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Abstract: Evidence from the literature suggests an association between the microbiome and asthma
development. Here, we aimed to identify the current evidence for the association between asthma and
the upper airway, lower airway and/or the gut microbiome. An electronic systemic search of PubMed,
EBSCO, Science Direct and Web of Science was conducted until February 2022 to identify the eligible
studies. The Newcastle–Ottawa Scale and the Systematic Review Centre for Laboratory Animal
Experimentation risk of the bias tools were used to assess quality of included studies. Twenty-five
studies met the inclusion criteria. Proteobacteria and Firmicutes were identified as being significantly
higher in the asthmatic children compared with the healthy controls. The high relative abundance of
Veillonella, Prevotella and Haemophilus in the microbiome of the upper airway in early infancy was
associated with a higher risk of asthma development later in life. The gut microbiome analyses
indicated that a high relative abundance of Clostridium in early childhood might be associated with
asthma development later in life. The findings reported here serve as potential microbiome signatures
associated with the increased risk of asthma development. There is a need for large longitudinal
studies to further identify high-risk infants, which will help in design strategies and prevention
mechanisms to avoid asthma early in life.

Keywords: asthma; children; dysbiosis; gut microbiome; immunity; lung microbiome

1. Introduction

Asthma is a chronic inflammatory disease that affects the respiratory system and leads
to significant morbidity and mortality [1]. Individuals suffering from asthma exhibit an array
of symptoms, from wheezing and coughing to chest tightness and shortness of breath [2].
These manifestations vary in time of onset and intensity between asthmatic patients [2].
The common triggers that may lead to asthma exacerbation include, but are not limited to,
viral respiratory infections, air pollution, tobacco smoke and exercise [3]. Allergies, genetics,
respiratory infections during infancy and environmental features are risk factors for asthma
development [3]. However, the exact aetiology of asthma is not well understood.

Evidence from the literature suggests that there is an association between the human
microbiome and the development of asthma [4]. Both human studies and studies performed
on experimental animal models have linked the dysbiosis of the early-life gut microbiome to a
greater risk for the development of asthma in individuals who are genetically susceptible to this
disease [4–7]. The gut microbiome has been shown to regulate the immune responses associated

Microorganisms 2023, 11, 939. https://doi.org/10.3390/microorganisms11040939 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms11040939
https://doi.org/10.3390/microorganisms11040939
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0001-6319-2669
https://orcid.org/0000-0003-0771-9352
https://orcid.org/0000-0002-1077-0872
https://orcid.org/0000-0002-2934-6617
https://doi.org/10.3390/microorganisms11040939
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms11040939?type=check_update&version=1


Microorganisms 2023, 11, 939 2 of 29

with chronic inflammatory diseases in humans and animal models [5,8]. The establishment
of the human gut microbiome starts at birth and is influenced by many factors, including
the mode of delivery, antibiotic use and the feeding method [9]. The human gut microbiome
consists of not only bacteria but also fungi, protozoa and viruses [10]. The microbiome is
dynamic and withstands changes due to age, dietary modifications and environmental and
medical interventions, such as the use of antimicrobial agents, throughout an individual’s
lifetime [10]. While most of the normal gut microbiome is composed of the phyla Firmicutes
and Bacteroidetes, the less common phyla are Actinobacteria, Proteobacteria, Fusobacteria
and Verrucomicrobia [10,11]. The most prevalent genera in the normal gut microbiome are
Bacteroides, Faecalibacterium and Bifidobacterium [10,11]. The healthy fungal gut microbiome
consists mainly of Saccharomyces cerevisiae, Malassezia restricta and Candida albicans [12].

On the other hand, data on the relationship between the lung microbiome and asthma
remain limited. This is mainly due to the difficulty of sampling and the long-standing
dogma about the lungs being a sterile environment [13]. However, studies have identified
the normal lung microbiome, which includes the bacterial genera Prevotella, Streptococcus,
Veillonella, Neisseria, Haemophilus and Fusobacterium [13]. Fungal microbiomes in healthy lungs
include mainly Ascomycota (Aspergillus, Cladosporium, Eremothecium and Vanderwaltozyma)
and Microsporidia (Systenostrema) [14,15].

In addition, emerging evidence confirms a crosstalk at what is termed the ‘gut–lung
axis’, where changes in the gut microbiome may have an impact on the development of
lung diseases and vice versa [16,17]. This occurs via the mesenteric lymph nodes, where
elements of the microbiome and their metabolites are transported to and from the lungs [18].
Discrepancies in the gut–lung axis are associated with an increased emergence of asthma
as well as other acute and chronic respiratory diseases [19].

This systematic review fills the knowledge gaps regarding the association between
asthma and the upper airway, lower airway and/or gut microbiome, which has not been
specifically addressed previously. In fact, the published systematic reviews have mostly inves-
tigated the association between the gut microbiota and asthma or allergic diseases without
including the upper and lower airways. In 2018, Zimmerman and colleagues systematically
reviewed the intestinal microbiota composition and the development of allergic diseases
from birth to 20 years of age [20]. The authors reported that early-life gut microbial exposure
indeed has a role in allergic disease development [20]. Melli and colleagues in 2015 examined
the early literature (2007–2013) on the link between the gut microbiota and allergic diseases
in children and reached a similar conclusion [21]. Nonetheless, the majority of the studies
included in the above-mentioned reviews [20,21] utilised traditional bacterial cultures and
polymerase chain reaction (PCR) techniques to characterise the gut microbiota composition
and specifically studied the intestinal microbiota–allergy association. A more recent systematic
review, in which the authors retrieved studies that utilised genomic sequencing to measure the
microbiome composition and diversity, explored the link between the intestinal microbiome
and respiratory diseases (including asthma) [22]. The authors highlighted that disruptions in
gut microbiota composition alone might not directly lead to respiratory diseases and there is a
need for large longitudinal studies [22]. The main objective of the current systematic review
was therefore to identify the current evidence for the association between asthma and the
upper airway, lower airway and/or gut microbiome in humans and in animals. This study
intended to determine the upper airway, lower airway and gut microbiome characteristics
commonly associated with asthma. Hence, the findings of this study might have an impact
on our understanding of the potential role of the microbiome in asthma development.

2. Materials and Methods

We initially performed a non-systematic search within relevant journals for asthma and
microbiomes to identify the existing systematic reviews related to these topics. However,
the available systematic reviews were generally limited to upper airway or gut microbiome
investigations in humans and paid little attention to the lower airway microbiome and
animal-based studies. The current review was developed based on the guidelines of the
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Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [23]. The
study team consisted of researchers with experience in microbiology, immunology and
respiratory care. It also included a researcher with experience in systematic reviews who
was familiar with searching variable databases. The Covidence software from Veritas
Health Innovation, Melbourne, Australia (available at https://www.covidence.org/ and
accessed on 31 January 2023), was used to manage the retrieved studies, track the status of
each study and update the PRISMA flow diagram.

2.1. Eligibility Criteria

The eligibility criteria consisted of original articles published in English between
inception and February 2022 that addressed asthma diagnosis as an outcome among
children up to 18 years old and investigated microbial communities in the upper airway,
lower airway or the gut in humans or animals. Studies that addressed asthma diagnosis
as a subgroup analysis were also included. The exclusion criteria consisted of studies
that examined environmental and/or pollutant microbiomes and asthma or that reported
asthma symptoms and/or atopic/allergy diseases without an asthma diagnosis.

2.2. Information Sources and Search Strategy

We comprehensively searched the following major electronic databases from 3 to 5 March
2022: PubMed, EBSCO, Science Direct and Web of Science. The search strategy was applied
as appropriate for each database. The general search keywords used were: (asthma) AND
(microbiome OR dysbiosis OR microbiota). The following filters were applied: age (up to
18 years), language (English) and literature type (original/academic journals). More details on
the search strategy are provided in Supplementary File S1.

2.3. Selection and Data-Collection Process

All studies were imported to EndNote version X9 and then uploaded to Covidence
software. After duplicates were removed, two stages of screening were conducted. First,
two independent reviewers screened the titles and abstracts of the imported studies. Second,
two independent reviewers conducted full-text screenings for the studies included during
the first stage of screening. Finally, independent reviewers performed data extraction
based on a data collection form designed specifically to address the objectives of this review
(Supplementary Materials Table S1). Conflicts in the screening stages and the data collection
process were resolved through regular discussion meetings with all authors.

2.4. Data Items

The data collection form (Supplementary Materials Table S1) included the following
variables that were extracted from each study: the citation and title of the article, the
country where the study was conducted, the study type (human or animal based), the
study design, the sample size for each group, the age for each group, the microbiome
environment (the upper airway, lower airway and/or the gut), the type of specimen
collected for the microbiome analysis, the time of specimen collection (one time point or
different time points), the microbiome detection method, the genomic DNA extraction
method, the sequencing platform used, the microbial community diversity assessment
(α-diversity, β-diversity, or both), the bioinformatics pipeline used and the study findings.

2.5. Risk of Bias Assessment

The quality of the included human non-randomised studies was assessed using
Newcastle–Ottawa Scale (NOS) tools adapted for each study’s design. Three tools were
used: (1) the NOS adapted for cross-sectional studies [24], (2) the NOS for case-control
studies and (3) the NOS for cohort studies. The NOS tools were used to assess quality based
on different items categorised into three domains (selection, comparability and exposure or
outcome). Then, the quality of each study was rated as good, fair or poor by translating the
results of the NOS to the Agency for Health Research and Quality standards, as described

https://www.covidence.org/
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previously [22]. For animal intervention studies, the Systematic Review Centre for Labora-
tory Animal Experimentation (SYRCLE) risk of bias tool was used [25]. Details of the tools
used are described in Supplementary Materials Table S2.

2.6. Synthesis Methods

Due to the nature of the present systematic review, the descriptive data were extracted
using a data collection tool that was generated specifically to address the objective of this
review (Supplementary Materials Table S1).

