation [98]. HMGB1 also participates in mitochondrial quality control [99] and in
mitochondrial DNA repair [100].

After active or passive release from damaged or dead cells, HMGB1 is considered
an alarmine or damage-associated molecular pattern molecule (DAMPs) that produces
inflammation and elicits immune responses [101]. Secreted HMGB1 can be distinguished
from passively released HMGB1 because it is acetylated [102]. HMGB1 binds several
extracellular receptors, with the receptors for advanced glycation end products (RAGE)
and Toll-like receptors (TLR) being the most studied [96]. HMGB1 activates macrophages
and dendritic cells to release TNF-α and produce inflammatory cytokines and chemokines
via the TLR4/MD2/MyD88/NFκB pathway [103]. HMGB proteins also activate other cell
signaling pathways, including PI3K/Akt/mTOR [104].

Human HMGB1 has been investigated in many chronic disorders and the number of
publications about their role in cancer has reached higher than 1000 in the last years [96].
Aberrant release of HMGB1 has been shown in human cancers [104], and HMGB1 mediates
the epithelial to mesenchymal transition (EMT), which is necessary for invasion and migra-
tion in cancers from epithelial origin [84]. Besides, HMGB1 expression has been positively
correlated to cisplatin resistance [105].

HMGB1 is considered a double-edged sword in cancer development since pro- and
anti-oncogenic effects have been reported [106]. Through its binding to RAGE and TLR
receptors, it can enhance inflammatory responses, which, if they become chronic, favor
oncogenesis [104]. During hypoxia, HMGB1 up-regulates mitochondrial biogenesis in
human hepatocellular carcinoma, promoting tumor survival and proliferation [107]. Hy-
poxia also increases HMGB1 release and RAGE expression in the tumor microenvironment,
inducing the expression of proangiogenic growth factors, such as vascular endothelial
growth factor (VEGF), and their receptors [106]. Anti-tumor effects of HMGB1 are pro-
duced through its interaction with tumor suppressor factors or increasing genome stability
and autophagy [108,109].

HMGB1 not only activates responses to tissue damage via inflammation but also partic-
ipates in tissue repair [102]—for instance, in muscle regeneration after injury [110]. Indeed,
HMGB1 is considered a cytokine underscoring multiple roles in the complex response to
cell damage [102]. HMGB1 stimulates innate and adaptive immunity [102,111,112] and has
a dual role in relation to immune responses. HMGB1 has immunosuppressive and immune
stimulatory activities, depending on redox state, receptors, and targeted cells [113]. Some
anti-cancer therapies cause immunogenic cell death (ICD), which increases the immuno-
genicity of the cancer cells and, therefore, unleashes an adaptive immune response against
the tumor and allows immunological memory [114]. It has been proposed that HMGB1
secreted by cells undergoing ICD activates dendritic cells to cross-present tumor neoanti-
gens to lymphocytes, which elicit B- and T-cell responses [102]. HMGB1 induces apoptosis
in monocyte-lineage immune cells and inhibits tumor-infiltrating macrophages and den-
dritic cells, lymph node sinus macrophages and liver Kupffer cells to attenuate anti-cancer
immune responses, and anti-metastatic organ defense [115]. Moreover, HMGB1 fosters
hepatocellular carcinoma immune evasion by promoting regulatory B-cell expansion [116].
HMGB1 is also related with the programmed cell death-1 (PD-1) receptor and its ligand
(PD-L1), which negatively regulate immune cell activation [117]. PD-L1 is frequently
expressed in many tumors to suppress anti-tumor immunity mediated by PD-1 positive
tumor-infiltrating cytotoxic T lymphocytes through PD-L1/PD-1 ligation [118]. Nano-
DOX (a delivery form of doxorubicin) stimulates the tumor cells and the tumor-associated
macrophages (TAMs) to release the cytokine HMGB1, which, through the RAGE/NF-
κB pathway, induce PD-L1 in the tumor cells and PD-L1/PD-1 in the tumor-associated
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macrophages [117]. Blockade of Nano-DOX-induced PD-L1, both in the cancer cells and the
TAMs by BMS-1, achieves enhanced activation of TAM-mediated anti-tumor response [117].

From all the above, it can be deduced that HMGB proteins participate directly or
indirectly in many of the hallmarks of cancer and play a significant role in the design of
new therapies.