3. Results

The literature search resulted in a total of 1025 studies, which were uploaded to Covidence.
After the duplicates were automatically removed (n = 339), 686 studies remained. The titles and
abstracts were screened, as a result of which 477 studies were considered irrelevant to the aim
of the current review and excluded. The full text of the remaining 209 studies was examined for
eligibility. As a result, 184 were excluded for the reasons detailed in Figure 1. The screening
phase resulted in 25 studies that met the inclusion criteria and were identified as eligible for
inclusion in the present review.
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart
describing the studies excluded and analysed in the current systematic review.

3.1. Quality of the Included Studies

Tables 1–3 show the quality assessment results of the included human studies (n = 22)
based on the NOT criteria for case-control, cohort and cross-sectional studies, respectively.
Sixteen human studies out of twenty-two were classified as good quality [26–41], four were
classified as fair quality [42–45] and only two were classified as poor quality [13,46]. The
limitations were generally related to the potential selection bias. The quality evaluation
for the animal intervention studies (three out of twenty-five) is described in Table 4. The
three animal intervention studies [47–49] generally indicated the potential performance
and detection bias in aspects specifically related to the blinding procedures.
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Table 1. Newcastle–Ottawa Scale for the human case-control studies.

Citation

Selection Comparability Exposure

Total RateIs the Case (Asthma)
Definition Adequate?

Representativeness
of the Cases

Selection
of Controls

Definition
of Controls

Comparability of
Cases and Controls
on the Basis of the
Design or Analysis

Ascertainment
of Exposure

Same Method of
Ascertainment for

Cases and Controls

Non-Response
Rate

[26] 1 1 1 1 1 1 1 1 8 Good

[46] 1 0 0 0 1 1 0 0 3 Poor

[27] 1 1 1 1 1 1 1 1 8 Good

[42] 1 1 0 1 1 1 1 0 6 Fair

[28] 1 1 1 1 2 1 1 0 8 Good

[43] 1 1 0 0 2 1 1 0 6 Fair

[44] 1 0 0 1 1 1 1 1 6 Fair

Table 2. Newcastle–Ottawa Scale for the human cohort studies.

Citation

Selection Comparability Outcome

Total RateRepresentativeness
of the Exposed

Cohort

Selection of the
Non-Exposed

Cohort

Ascertainment of
Exposure to

Implants

Demonstration
That Outcome

of Interest
(Asthma) Was
Not Present at
Start of Study

Comparability of
Cohorts on the Basis

of the Design or
Analysis

Assessment of
Outcome

Was Follow Up
Long Enough for

Outcome to Occur

Adequacy of
Follow-Up of

Cohorts

[29] 1 0 1 1 2 1 1 1 8 Good

[30] 1 1 1 1 2 1 1 1 9 Good

[31] 1 1 1 1 1 1 1 1 8 Good

[32] 1 1 1 1 1 1 1 1 8 Good

[45] 1 1 0 1 1 0 1 1 6 Fair
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Table 3. Newcastle–Ottawa Scale for human cross-sectional studies.

Citation

Selection Comparability Outcome

Total RateRepresentativeness
of the Sample

Sample Size Non-Respondents
Ascertainment of

the Exposure

The Subjects in Different
Outcome Groups Are

Comparable, Based on the
Study Design or Analysis.

Confounding Factors
Are Controlled

Assessment of
Outcome

Statistical Test

[33] 1 1 0 1 2 2 1 8 Good

[34] 1 1 0 1 2 2 1 8 Good

[35] 1 0 1 2 2 1 1 8 Good

[36] 1 0 1 2 1 1 1 7 Good

[37] 1 0 1 2 2 2 1 9 Good

[38] 1 1 0 1 2 2 1 8 Good

[13] 0 0 0 0 0 0 1 1 Poor

[39] 1 1 0 1 2 2 1 8 Good

[40] 1 0 1 2 1 1 1 7 Good

[41] 1 0 1 2 0 2 1 7 Good

Table 4. The systematic review centre for the laboratory animal experimentation risk of the bias assessment tool for animal studies.

Citation

Selection Bias Performance Bias Detection Bias Attrition Bias Reporting Bias Other

Sequence
Generation

Baseline
Characteristics

Allocation
Concealment

Random
Housing

Blinding
Random
Outcome

Assessment
Blinding

Incomplete
Outcome Data

Selective Outcome
Reporting

Was the Study Apparently Free of
Other Problems That Could
Result in High Risk of Bias?

[47] Yes Yes Unclear Yes Unclear Unclear Unclear No No No

[48] Yes Yes Yes Yes Unclear Yes Unclear No No No

[49] Unclear Yes Unclear Unclear Unclear Unclear Unclear No No Unclear
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3.2. Characteristics of the Included Studies
3.2.1. Clinical Studies

Twenty-two out of the twenty-five studies identified in this review were clinical and
examined the upper airway, the lower airway and/or the gut microbiome in healthy controls
and/or asthmatic children (Table 5). Ten studies (out of twenty-two) examined the upper
airway microbiome [26,29–31,33–38], while only three studies investigated the lower airway
microbiome [13,39,46]. One study analysed both the upper and lower airway microbiomes in
healthy controls and children with severe persistent asthma [27]. In a study conducted in 2021,
both the upper airway and gut microbiome investigations were performed in healthy controls
and asthmatic children [42]. Seven studies (out of twenty-two) analysed faecal specimens to
characterise the gut microbiome [28,32,40,41,43–45]. The specimen types used to examine the
upper airway microbiome were nasal swab [27,29,35,42], nasal wash [33], hypopharyngeal
aspirate [30], nasopharyngeal swab [34], nasopharyngeal wash [31], saliva [26] and throat
swab [35–38]. In contrast, the specimen types used to study the lower airway were broncho-
alveolar lavage (BAL) [13,27] and sputum [39,46], while faecal specimens were used to study
the gut microbiome [28,32,40–45].

3.2.2. Animal Intervention Studies

Three out of the twenty-five identified studies were conducted using animal models
(Table 6). All three studies used murine models consisting of BALB/c mice [47], Sprague–Dawley
(SD) rats [48] and C57BL/6 mice [49]. Regarding asthma induction, for both the BALB/c mouse
model [47] and the SD rat model [48], the animals were sensitised by intraperitoneal injections
of ovalbumin (OVA) and then challenged by OVA aerosol inhalation. However, there were
variations among the methods used in each study, including the frequency and dose schedule
of OVA exposure. For the interleukin-13 (IL-13) transgenic (TG) C57BL/6 mouse model, asthma
was induced by lung-specific IL-13 overexpression [49]. The first animal intervention study
performed 16S rRNA sequencing on both the nasal lavage fluid and BAL to characterise the
upper and lower airway microbiomes in mice with OVA-induced asthma [47]. The second
study extracted the lung tissues from rats with allergic asthma to characterise the lower airway
microbiome [48]. BAL, lung tissue and faecal specimens were collected from IL-13 transgenic
mice simulating chronic asthma to examine both the lower airway and gut microbiomes [49].

3.3. Microbiome Quantification

The 25 identified studies in the current review analysed the bacteriome (Table 5).
Two studies investigated only the mycobiome in addition to the bacteriome [45,46]. How-
ever, none of the identified studies evaluated the virome. Of the 25 included studies,
23 (92.0%) utilised 16S rRNA gene sequencing to characterise bacterial communities
in the upper airway, lower airway or faecal specimens, as shown in Tables 5 and 6.
These studies targeted different sequencing regions on 16S rRNA, consisting of region V3
(n = 3; 13.0%) [28,43], V4 (n = 9; 39.1%) [26,29–31,33,35,38,42,45,46], V1–V3 (n = 1; 4.3%) [34],
V3–V4 (n = 6; 26.0%) [27,37,39,40,47], V4–V5 (n = 1; 4.3%) [48] and V3–V5 (n = 1; 4.3%) [35].
One study did not indicate the targeted sequencing region [49]. Additionally, a single
study used 16S rRNA gene sequencing with cloning [13] and another study used the 16S
rRNA gene and denaturing gradient gel electrophoresis [32]. In both studies, V3 was the
targeted sequencing region [13,32]. In addition, one study used shotgun metagenome
sequencing [36] and another study used the SYBR GREEN I fluorescence quantitative
polymerase chain reaction method [41] to characterise the microbiome. In the two studies
that characterised the mycobiome, the internal transcribed spacer region (ITS)2 of the rRNA
gene was amplified and sequenced using the Illumina MiSeq platform (Illumina, Inc., San
Diego, CA, USA) [45,46].
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Table 5. Overview of the included clinical studies that investigated microbiome and asthma.

Citation and
Title of the

Article
Country

Study
Design

Sample Size Age
Sample

Collected

Time of
Sample

Collection

Microbiome
Detection
Method

Genomic
DNA

Extraction
Method

Sequencing
Platform

Microbiome
Diversity

Assessment

Bioinformatics
Pipeline

Used
Findings

Upper airway microbiome

[29]
‘Longitudinal

Changes in
Early Nasal
Microbiota

and the Risk
of Childhood

Asthma’

Finland Cohort

2-month visit:
n = 704

13-month
visit: n = 665

24-month
visit: n = 570

2-month
visit: 2.5
(2.4–2.7)

13-month
visit: 13.5
(13.1–13.9)
24-month
visit: 25.0
(24.6–25.5)

Nasal swabs
3 time points:

2, 13 and
24 months

16S rRNA
gene

sequencing
(V4 region)

Automated
MagNA Pure

96 System

Illumina
MiSeq

α-diversity:
Shannon

index
and

β-diversity:
Bray–Curtis

UPARSE
OUT

clustering

Insignificant
difference in

α-diversity as well as
β-diversity between

children who
developed asthma by
age 7 years and those

who did not.
↑ Relative abundance
of Haemophilus over
age 2 to 13 months

was associated
significantly with

higher risk of asthma.
↑ Relative abundance
of Lactobacillus at age

2 months was
associated

significantly with
lower risk of asthma.
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Table 5. Cont.

Citation and
Title of the

Article
Country

Study
Design

Sample Size Age
Sample

Collected

Time of
Sample

Collection

Microbiome
Detection
Method

Genomic
DNA

Extraction
Method

Sequencing
Platform

Microbiome
Diversity

Assessment

Bioinformatics
Pipeline

Used
Findings

[30]
‘Infant
airway

microbiota
and topical

immune per-
turbations in
the origins of

childhood
asthma’

Denmark Cohort 700

The cohort
was

followed
up from

the age of 1
week until
6 years of

life

Hypopharyngeal
aspirates

Different
time-points:

Hypopharyngeal
aspirates

were
obtained at
ages 1 week,
1 month and

3 months

16S rRNA
gene

sequencing
(V4 region)

PowerMag
Soil DNA

Isolation Kit

Illumina
MiSeq

α-diversity:
Shannon

index
and

β-diversity:
Bray–Curtis
and UniFrac,

weighted

Mothur

At age 1 month:
↑ α-diversity and a

difference in
β-diversity in
children who

developed asthma in
the first 6 years of life

compared to those
who did not.

↑ Relative abundance
of Veillonella and
Prevotella at age
1 month were

associated
significantly with

asthma development
by age 6 years.

At ages 1 week and
3 months:

Insignificant
association between
α- or β-diversity or

any taxa and the
development

of asthma.
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Table 5. Cont.

Citation and
Title of the

Article
Country

Study
Design

Sample Size Age
Sample

Collected

Time of
Sample

Collection

Microbiome
Detection
Method

Genomic
DNA

Extraction
Method

Sequencing
Platform

Microbiome
Diversity

Assessment

Bioinformatics
Pipeline

Used
Findings

[33]
‘Pediatric

asthma
comprises
different

phenotypic
clusters with
unique nasal
microbiotas’

USA
Cross-
section

163 children
and

adolescents

Age for all
partici-

pants years
(SE):

11.0 (0.3)

Nasal washes

205 nasal
washes.

1 time point:
163 sample

2 time points:
42 samples
(patients

came back
for an

additional
visit (5.5 to
6.5 months
apart), and

one
additional

sample was
taken)

16S rRNA
gene

sequencing
(V4 region)

QIAGEN
QIAamp
DNA Kit

Illumina
MiSeq

α-diversity:
Shannon

index, ACE
indices,

and Faith’s
phylogenetic

diversity
index
and

β-diversity:
UniFrac

(unweighted
and

weighted),
Bray-Curtis,
and Jaccard

distances

Mothur

Operational
taxonomic units of

pathogenic Moraxella,
Staphylococcus,

Streptococcus and
Haemophilus were
present in 95% of
nasal microbiotas

in asthmatics.

[31]
‘Nasopharyngeal
Microbiome

Diversity
Changes over

Time in
Children

with Asthma’

USA Cohort
40 children

and
adolescents

6–18 years;
mean =
11 years

Nasopharyngeal
washes

Two samples
(5.5 to 6.5
months
apart)

16S rRNA
gene

sequencing
(V4 region)

QIAGEN
QIAamp
DNA Kit

Illumina
MiSeq

α-diversity:
Good’s

coverage,
Chao1,

Shannon
indices, and

Faith’s
phylogenetic

diversity
index
and

β-diversity:
UniFrac

(unweighted
and

weighted)

Mothur

The nasopharyngeal
core microbiome of

asthmatics at the 95%
level:

Moraxella,
Staphylococcus,
Streptococcus,
Haemophilus,

Fusobacterium.
86% of the total reads

in asthmatics were:
Moraxella,

Staphylococcus,
Dolosigranulum,
Corynebacterium,

Prevotella,
Streptococcus,
Haemophilus,

Fusobacterium and
a Neisseriaceae.



Microorganisms 2023, 11, 939 11 of 29

Table 5. Cont.

Citation and
Title of the

Article
Country

Study
Design

Sample Size Age
Sample

Collected

Time of
Sample

Collection

Microbiome
Detection
Method

Genomic
DNA

Extraction
Method

Sequencing
Platform

Microbiome
Diversity

Assessment

Bioinformatics
Pipeline

Used
Findings

[34]
‘Different
functional
genes of

upper airway
microbiome
associated

with natural
course of
childhood

asthma’

Korea
Cross-
section

Healthy
children

(controls),
n = 31

Children
with asthma,

n = 30
Children

with asthma
in remission,

n = 30

Years
Healthy
children

(controls):
7.1 ± 1.1
Children

with
asthma:
8 ± 0.9

Children
with

asthma in
remission:
7.6 ± 1.4

Nasopharyngeal
swabs

1 time point

16S rRNA
gene

sequencing
(V1-V3
region)

PowerMag
Microbiome
RNA/DNA
isolation kit

(MP
Biomedicals,
Santa Ana,
CA, USA)

Illumina
TruSeq DNA

α-diversity:
Shannon

index
and

β-diversity:
UniFrac

(unweighted
and

weighted)

No mention

Control group:
↑ Relative abundance

of Haemophilus and
Moraxella.

Asthma and
remission groups:
↑ Relative abundance

of Streptococcus,
Dolosigranulum, and

Corynebacterium.
Asthma group:

↑ Relative abundance
of Staphylococcus.

[26]
‘Bacterial
salivary

microbiome
associates

with asthma
among
African

American
children and

young
adults’

USA
Case

control

Asthma
cases, n = 57

Healthy
controls,
n = 57

Asthma
case:

15.6 ± 3.3
Healthy
controls:
15 ± 3.9

Saliva 1 time point

16S rRNA
gene

sequencing
(V4 region)

Oragene
DNA

Discover
OGR-500 self-

collection
kits

Illumina
MiSeq

α-diversity:
Shannon

index
QIIME

Significant difference
in α-diversity

between asthma cases
and healthy controls.

Asthma cases:
↓ Relative abundance

of Streptococcus.
↑ Relative abundance

of Veillonella.
Healthy controls:
↑ Relative abundance

of Streptococcus.
↓ Relative abundance

of Veillonella.
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[35]
‘Bacterial

microbiota of
the upper

respiratory
tract and

childhood
asthma’

Europe
Cross-
section

Throat swabs:
Children

with asthma,
n = 125

Controls,
n = 202

Nasal swabs:
Children

with asthma,
n = 39

Controls,
n = 29

6 to 12
years

Nasal and throat
swabs

1 time point

16S rRNA
gene

sequencing
(V3-V5
region)

QIAmp DNA
Mini Kit

Pyrosequencing,
Roche

454-GS FLX
Titanium

α-diversity:
Shannon

index
and

β-diversity:
Unweighted

UniFrac
distances

QIIME

Asthma was
associated with

alterations in nasal
(not throat)
microbiome.

Asthmatic children
versus controls:
↓ α- and β-diversity

and lower abundance
of Moraxella of

nasal microbiome.

[36]
‘Integration

of
metagenomics-
metabolomics

reveals
specific

signatures
and

functions of
airway

microbiota in
mite-

sensitized
childhood

asthma’

China
Cross-
section

Control:
n = 28

Asthma:
n = 27

Years
Control:

4.54 ± 0.3
Asthma:

4.32 ± 0.85

Throat swabs

1 time point.
Asthma case:
swabs were

collected
before

inhaled or
nasal admin-
istration of

corticos-
teroids for

regular daily
treatment.

Control: no
mention.

Shotgun
metagenome
sequencing

FastDNA
SPIN Kit for

Soil (MP
Biomedical)

Illumina
HiSeq

α-diversity:
Shannon

index
and

β-diversity:
Bray–Curtis

index

Metagenome
assembly by
MEGAHIT
and contig
binning by
MetaBAT

No difference in
α-diversity between
asthma and control

groups, but
β-diversity difference
was detected between

the two groups.
Asthma group:

Predominance of
Neisseria elongate.
Control group:

Significant
enrichment of

Eubacterium sulci,
Leptotrichia wadei and

Prevotella spp.
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[37]
‘Integrated
metabolic

and
microbial
analysis

reveals host-
microbial

interactions
in IgE-

mediated
childhood

asthma’

Taiwan
Cross-
section

Asthma
(non-atopic,

lowly
sensitize):

n = 15
Asthma

(non-atopic,
highly

sensitize):
n = 13

Healthy
controls:
n = 25

Years
Asthma

(non-
atopic,
lowly

sensitized):
3.7 ± 0.6
Asthma

(non-
atopic,
highly

sensitized):
3.5 ± 0.7
Healthy
controls:
3.6 ± 0.7

Throat swabs
1 time point,

no time
specified

16S rRNA
gene

sequencing
(V3-V4
region)

FastDNA
Spin Kit for

Soil (MP
Biomedical,
Solon, OH,

USA)

Illumina
HiSeq 2500

α-diversity:
Shannon

index and
Chao1 index

QIIME

No statistically
significant difference

in airway taxa
composition between
asthma and healthy

controls.
Highly sensitized
asthma children:

↓ Relative abundance
of Dialister,

Streptococcus,
Prevotella, Tannerella,

Atopobium and
Ralstonia.

[38]
‘Comparison

of Oropha-
ryngeal

Microbiota
from

Children
with Asthma

and Cystic
Fibrosis’

Germany
Cross-

sectional

Control
children:

n = 62
Children

with asthma:
n = 27

Children
with cystic

fibrosis (CF):
n = 57

Years
(min–max)

Control:
10.1 (8–12)
Asthma:
10 (8–12)

CF:
10.61 (6–12)

Throat swabs 1 time point

16S rRNA
gene

sequencing
(V4 region)

QIAamp
Mini Kit

Illumina
MiSeq
system

α-diversity:
Shannon

index and
Chao1 index

and
β-diversity:
Morisita–

Horn
similarity

index

Mothur

High level of
similarity was

detected between
control, asthma and

CF groups.
Core microbiome in

healthy controls,
children with asthma

and CF:
Prevotella,

Streptococcus,
Neisseria, Veillonella
and Haemophilus.