6. Studying HMGB Proteins: From Yeasts to Cancer

S. cerevisiae can grow in aerobic and anaerobic conditions, and when oxygen levels
decrease, a series of genes are activated that allow yeast to adapt better to those condi-
tions [119]. Among transcriptional regulators of hypoxic genes, Rox1 has the particularity
that it is an aerobically expressed repressor that recognizes specific regulatory sequences
in the promoters of hypoxic genes [119–121]. Structurally, Rox1 is a protein that binds
DNA through its unique HMG-box [122]. From an evolutionary point of view, the HMG-
box present in Rox1 from S. cerevisiae is related to the HMG-box present in the family of
SOX transcriptional factors (Figure 4) of higher eukaryotes [90]. In vertebrates, the SOX
genes characterized so far regulate developmental processes, organogenesis, and tissue
homeostasis [123].
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Another HMG-box protein from S. cerevisiae, Ixr1 (encoded by the IXR1 gene, alias
ORD1), controls the expression of hypoxic genes in S. cerevisiae by a different pathway to
the one reported for Rox1 [124,125]. Ixr1 contains two HMG-boxes, which are evolutionary
related to those present in HMGB proteins (Figure 4) from higher eukaryotes [90]. We found
that there is a cross-regulation between the genes encoding the two HMG-box proteins
Ixr1 and Rox1 in S. cerevisiae [126]. During aerobic growth, Ixr1 functions as a repressor of
hypoxic genes, but during hypoxia, Ixr1 expression increases and preferentially acts as an
activator of target genes [126,127]. We demonstrated that the NH2-terminal region of Ixr1 is
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involved in transcriptional activation and that Ixr1 binds to Ssn8 (alias Srb11) [128]. Ssn8 is
a cyclin that interacts with Ssn3 kinase (alias Srb10). The Srb10-Srb11 complex contributes
to transcriptional repression of diversely regulated genes in S. cerevisiae [129], while the
Srb8-Srb9-Srb10-Srb11 complex, associated with the Mediator coactivator, functions with
the SAGA complex during Gal4-activated transcription [129].

Curiously, Ixr1 has a dual life, and Lippard´s laboratory has seen that Ixr1 binds to
platinated DNA and confers yeast resistance to cisplatin, with this compound and other
Pt-derivatives being of clinical relevance since they are used in cancer chemotherapy [130].
It was postulated that Ixr1 does not bind specific DNA sequences but recognizes super-
structures in the DNA adducts with cisplatin [131,132]. Thus, Ixr1 can recognize specific
sequences in the promoters of its target genes, acting as a transcriptional regulator, but it
can also behave as a protein binding DNA by other characteristics unrelated to recognition
of a specific DNA sequence. A detailed study of the binding characteristics of the two
HMG-boxes of Ixr1 allowed us to find a mechanism explaining how the two HMG-boxes
present in the protein combine their specific characteristics to fulfill both functions [133].

We also studied these two HMGB proteins (Rox1 and Ixr1) in Kluyveromyces lactis, a
non-conventional yeast classified as a respiratory yeast. Contrary to S. cerevisiae, K. lactis
is unable to grow under strictly anaerobic conditions [134,135], although it can ferment
sugars in hypoxic conditions with low energy efficiency [16,17]. If the sequence of these
proteins is compared in S. cerevisiae and K. lactis, conservation is restricted to HMG-boxes.
KlRox1 from K. lactis does not regulate the hypoxic response in this yeast but it is involved
in the oxidative stress response produced by arsenate and cadmium [136]. The ScIxr1
and KlIxr1 proteins have several conserved functions in the control of gene expression;
however, we found major differences between ScIrx1 and KlIxr1 affecting cellular responses
to cisplatin [137].

Further studies carried out to analyze the regulatory effects of IXR1 gene deletion
upon gene transcription in S. cerevisiae showed that Ixr1 is a master regulator that controls
the expression of other transcriptional factors that respond to nutrient availability or stress
stimuli and are related to the TOR pathway and PKA signaling [138]. Ribosome biogenesis
in S. cerevisiae involves a regulon of >200 genes (Ribi genes) coordinately regulated in
response to nutrient availability and cellular growth rate. As confirmed by chromatin im-
munoprecipitation (ChIP) and expression analyses, Ixr1 controls transcription of ribosomal
RNAs and genes encoding ribosomal proteins (RBPs) or that are involved in ribosome
assembly. In summary, Ixr1 controls gene expression involved in ribosome biogenesis by
direct binding to target promoters, or by indirect mechanisms, modulating the expression
of other transcriptional factors. Cisplatin treatment mimics the effect of IXR1 deletion
on rRNA and RBPs gene transcription, and prevents Ixr1 binding to specific promoters
related to these processes, kidnapping the Ixr1 protein to cisplatin-DNA adducts with
higher affinity than promoter regulatory sequences [133,138]. Ribosome biogenesis needs
the coordinated and balanced production of mRNAs, rRNAs, and Ribi-proteins, and dis-
tortion of this balance generates ribosome biogenesis alterations that can impact cell cycle
progression (reviewed by [139]). Sato and collaborators also found that Ixr1 is directly
involved in cell cycle progression; IXR1 mRNA is a physiologically important target of
Puf5, and cell cycle progression in S. cerevisiae is modulated by these factors through the
regulation of the cell-cycle-specific expression of CLB1 [140].