Microorganisms 2023, 11, 939 14 of 29

Table 5. Cont.

Citation and
Title of the

Article
Country

Study
Design

Sample Size Age
Sample

Collected

Time of
Sample

Collection

Microbiome
Detection
Method

Genomic
DNA

Extraction
Method

Sequencing
Platform

Microbiome
Diversity

Assessment

Bioinformatics
Pipeline

Used
Findings

Lower airway microbiome

[13]
‘Disordered

microbial
communities
in asthmatic

airways’

Ireland
Cross-

sectional

Difficult
asthma,
n = 13
Non-

asthmatic
controls,

n = 7

Asthmatic
children:

11.8 ± 2.8
years

Controls:
11.3 ± 5.7

years

Bronchoalveolar
lavage (BAL)

1 time point,
time not
specified

16S rRNA
gene

sequencing
(V3 region)
and cloning

DNeasyn
(Qiagen)

No mention
α-diversity:

Chao1 index
DOTUR
program

Asthmatic children:
Significant increase in

Proteobacteria
Children with

difficult asthma:
↑ Staphylococcus spp.

Controls:
↑ Bacteroidetes
(Prevotella spp.).

[46]
‘Altered

respiratory
microbiota

composition
and

functionality
associated

with asthma
early in life’

United
Arab
Emi-
rates

Case
control

Paediatric
asthmatic:

n = 11
Paediatric

healthy:
n = 9

Years,
mean (SD,

range)
Paediatric
asthmatic:
6.7 (4.1, 12)
Paediatric

healthy:
8 (3.1, 8)

Sputum

1 time point:
Spontaneous
coughed up
sputum (ex-
pectorated

phlegm/mucous)
was the first
preference of

sample
collection
whenever

possible in all
subjects.

16S rRNA
gene

sequencing
for bacteria
(V4 region)
ITS2-gene

based
microbial

profiling for
fungi

MoBio
PowerMag
Soil DNA
Isolation

Illumina
MiSeq

α-diversity:
Shannon

index
and

β-diversity:
Bray-Curtis

index

Mothur

Asthmatic versus
non-asthmatic

controls:
Significant difference
of bacteria and fungi

between the two
groups.

Significant difference
in Bacteroidetes,

Firmicutes,
Fusobacteria and

Proteobacteria.
Paediatric asthma:
↑ Relative abundance
in Streptococcus spp.
and Moraxella spp.

Difference in
Ascomycota,

Basidiomycota phyla
and other

unclassified fungi.
↓ Penicillium

aethiopicum and
Alternaria spp.
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[39]
‘Gram-

negative
microbiota is

related to
acute

exacerbation
in children

with asthma’

Korea
Cross-
section

Total
children,

n = 95
Children

with asthma
exacerbation:

n = 22
Children

with stable
asthma:
n = 67

Controls:
n = 6

Years
Asthma ex-
acerbation:

9.0
(6.4/10.9)

Stable
asthma: 8.0

(6.6/9.7)
Controls:

13.2
(10.7/14.9)

Sputum 1 time point

16S rRNA
gene

sequencing
(V3-V4
region)

FastDNA
SPIN Kit for

Soil (MP
Biomedicals,

USA)

Illumina
MiSeq

α-diversity:
ACE, Chao1,

Jackknife,
NPShannon,
Shannon and

Simpson
and

β-diversity:
Jensen–

Shannon,
Bray–Curtis,
Generalised
UniFrac, and

UniFrac
indices

No mention

No difference in
α-diversity detected

between asthma
exacerbation and

stable asthma
children.

Significant difference
in β-diversity

detected between
asthma exacerbation

and stable asthma
children.

Asthma exacerbation:
Phylum level:
↑ Abundance of
Proteobacteria.
↓ Abundance of

Saccharibacteria and
Actinobacteria.

Genus level:
↑ Abundance of

Veillonella, Neisseria,
Haemophilus,

Fusobacterium,
Oribacterium,

Campylobacter and
Capnocytophaga
↓ Saccharimonas,

Rothia, Porphyromonas,
Gemella and
Actinomyces.
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Upper and lower airway microbiome

[27]
‘Integrative
study of the
upper and

lower airway
microbiome

and tran-
scriptome in

asthma’

USA
Case

control

Children
with severe
persistent

asthma:
n = 27

Healthy
controls:
n = 27

Years
Children

with severe
persistent

asthma: 11,
IQR 8

Healthy
controls:
13, IQR 6

Nasal swabs
BAL

1 time point

16S rRNA
gene

sequencing
(V3-V4
region)

Qiagen
DNeasy Mini

Kit

Illumina
MiSeq

α-diversity:
Shannon

index
and

β-diversity:
UniFrac
distance

index

QIIME

α-diversity was
higher in bronchial
(BAL) versus nasal.

Significant difference
in β-diversity

detected between
bronchial (BAL) and

nasal.
Asthmatic children
Nasal microbiome:

Moraxella and
Alloiococcus are hub

genera.
Bronchial

microbiome: no hubs.
Nasal Streptococcus

was enriched in
children with

persistent asthma
versus healthy

controls.

Upper airway and gut microbiome

[42]
‘Altered IgA
Response to
Gut Bacteria
Is Associated

with
Childhood
Asthma in

Peru’

Peru
Case

control

Asthma:
n = 40

Control
children:

n = 40

Years
Asthma:

14.6 ± 1.5
Controls:
13.3 ± 2.3

Nasal swabs and
faecal specimens

1 time point:
Biospeci-

mens
samples

(nasal swabs
and faecal)

were
collected the
same day of

the home
visit or

during the
same week

16S rRNA
gene

sequencing
(V4 region)

Faecal
specimens

ethanol-
based

method
Nasal swabs:

no
information

was provided

Illumina
MiSeq

α-diversity:
Shannon

index and
Renyi

entropy
and

β-diversity:
Bray–Curtis
and UniFrac

distances

DADA 2

α-and β-diversity of
faecal as well as nasal

swabs showed no
difference between

asthma and controls.
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Gut microbiome

[32]
‘Reduced

diversity of
the intestinal
microbiota

during
infancy is
associated

with
increased

risk of
allergic

disease at
school age’

Denmark Cohort 411 infants

Full-term
infants

born at >36
week and

were
followed

until 6
years

Faecal specimens

2 time points:
At 1 month
old and 12
months old

16S rRNA
gene and

denaturing
gradient gel
electrophore-

sis (V3
region)

QIAamp
DNA stool

Mini Kit
(Qiagen,
Hilden,

Germany)

None

Band
richness and

principal
component

analysis

BioNumerics
software 4.50

No association
between bacterial

diversity of the
infant’s gut

microbiota and
asthma in the first

6 years of life.

[28]
‘Shifts in

Lachnospira
and

Clostridium
sp. in the
3-month

stool
microbiome

are
associated

with
preschool age

asthma’

Canada
Case

control

Total 76.
Asthmatic:

n = 39
Healthy
control:
n = 37

Follow up
from birth
till 4 years.

Faecal specimens
2 time points:
3 months and
1 year of age

16S rRNA
gene

sequencing
(V3 region)

Mo Bio dry
bead tubes

(Mo Bio
Laboratories)

Illumina
Hi-Seq. 2000

α-diversity:
Shannon

index
and

β-diversity

Mothur

At 3 months
asthmatic children:
↓ Abundance of

Lachnospira.
↑ Abundance of

Clostridium neonatale.
Negative association
between the ratio of

Lachnospira and
Clostridium neonatale
and asthma risk by

4 years of age.
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[43]
‘Early infancy

microbial
and

metabolic
alterations

affect risk of
childhood

asthma’

Canada

Longitudinal
nested

case
control

Control:
n = 74

Atopy and
wheeze:
n = 22

Atopy only:
n = 87

Wheeze only:
n = 136

Baseline: 1
year of age
Follow-up:

3 years
of age

Faecal specimens
2 time points:
at 3 months
and 1 year

16S rRNA
gene

sequencing
(V3 region)

Qiagen DNA
Stool Mini

Kit

Illumina
HiSeq 2000

α-diversity:
Shannon

index
Mothur

No significant
difference in

α-diversity among
four groups.

Children at risk
of asthma:

↓ Relative abundance
of Lachnospira,

Veillonella,
Faecalibacterium

and Rothia.

[44]
‘Gut

microbial-
derived

butyrate is
inversely

associated
with IgE

responses to
allergens in
childhood

asthma’

Taiwan
Case

control

Children
with rhinitis:

n = 27
Children

with asthma:
n = 34

Healthy
controls,
n = 24

Years
Controls:
5.7 ± 0.8
Rhinitis:
6.0 ± 0.9
Asthma:
5.6 ± 0.9

Faecal specimens
1 time point.

Time not
specified.

16S rRNA
gene

sequencing
(V3-V4
region)

FastDNA
Spin Kit for
Faeces (MP
Biomedical)

Illumina
HiSeq 2500

α-diversity:
species
richness

QIIME

Children with rhinitis
and asthma versus

healthy controls:
↓ Relative abundance

of Firmicutes.
↓ Relative abundance

of Faecalibacterium,
Roseburia, SMB53

and Dialister.
↑ Relative abundance

of Escherichia,
Enterococcus

and Clostridium.
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[40]
‘Gut

microbial
dysbiosis is
associated

with allergen-
specific IgE
responses in

young
children with

airway
allergies’

Taiwan
Cross-
section

Controls:
n = 26

Asthma:
n = 35

Rhinitis:
n = 28

Controls:
5.6 ± 0.8
Asthma:
5.5 ± 0.9
Rhinitis
5.9 ± 0.9

Faecal specimens 1 time point

16S rRNA
gene

sequencing
(V3-V4
region)

FastDNA
Spin Kit for
Faeces (MP
Biomedical,
Solon, OH,

USA)

Illumina
HiSeq 2500

α-diversity:
Shannon

index and
Chao 1 index

and
β-diversity:
Bray–Curtis

and
Weighted
UniFrac
distance

QIIME

Relatively lower
α-diversity in allergic
disease than control
(insignificant). No

significant difference
in β-diversity in
allergic airway

disease.
Children with asthma
and allergic rhinitis

versus healthy
controls:

↓ Relative abundance
of Firmicutes.

↓ Relative abundance
of Dorea spp.

↑ Relative abundance
of Clostridium spp.

[45]
‘Neonatal gut

microbiota
associates

with
childhood
multisensi-
tized atopy

and T cell dif-
ferentiation’

USA Cohort

1 month:
n = 130
infants

6 months:
n = 168
infants

1 month
and

6 month
infants

Faecal specimens
2 time points:
1 month and

6 months.

16S rRNA
gene

sequencing
(V4 region)

(ITS)2 rRNA
sequencing

for fungi

In-house kit:
Modified

cetyltrimethy-
lammonium

bromide
buffer-based

protocol

Illumina
MiSeq

α-diversity:
Shannon

index
and

β-diversity:
Unweighted

UniFrac
distance and
Bray–Curtis

QIIME

The highest risk
group:

↓ Relative abundance
of Bifidobacterium,
Akkermansia and
Faecalibacterium.

↑ Relative abundance
of Candida and

Rhodotorula.
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[41]
‘Correlations
of Inflamma-
tory Factors

with
Intestinal
Flora and

Gastrointesti-
nal

Incommensu-
rate

Symptoms in
Children

with Asthma’

China
Cross-
section

Asthmatic
group:
n = 70

Control
group:
n = 25

Years
Asthmatic

group:
9.03 ± 2.01

Control
group:

8.12 ± 2.13

Faecal specimens

1 time point
(exact time

was not
mentioned)

SYBR
GREEN I

fluorescence
quantitative
polymerase

chain
reaction

No mention
Not

applicable

Total load of
bacteria
between

observation
group and

control group

Not
applicable

The total load of
bacteria:

asthmatic group >
control group

Asthmatic group:
↓ Load of

Bifidobacterium and
Lactobacillus.

↑ Load of Escherichia
coli, Helicobacter pylori,

Streptococcus and
Staphylococcus.
Control group:
↑ Load of

Bifidobacterium and
Lactobacillus.

↓ Load of Escherichia
coli, Helicobacter pylori,

Streptococcus and
Staphylococcus.
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Upper and lower airway microbiome

[47]
‘Respiratory
Microbiota

Profiles
Associated

with the
Progression
from Airway
Inflammation

to
Remodelling
in Mice With
OVA-Induced

Asthma’.

China

Female
BALB/c mice:

n = 30
Control group:

n = 6
Ovalbumin

group: n = 24

4–6 weeks

Nasal lavage
fluid
and
BAL

Control
group was

sacrificed at
the end of

the
experiment:
n = 6 mice

Experimental
groups were
sacrificed at

different
time points
for sample

collection as
follows:
1 week:

n = 6 mice
2 weeks:

n = 6 mice
4 weeks:

n = 6 mice
6 weeks:

n = 6 mice

16S rRNA
gene

sequencing
(V3-V4 region)

OMEGA soil
DNA

extraction kit

Illumina
MiSeq

α-diversity:
Shannon index

and
β-diversity:
Weighted
UniFrac
distance

QIIME 2

Upper airway
microbiome of the

OVA induced mice had
significantly higher
α-diversity than

control mice.
Insignificant

α-diversity difference
in the lower airway
microbiome of the

OVA induced mice and
control mice.

Significant difference
detected in β-diversity

between the
OVA-induced mice
and control mice.

The dominant
respiratory

microbiome in the
acute inflammatory

and airway
remodelling stages

were different.
Acute inflammatory

stage:
↑ Relative abundance
of Pseudomonas spp.
Airway remodelling

stage:
↑ Relative abundance
of Staphylococcus spp.
and Cupriavidus spp.
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Lower airway microbiome

[48]
‘High-

throughput
16S rDNA

sequencing of
the pulmonary
microbiome of

rats with
allergic
asthma’

China

Normal
control group:

n = 4
Saline control
group: n = 4

Allergic
asthma group:

n = 4

4–6 weeks Lung tissues

1 time point
Normal
control

group: lung
tissues on

day 0
Saline

control and
allergic
asthma

groups: lung
tissues on

day 29

16S rRNA
gene

sequencing
(V4−V5
region)

No mention

Illumina high-
throughput
technology
(Illumina

PE250)

α-diversity:
Chao index,

coverage
index,

Shannon
index, and

Simpson index
and

β-diversity:
Bray–Curtis

Mothur

The α-diversity of the
lower airway

microbiome in the
allergic asthma group

increased.
Significant difference

between normal
control group and

allergic asthma group
was detected.

Normal control group:
↑ Proteobacteria.

Allergic asthma group:
↑ Firmicutes.

Lower airway and gut microbiome

[49]
‘Alteration of
Lung and Gut
Microbiota in

IL-13-
Transgenic

Mice
Simulating

Chronic
Asthma’.

Korea

IL-13 overex-
pressing

transgenic
(TG) mice:

n = 30
C57BL/6
wild-type
(WT) mice:

n = 30

10-week-old
mice for both

groups

BAL, lung
tissue and

faecal
1 time point

16S rRNA
gene

sequencing
(no mention of

region)

FastDNA
SPIN Kit

Illumina
MiSeq

α-diversity:
Shannon

index, Chao1
index, and the

Inverse
Simpson’s

diversity index
and

β-diversity:
Weighted
UniFrac

distances

QIIME

No significant
difference in

α-diversity was
observed.

Altered β-diversity in
lung and gut

microbiota in the IL-13
TG mice compared to

the WT mice.
IL-13 TG mice (lungs):
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3.4. Diversity Assessments

As shown in Tables 5 and 6, 18 out of the 25 identified studies (72.0%) assessed both
the α- and β-diversity of the upper airway, lower airway and/or gut microbiome. These
studies have reported contradictory findings related to α- and β-diversity. For instance, an
insignificant difference was observed in both α- and β-diversity between asthmatic children
and non-asthmatics [29,40,42]. On the contrary, a significant difference in α- and β-diversity
of the upper airway, lower airway and/or gut microbiome was detected between asthmatic
children and non-asthmatics [27,30,35,46,48]. Five studies evaluated only the α-diversity of the
microbiome in the upper airway, lower airway and/or gut microbiome (20.0%) [13,26,37,43,44]
and demonstrated conflicting data. For example, Espuela-Ortiz and colleagues (2019) reported
a significant difference in the α-diversity of the upper airway microbiome between asthma
cases and healthy controls [26]. Another study detected insignificant differences in the airway
taxa composition between asthma patients and healthy controls [37]. However, Bisgaard
and colleagues (2011) estimated band richness and conducted principal component analysis
(PCA), which resulted in no association between the bacterial diversity of the infant’s gut
microbiome and asthma development in the first 6 years of life [32]. The total load of bacteria
for asthmatic children and healthy controls was calculated, and the authors reported a higher
bacterial load in asthmatic children than in the healthy control group [41].

3.5. Microbiome Outcome
3.5.1. Human Studies

The data presented in Table 5 indicates that the microbiome in the upper airways of
asthmatic children has a significantly high relative abundance of Moraxella, Staphylococcus,
Streptococcus, Haemophilus, Fusobacterium, Dolosigranulum, Corynebacterium, Veillonella and Neis-
seria elongate [26,31,33,34,36]. However, a significantly low relative abundance of Streptococcus,
Moraxella, Dialister, Prevotella, Tannerella, Atopobium and Ralstonia was identified in the upper
airways of asthmatic children [26,35,37]. An increased relative abundance of Haemophiles in
children aged 2 to 13 months was significantly associated with a higher risk of asthma devel-
opment [29]. An additional study reported that a high relative abundance of Veillonella and
Prevotella at age 1 month was significantly associated with asthma development by age 6 [30].
However, a significantly high abundance of Lactobacillus at age 2 months was associated with a
lower risk of asthma development, suggesting that this bacterium plays a protective role [29].

The lower airway microbiome indicated a significant increase in Protobacteria in
asthmatic children, particularly in asthma exacerbation cases [13,39], while a significant
decrease in Saccharibacteria and Actinobacteria was detected [39]. Moreover, asthma exac-
erbation was associated with a high relative abundance of Veillonella, Neisseria, Haemophilus,
Fusobacterium, Oribacterium, Campylobacter and Capnocytophaga in sputum [39]. However,
Saccharimonas, Rothia, Porphyromonas, Gemella and Actinomyces were detected with low
significant relative abundance in asthma exacerbation cases [39]. A high relative abundance
of Streptococcus, Moraxella and Staphylococcus was identified in asthmatic children, with the
latter detected in difficult asthma cases [13,46]. A mycobiome analysis revealed a signifi-
cantly low abundance of Penicillium aethiopicum and Alternaria spp. in sputum specimens
collected from asthmatic children [46].