Taking a huge leap in evolution, and moving from the humble yeast to the complex
human system, we can find certain functional parallels between yeast Ixr1 and human p53.
The p53 protein is coded by the TP53 gene, which is the most frequently mutated gene
in human tumors [141]. Both proteins are transcriptional factors whose levels, stability,
or activity are increased during hypoxia: Ixr1 by a cross talk with Rox1 [126], and p53 by
direct and indirect interactions with Hypoxia Inducible Factor-1 (HIF-1) [142]. Both respond
to genotoxic stress and are involved in DNA repair [143]. Both are related to ribosome
biogenesis and cell cycle control [138,140,144,145]. Stabilization of p53 upon DNA damage
is followed by reversible or irreversible cell cycle arrest or programmed cell death; p53
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also responds to non-genotoxic cell stress if ribosome biogenesis is affected [146], and
several ribosomal proteins can activate the p53 tumor suppressor pathway [144]. However,
p53 is not structurally related to Ixr1 and is not a HMGB protein, therefore we looked
for other human proteins with the structural HMG-box domain and that might interact
with p53. The laboratory of Jean O. Thomas published that HMGB1 interacts with the
N-terminal region of p53 through its HMGB-box domain and facilitates the binding of p53
to DNA by its HMG-boxA [147]. HMGB1 over-expression is extensively associated with
cancer, including those of the prostate and ovary [94,148], and it has been demonstrated
that HMGB1 silencing slows cell growth and inhibits the growth of xenograft tumors in
nude mice [149].

Taking advantage of our expertise using yeast tools, we carried out a Y2H approach to
characterize proteins interacting with human HMGB1 and HMBG2 in prostate cancer [35]
and ovarian cancer [91] cells; in both studies, we have found connections to ribosome
biogenesis control. In the study of ovarian cancer, we have characterized the interaction
of HMGB2 with Nop53 [91], a ribosome assembly factor that has a structural role in the
formation of nuclear pre-60S intermediates, affecting late maturation events [150]. Nop53
translocates to the nucleoplasm under ribosomal stress, where it interacts and stabilizes
p53 and inhibits cell cycle progression [150]. In the study of prostate cancer, we also found
that HMGB2 interacts with Nop53 and with Rps28; the latter is related to the assembly of
40S ribosomal subunits [151].

To extend the number of targets detected in the Y2H interactomes, we also carried
out a HMGB1-interactome analysis approach based on immunoprecipitation (IP) and mass
spectrometry (MS) in prostate and ovary cancer cell lines. The corresponding HMGB1
nuclear interactomes were clearly enriched in mRNA and rRNA processing factors [152].
The interaction of HMGB1 with the subunit Rbbp7 of the Nucleosome Remodeling (NuRD)
complex was validated and other subunits of this complex were also identified in the IPs,
including the histone deacetylases HDAC1 and HDAC2 [152]. The Upstream binding factor
(UBF) is responsible for the recruitment of the RNA PolI pre-initiation complex required
for rRNA transcription. It has been reported that deacetylation of UBF by HDAC1 disrupts
the recruitment of UBF to PolI and causes a decrease in rDNA transcription, thus affecting
cell proliferation [153]. In the prostate cancer cell line PC-3, silencing of the HMGB1 gene
induced downregulation of key regulators of ribosome biogenesis and RNA processing
such as OP1, RSS1, UBF1, KRR1, and LYAR. The analysis carried out using results from
databases revealed that upregulation of these genes in prostate adenocarcinomas correlates
with worse prognosis, reinforcing their functional significance in cancer progression [152].

7. Ongoing Yeast Perspectives in Biomedicine

The knowledge acquired finding interactions of HMGB proteins with targets that
control ribosome biogenesis, cell cycle, and proliferation of cancerous cells has led us to
continue new projects to detect these markers in liquid biopsies as well as to find other
molecules such as lncRNAs that interact with HMGB proteins and enhance or inhibit these
processes. Several lncRNAs are deregulated in cancer [154], and RIP (RNA immunopre-
cipitation) and eCLIP (enhanced crosslinking and immunoprecipitation) assays have been
carried out in ovary cancer cells to confirm putative interactions with HMGB proteins (un-
published data from our laboratory). We are also using yeast cell surface display screening
to find neoantigens stimulating CRC-receptors specific of B-lymphocytes infiltrating in
ovary tumors to potentiate the immune response against malignant cells.

Yeasts are also being used nowadays in the field of medicine to produce nanobodies,
which are monomeric antigen-binding domains derived from the camelid heavy chain-
only antibodies [155] and affibodies—small imitating monoclonal antibodies that bind
with high affinity [156]. Yeasts models are also being used in aging research [157], and
humanized yeasts allow the measurement of human protein activity in a cheaper and
simplified model [158]. The potential of Single Molecule Tracking (SMT) in yeast, a method
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of choice for the biochemical characterization of protein dynamics in vitro and in vivo, has
been recently evidenced [159].

The long history of yeasts in science, their valuable contributions to research, and
the broad perspectives of their use in new fields make us think that they will continue to
accompany scientists for many years, contributing to the improvement of human life, as
they have from the beginning.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11040993/s1, S1: Alignment of sequences used
to build up Figure 2; S2: Phylogeny analysis of HMG-boxes by the Neighbour-joining method
(excluding gaps): Out-put results.
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