The gut microbiome studies that examined the faecal specimens of asthmatic children
revealed a significant increase in the relative abundance of Clostridium, Escherichia and
Enterococcus [32,40,44]. In addition, a higher load of E. coli, Helicobacter pylori, Streptococcus
and Staphylococcus was detected in the faecal specimens of asthmatic children [41]. A lower
load of Bifidobacterium and Lactobacillus was detected in the faecal specimens of the same
group, indicating that these bacteria play a protective role [41]. The mycobiome analysis of
faecal specimens obtained from infants revealed a high relative abundance of Candida and
Rhodotorula, which were associated with a high risk of developing asthma [45]. In contrast,
the relative abundance of Lachnospira, Faecalibacterium, Roseburia, SMB53, Dialister and
Dorea was significantly decreased in asthmatic children [28,40,44]. Lachnospira, Veillonella,



Microorganisms 2023, 11, 939 24 of 29

Faecalibacterium, Rothia, Bifidobacterium and Akkermansia were significantly decreased in
high-risk children [43,45].

3.5.2. Animal Intervention Studies

A respiratory microbiome analysis identified an increase in the relative abundance
of Pseudomonas spp. during the acute inflammatory stage, while Staphylococcus spp. and
Cupriavidus spp. increased during the airway remodelling stage in mice with OVA-induced
asthma [47]. The bacterial phylum Firmicutes were detected at higher levels in the lower
airway (lung tissues) microbiomes of rats with allergic asthma [48]. Proteobacteria and
Cyanobacteria phyla were identified at higher levels in the lungs of IL-13 TG mice [49]. The
microbiome analysis of faecal specimens extracted from IL-13 TG mice reflected a lower
level of Firmicutes and Protobacteria, whereas the lung microbiome indicated a low level
of Bacteroidetes [49].

4. Discussion

The aims of the current study were to examine the association between asthma and the
upper airway, lower airway and/or gut microbiome in humans and animals and identify
the characteristics of the upper airway, lower airway and the gut microbiome commonly
associated with asthma.

The data presented in this review demonstrated that the clinical specimens collected
from both the control and asthmatic children were mostly from the upper airway (i.e., a
nasal swab, nasal wash, hypopharyngeal aspirate, nasopharyngeal swab, nasopharyngeal
wash, throat swab and saliva). Only three studies collected specimens from the lower
airway (BAL and sputum) [13,39,46], and one contained specimens from both the upper
and lower airways [27]. The limited number of lower airway microbiome studies might
contribute to the difficulty in collecting lower airway human specimens (specifically from
healthy children) as it is more convenient to collect specimens from the upper airway.

Evidence of the association between asthma and changes in the upper and lower
airways and/or gut microbiome was synthesized. The phyla Proteobacteria (Haemophilus,
Moraxella, Neisseria, Campylobacter, Escherichia and Helicobacter) and Firmicutes (Veillonella,
Staphylococcus, Streptococcus, Dolosigranulum, Oribacterium, Alloiococcus, Clostridium and
Enterococcus) were identified as being significantly higher in the asthmatic children [13,39]
compared with the healthy controls. These findings confirm the previous observations that
Proteobacteria (Haemophilus, Moraxella and Neisseria) and Firmicutes (Staphylococcus and
Streptococcus) were the most abundant bacteria in asthmatic children [50].

A previous literature review performed in 2019 reported that the most dominant
genera in the upper airways of infants are Corynebacterium, Dolosigranulum, Haemophilus,
Moraxella, Staphylococcus and Streptococcus [51]. However, in this study, we found that
the upper airway microbiome in 1-month-old infants indicated an increase in the relative
abundance of Veillonella and Prevotella, which were associated with asthma development
later in life [30]. Both genera were considered normal flora of the upper respiratory system
and their increased abundance in infants suggests their potential involvement in asthma
development later in life [30]. Furthermore, the upper airway microbiome in infants ranging
in age between 2 and 13 months indicated a higher abundance of Haemophilus, which was
associated with a higher risk of asthma development later in life [29]. This substantiates
the results of a previous review, which highlighted that dysregulated Haemophilus was
common in asthmatic children [52].

As shown in Table 5, the upper airways of asthmatic children have a significant high
relative abundance of Moraxella, Staphylococcus, Streptococcus, Haemophilus, Fusobacterium,
Dolosigranulum, Corynebacterium, Veillonella and Neisseria elongate and a high relative abun-
dance of Streptococcus, Moraxella and Staphylococcus was determined in their lower airways.
The above-mentioned bacteria are known as normal human microbiota in the respiratory
tract [53]. Furthermore, Staphylococcus, Streptococcus and Haemophilus, followed by Moraxella
and Veillonella were the most frequently reported bacterial genera in the respiratory system
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of asthmatic children (Table 5). Previous studies have highlighted that the clinical charac-
teristics of asthma patients and the type of immune response stimulated by aeroallergens
influence airway microbiome composition [54]. For instance, Moraxella catarrhalis, a species
of Haemophilus, and Streptococcus were the predominant respiratory tract bacteria in patients
with severe asthma and corticosteroid resistance [54]. The literature points to a lack of
metabolomic investigations of the association between the metabolic characteristics of
these dysbiotic bacteria and asthma phenotypes and treatment prognosis. For instance,
asthma patients with steroid resistance might have a higher abundance of airway microbial
communities that can degrade steroids [55].

It has been established in the literature that the dysbiosis of the normal gut microbiome
plays an important role in the development of immune disorders, including asthma [56,57].
This is explained by the key role of the gut microbiome in shaping the human immune
system [55]. Differences in the gut microbiome in terms of composition and diversity
were previously reported between healthy and asthmatic children [52]. In this study,
the high relative abundance of the genus Clostridium was detected in faecal specimens
collected from asthmatic children in three studies [28,40,44]. Previous studies have shown
that the Clostridium species have an impact on the host’s immune system [7]. In addition,
infant colonization with Clostridium species is associated with a higher risk of allergy
development [7]. This substantiates the findings of the current review as a predominance
of the Clostridium species was detected during early childhood and was associated with
asthma development [28].

The studies analysed in this review lacked consistency in reporting their findings.
Some of the studies on bacterial communities in airways and/or gut have identified most
of the detected bacterial taxa at the phylum level [13,39,40,44,46], whereas the others have
identified the detected taxa at the genus level [26–31,33–38,41,43,45] (Table 5). Due to this
inconsistency, making an accurate comparison of these studies became challenging. More-
over, bacteria belonging to different genera under the same phylum might have different
effects on a host. For instance, this review revealed that the genus Lactobacillus, which
belongs to the phylum Firmicutes, is associated with a low risk of asthma development,
suggesting that the bacteria under this phylum play a protective role in asthma. By contrast,
other genera under the same phylum Firmicutes, such as Veillonella, are significantly associ-
ated with asthma development later in life, suggesting their contributory role in asthma
development. Therefore, it has been recommended that the use of reporting guidelines
(i.e., the Strengthening the Organization and Reporting of Microbiome Studies [STORMS]
checklist) must be adopted in future human microbiome studies [58].

Contradictory findings on microbiome diversity were reported by the included clinical
studies (Table 5). Of the 22 clinical studies, 15 determined both the α- and β-diversity of
the upper airway, lower airway and/or gut microbiomes, but they reported conflicting
findings on α- and β-diversity between the asthmatic and non-asthmatic children. As
depicted in Table 5, the clinical studies were conducted in different geographic locations,
including North America, Europe, Asia, and Middle East, and they analysed clinical
specimens obtained from different ethnic groups. The literature highlighted that the gut
microbiome composition is associated with ethnicity and geography [59]. Furthermore,
the sample sizes in 16 clinical studies were heterogeneous, with minimum and maximum
sample sizes of 20 [46] and 923 [29] children, respectively. This sample size variation
might have contributed to the variations in the diversity metrics [60]. The clinical studies
also varied with respect to technical protocols, next-generation sequencing platforms and
bioinformatics pipelines, as described in Table 5, and these variations might have influenced
the quality of the obtained microbiome data [61].

There is limited literature on the use of animal intervention studies to examine the
association between asthma development and microbiomes. The criteria related to random
housing, blinding and random outcome assessment may hinder the research on such studies
as the validity might be compromised. The quality assessment of animal intervention
studies included in this review [47–49] generally indicated the potential performance and
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detection bias in aspects related to the blinding procedures, which might influence the
validity of the results of these studies [47–49]. Furthermore, the current review indicated a
lack of microbiome data related to viruses, archaea and micro-eukaryotes (such as protozoa).
The characterization of these rare microbiome components might have a valuable impact
on our understanding of asthma development.

5. Conclusions

The phyla Proteobacteria and Firmicutes were identified as being significantly higher in
the asthmatic children compared with the healthy controls. The high relative abundance of
Veillonella, Prevotella and Haemophilus in the microbiome of the upper airway in early infancy
was associated with a higher risk of asthma development later in life. Gut microbiome
analyses indicated that a high relative abundance of the genus Clostridium in early childhood
might be associated with asthma development later in life. The findings reported here serve
as potential microbiome signatures associated with an increased risk of asthma development.
There is a need for human studies targeting the lower airway as well as well-designed animal
intervention studies to further identify high-risk infants, which will help in design strategies
and prevention mechanisms to avoid asthma early in life.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11040939/s1, File S1: search strategy; Table S1:
data collection form; Table S2: quality assessment tools.

Author Contributions: Conceptualization, M.G.A. and A.M.A.; methodology, M.G.A., A.M.A.-M.,
A.S.A., H.Y.A., N.A.A., R.A. and A.M.A.; validation, M.G.A., A.M.A.-M., A.S.A., H.Y.A., N.A.A.,
R.A. and A.M.A.; formal analysis, M.G.A., A.M.A.-M., A.S.A., H.Y.A., N.A.A., R.A. and A.M.A.;
investigation, M.G.A., A.M.A.-M., A.S.A., H.Y.A., N.A.A., R.A. and A.M.A.; data curation, M.G.A.,
A.M.A.-M., A.S.A., H.Y.A., N.A.A., R.A. and A.M.A.; writing—original draft preparation, M.G.A.,
A.M.A.-M., A.S.A., H.Y.A., N.A.A., R.A. and A.M.A.; writing—review and editing, M.G.A. and R.A.;
visualization, M.G.A., A.M.A.-M., A.S.A., H.Y.A., N.A.A., R.A. and A.M.A.; supervision, M.G.A.;
project administration, M.G.A., A.M.A.-M. and A.M.A.; funding acquisition, M.G.A. All authors have
read and agreed to the published version of the manuscript.

Funding: The APC was funded by King Abdullah International Medical Research Center (KAIMRC),
Riyadh, Saudi Arabia.

Institutional Review Board Statement: The study was conducted in accordance with the Declara-
tion of Helsinki, and approved by the Institutional Review Board of King Abdullah International
Medical Research Center (KAIMRC), Riyadh, Saudi Arabia (protocol code RYD-22-419812-169312 on
20 November 2022).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Asher, M.I.; Rutter, C.E.; Bissell, K.; Chiang, C.-Y.; El Sony, A.; Ellwood, E.; Ellwood, P.; García-Marcos, L.; Marks, G.B.; Morales, E.; et al.

Worldwide trends in the burden of asthma symptoms in school-aged children: Global Asthma Network Phase I cross-sectional study.
Lancet 2021, 398, 1569–1580. [CrossRef] [PubMed]

2. Mims, J.W. Asthma: Definitions and pathophysiology. Int. Forum Allergy Rhinol. 2015, 5, S2–S6. [CrossRef] [PubMed]
3. Pijnenburg, M.W.; Fleming, L. Advances in understanding and reducing the burden of severe asthma in children. Lancet Respir.

Med. 2020, 8, 1032–1044. [CrossRef] [PubMed]
4. Barcik, W.; Boutin, R.C.T.; Sokolowska, M.; Finlay, B.B. The Role of Lung and Gut Microbiota in the Pathology of Asthma.

Immunity 2020, 52, 241–255. [CrossRef]
5. Manfredo Vieira, S.; Hiltensperger, M.; Kumar, V.; Zegarra-Ruiz, D.; Dehner, C.; Khan, N.; Costa, F.R.C.; Tiniakou, E.; Greiling, T.;

Ruff, W.; et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 2018, 359, 1156–1161. [CrossRef]
6. Abrahamsson, T.; Jakobsson, H.E.; Andersson, A.; Björkstén, B.; Engstrand, L.; Jenmalm, M.C. Low gut microbiota diversity in

early infancy precedes asthma at school age. Clin. Exp. Allergy 2014, 44, 842–850. [CrossRef]

https://www.mdpi.com/article/10.3390/microorganisms11040939/s1
https://www.mdpi.com/article/10.3390/microorganisms11040939/s1
http://doi.org/10.1016/S0140-6736(21)01450-1
http://www.ncbi.nlm.nih.gov/pubmed/34755626
http://doi.org/10.1002/alr.21609
http://www.ncbi.nlm.nih.gov/pubmed/26335832
http://doi.org/10.1016/S2213-2600(20)30399-4
http://www.ncbi.nlm.nih.gov/pubmed/32910897
http://doi.org/10.1016/j.immuni.2020.01.007
http://doi.org/10.1126/science.aar7201
http://doi.org/10.1111/cea.12253


Microorganisms 2023, 11, 939 27 of 29

7. Van Nimwegen, F.A.; Penders, J.; Stobberingh, E.E.; Postma, D.S.; Koppelman, G.H.; Kerkhof, M.; Reijmerink, N.E.; Dompeling, E.;
Brandt, P.A.V.D.; Ferreira, I.; et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy.
J. Allergy Clin. Immunol. 2011, 128, 948–955.e3. [CrossRef]

8. Doré, E.; Joly-Beauparlant, C.; Morozumi, S.; Mathieu, A.; Lévesque, T.; Allaeys, I.; Duchez, A.-C.; Cloutier, N.; Leclercq, M.;
Bodein, A.; et al. The interaction of secreted phospholipase A2-IIA with the microbiota alters its lipidome and promotes
inflammation. JCI Insight 2022, 7, e152638. [CrossRef]

9. Hasan, N.; Yang, H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 2019, 7, e7502. [CrossRef]
10. Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What Is the Healthy Gut

Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14.
[CrossRef]

11. Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al.
Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [CrossRef] [PubMed]

12. Nash, A.K.; Auchtung, T.A.; Wong, M.C.; Smith, D.P.; Gesell, J.R.; Ross, M.C.; Stewart, C.J.; Metcalf, G.A.; Muzny, D.M.;
Gibbs, R.A.; et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 2017, 5, 153. [CrossRef]
[PubMed]

13. Hilty, M.; Burke, C.; Pedro, H.; Cardenas, P.; Bush, A.; Bossley, C.; Davies, J.; Ervine, A.; Poulter, L.; Pachter, L.; et al. Disordered
microbial communities in asthmatic airways. PLoS ONE 2010, 5, e8578. [CrossRef] [PubMed]

14. Nguyen, L.D.N.; Viscogliosi, E.; Delhaes, L. The lung mycobiome: An emerging field of the human respiratory microbiome. Front.
Microbiol. 2015, 6, 89. [CrossRef]

15. Weaver, D.; Gago, S.; Bromley, M.; Bowyer, P. The Human Lung Mycobiome in Chronic Respiratory Disease: Limitations of
Methods and Our Current Understanding. Curr. Fungal Infect. Rep. 2019, 13, 109–119. [CrossRef]

16. Budden, K.F.; Gellatly, S.L.; Wood, D.L.A.; Cooper, M.A.; Morrison, M.; Hugenholtz, P.; Hansbro, P.M. Emerging pathogenic links
between microbiota and the gut–lung axis. Nat. Rev. Microbiol. 2016, 15, 55–63. [CrossRef]

17. Dang, A.T.; Marsland, B.J. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol. 2019, 12, 843–850. [CrossRef]
18. Bingula, R.; Filaire, M.; Radosevic-Robin, N.; Bey, M.; Berthon, J.-Y.; Bernalier-Donadille, A.; Vasson, M.-P.; Filaire, E. Desired

Turbulence? Gut-Lung Axis, Immunity, and Lung Cancer. J. Oncol. 2017, 2017, 5035371. [CrossRef]
19. Stokholm, J.; Blaser, M.J.; Thorsen, J.; Rasmussen, M.A.; Waage, J.; Vinding, R.K.; Schoos, A.-M.M.; Kunøe, A.; Fink, N.R.;

Chawes, B.L.; et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 2018, 9, 141. [CrossRef]
20. Zimmermann, P.; Messina, N.; Mohn, W.W.; Finlay, B.B.; Curtis, N. Association between the intestinal microbiota and allergic

sensitization, eczema, and asthma: A systematic review. J. Allergy Clin. Immunol. 2018, 143, 467–485. [CrossRef]
21. Melli, L.; Carmo-Rodrigues, M.D.; Araújo-Filho, H.; Solé, D.; de Morais, M.B. Intestinal microbiota and allergic diseases: A

systematic review. Allergol. Immunopathol. 2015, 44, 177–188. [CrossRef]
22. Alcazar, C.G.-M.; Paes, V.M.; Shao, Y.; Oesser, C.; Miltz, A.; Lawley, T.D.; Brocklehurst, P.; Rodger, A.; Field, N. The association

between early-life gut microbiota and childhood respiratory diseases: A systematic review. Lancet Microbe 2022, 3, e867–e880.
[CrossRef] [PubMed]

23. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The
PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation
and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [CrossRef] [PubMed]

24. Moskalewicz, A.; Oremus, M. No clear choice between Newcastle–Ottawa Scale and Appraisal Tool for Cross-Sectional Studies to
assess methodological quality in cross-sectional studies of health-related quality of life and breast cancer. J. Clin. Epidemiol. 2020,
120, 94–103. [CrossRef] [PubMed]

25. Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.M.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias
tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [CrossRef]

26. Espuela-Ortiz, A.; Lorenzo-Diaz, F.; Baez-Ortega, A.; Eng, C.; Hernandez-Pacheco, N.; Oh, S.S.; Lenoir, M.; Burchard, E.G.; Flores, C.;
Pino-Yanes, M. Bacterial salivary microbiome associates with asthma among african american children and young adults. Pediatr.
Pulmonol. 2019, 54, 1948–1956. [CrossRef] [PubMed]

27. Chun, Y.; Do, A.; Grishina, G.; Grishin, A.; Fang, G.; Rose, S.; Spencer, C.; Vicencio, A.; Schadt, E.; Bunyavanich, S. Integrative
study of the upper and lower airway microbiome and transcriptome in asthma. JCI Insight 2020, 5, e133707. [CrossRef]

28. Stiemsma, L.T.; Arrieta, M.-C.; Dimitriu, P.A.; Cheng, J.; Thorson, L.; Lefebvre, D.L.; Azad, M.B.; Subbarao, P.; Mandhane, P.;
Becker, A.; et al. Shifts in Lachnospira and Clostridium sp. in the 3-month stool microbiome are associated with preschool age
asthma. Clin. Sci. 2016, 130, 2199–2207. [CrossRef]

29. Toivonen, L.; Karppinen, S.; Schuez-Havupalo, L.; Waris, M.; He, Q.; Hoffman, K.L.; Petrosino, J.F.; Dumas, O.; Camargo, C.A.;
Hasegawa, K.; et al. Longitudinal Changes in Early Nasal Microbiota and the Risk of Childhood Asthma. Pediatrics 2020, 146,
20200421. [CrossRef]

30. Thorsen, J.; Rasmussen, M.A.; Waage, J.; Mortensen, M.; Brejnrod, A.; Bønnelykke, K.; Chawes, B.L.; Brix, S.; Sørensen, S.J.;
Stokholm, J.; et al. Infant airway microbiota and topical immune perturbations in the origins of childhood asthma. Nat. Commun.
2019, 10, 5001. [CrossRef]

31. Pérez-Losada, M.; Alamri, L.; Crandall, K.A.; Freishtat, R.J. Nasopharyngeal Microbiome Diversity Changes over Time in Children
with Asthma. PLoS ONE 2017, 12, e0170543. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jaci.2011.07.027
http://doi.org/10.1172/jci.insight.152638
http://doi.org/10.7717/peerj.7502
http://doi.org/10.3390/microorganisms7010014
http://doi.org/10.1038/nature09944
http://www.ncbi.nlm.nih.gov/pubmed/21508958
http://doi.org/10.1186/s40168-017-0373-4
http://www.ncbi.nlm.nih.gov/pubmed/29178920
http://doi.org/10.1371/journal.pone.0008578
http://www.ncbi.nlm.nih.gov/pubmed/20052417
http://doi.org/10.3389/fmicb.2015.00089
http://doi.org/10.1007/s12281-019-00347-5
http://doi.org/10.1038/nrmicro.2016.142
http://doi.org/10.1038/s41385-019-0160-6
http://doi.org/10.1155/2017/5035371
http://doi.org/10.1038/s41467-017-02573-2
http://doi.org/10.1016/j.jaci.2018.09.025
http://doi.org/10.1016/j.aller.2015.01.013
http://doi.org/10.1016/S2666-5247(22)00184-7
http://www.ncbi.nlm.nih.gov/pubmed/35988549
http://doi.org/10.1016/j.jclinepi.2009.06.006
http://www.ncbi.nlm.nih.gov/pubmed/19631507
http://doi.org/10.1016/j.jclinepi.2019.12.013
http://www.ncbi.nlm.nih.gov/pubmed/31866469
http://doi.org/10.1186/1471-2288-14-43
http://doi.org/10.1002/ppul.24504
http://www.ncbi.nlm.nih.gov/pubmed/31496123
http://doi.org/10.1172/jci.insight.133707
http://doi.org/10.1042/CS20160349
http://doi.org/10.1542/peds.2020-0421
http://doi.org/10.1038/s41467-019-12989-7
http://doi.org/10.1371/journal.pone.0170543
http://www.ncbi.nlm.nih.gov/pubmed/28107528


Microorganisms 2023, 11, 939 28 of 29

32. Bisgaard, H.; Li, N.; Bonnelykke, K.; Chawes, B.L.K.; Skov, T.; Paludan-Müller, G.; Stokholm, J.; Smith, B.; Krogfelt, K.A. Reduced
diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J. Allergy
Clin. Immunol. 2011, 128, 646–652.e5. [CrossRef] [PubMed]

33. Pérez-Losada, M.; Authelet, K.J.; Hoptay, C.E.; Kwak, C.; Crandall, K.A.; Freishtat, R.J. Pediatric asthma comprises different
phenotypic clusters with unique nasal microbiotas. Microbiome 2018, 6, 179. [CrossRef] [PubMed]

34. Kim, B.-S.; Lee, E.; Lee, M.-J.; Kang, M.-J.; Yoon, J.; Cho, H.-J.; Park, J.; Won, S.; Lee, S.Y.; Hong, S.J. Different functional genes of
upper airway microbiome associated with natural course of childhood asthma. Allergy 2018, 73, 644–652. [CrossRef]

35. Depner, M.; Ege, M.J.; Cox, M.J.; Dwyer, S.; Walker, A.W.; Birzele, L.T.; Genuneit, J.; Horak, E.; Braun-Fahrländer, C.; Danielewicz, H.; et al.
Bacterial microbiota of the upper respiratory tract and childhood asthma. J. Allergy Clin. Immunol. 2017, 139, 826–834.e13. [CrossRef]

36. Chiu, C.; Chou, H.; Chang, L.; Fan, W.; Dinh, M.C.V.; Kuo, Y.; Chung, W.; Lai, H.; Hsieh, W.; Su, S. Integration of metagenomics-
metabolomics reveals specific signatures and functions of airway microbiota in mite-sensitized childhood asthma. Allergy 2020,
75, 2846–2857. [CrossRef]

37. Chiu, C.-Y.; Cheng, M.-L.; Chiang, M.-H.; Wang, C.-J.; Tsai, M.-H.; Lin, G. Integrated metabolic and microbial analysis reveals
host–microbial interactions in IgE-mediated childhood asthma. Sci. Rep. 2021, 11, 23407. [CrossRef]

38. Boutin, S.; Depner, M.; Stahl, M.; Graeber, S.Y.; Dittrich, S.A.; Legatzki, A.; von Mutius, E.; Mall, M.; Dalpke, A.H. Comparison of
Oropharyngeal Microbiota from Children with Asthma and Cystic Fibrosis. Mediat. Inflamm. 2017, 2017, 5047403. [CrossRef]

39. Kim, Y.H.; Jang, H.; Kim, S.Y.; Jung, J.H.; Kim, G.E.; Park, M.R.; Hong, J.Y.; Na Kim, M.; Kim, E.G.; Kim, M.J.; et al. Gram-negative
microbiota is related to acute exacerbation in children with asthma. Clin. Transl. Allergy 2021, 11, e12069. [CrossRef]

40. Chiu, C.-Y.; Chan, Y.-L.; Tsai, M.-H.; Wang, C.-J.; Chiang, M.-H.; Chiu, C.-C. Gut microbial dysbiosis is associated with allergen-
specific IgE responses in young children with airway allergies. World Allergy Organ. J. 2019, 12, 100021. [CrossRef]

41. Zhang, Y.; Li, T.; Yuan, H.; Pan, W.; Dai, Q. Correlations of Inflammatory Factors with Intestinal Flora and Gastrointestinal
Incommensurate Symptoms in Children with Asthma. Med. Sci. Monit. 2018, 24, 7975–7979. [CrossRef] [PubMed]

42. Hsieh, C.-S.; Rengarajan, S.; Kau, A.; Tarazona-Meza, C.; Nicholson, A.; Checkley, W.; Romero, K.; Hansel, N.N. Altered IgA
Response to Gut Bacteria Is Associated with Childhood Asthma in Peru. J. Immunol. 2021, 207, 398–407. [CrossRef]

43. Arrieta, M.-C.; Stiemsma, L.T.; Dimitriu, P.A.; Thorson, L.; Russell, S.; Yurist-Doutsch, S.; Kuzeljevic, B.; Gold, M.J.; Britton, H.M.;
Lefebvre, D.L.; et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 2015, 7,
307ra152. [CrossRef] [PubMed]

44. Chiu, C.; Cheng, M.; Chiang, M.; Kuo, Y.; Tsai, M.; Chiu, C.; Lin, G. Gut microbial-derived butyrate is inversely associated with
IgE responses to allergens in childhood asthma. Pediatr. Allergy Immunol. 2019, 30, 689–697. [CrossRef]

45. Fujimura, K.E.; Sitarik, A.R.; Havstad, S.; Lin, D.L.; LeVan, S.; Fadrosh, D.; Panzer, A.R.; LaMere, B.; Rackaityte, E.; Lukacs, N.W.; et al.
Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 2016, 22, 1187–1191.
[CrossRef] [PubMed]

46. Al Bataineh, M.T.; Hamoudi, R.A.; Dash, N.R.; Dash, N.R.; Ramakrishnan, R.K.; Almasalmeh, M.A.; Sharif, H.A.; Al-Hajjaj, M.S.;
Hamid, Q. Altered respiratory microbiota composition and functionality associated with asthma early in life. BMC Infect. Dis.
2020, 20, 697. [CrossRef]

47. Zheng, J.; Wu, Q.; Zou, Y.; Wang, M.; He, L.; Guo, S. Respiratory Microbiota Profiles Associated with the Progression From
Airway Inflammation to Remodeling in Mice With OVA-Induced Asthma. Front. Microbiol. 2021, 12, 2372. [CrossRef]

48. Xiong, Y.; Hu, S.; Zhou, H.; Zeng, H.; He, X.; Huang, D.; Li, X. High-throughput 16S rDNA sequencing of the pulmonary
microbiome of rats with allergic asthma. Genes Dis. 2020, 7, 272–282. [CrossRef]

49. Sohn, K.-H.; Baek, M.-G.; Choi, S.-M.; Bae, B.; Kim, R.Y.; Kim, Y.-C.; Kim, H.-Y.; Yi, H.; Kang, H.-R. Alteration of Lung and Gut
Microbiota in IL-13-Transgenic Mice Simulating Chronic Asthma. J. Microbiol. Biotechnol. 2020, 30, 1819–1826. [CrossRef]

50. Losol, P.; Park, H.-S.; Song, W.-J.; Hwang, Y.-K.; Kim, S.-H.; Holloway, J.W.; Chang, Y.-S. Association of upper airway bacterial
microbiota and asthma: Systematic review. Asia Pac. Allergy 2022, 12, e32. [CrossRef]

51. Sbihi, H.; Boutin, R.; Cutler, C.; Suen, M.; Finlay, B.B.; Turvey, S.E. Thinking bigger: How early-life environmental exposures
shape the gut microbiome and influence the development of asthma and allergic disease. Allergy Eur. J. Allergy Clin. Immunol.
2019, 74, 2103–2115. [CrossRef] [PubMed]

52. Pulvirenti, G.; Parisi, G.F.; Giallongo, A.; Papale, M.; Manti, S.; Savasta, S.; Licari, A.; Marseglia, G.L.; Leonardi, S. Lower Airway
Microbiota. Front. Pediatr. 2019, 7, 393. [CrossRef]

53. Tille, P. Bailey & Scott’s Diagnostic Microbiology; Elsevier Health Sciences: Amsterdam, The Netherlands, 2015.
54. Green, B.J.; Wiriyachaiporn, S.; Grainge, C.; Rogers, G.; Kehagia, V.; Lau, L.; Carroll, M.P.; Bruce, K.D.; Howarth, P.H. Potentially

Pathogenic Airway Bacteria and Neutrophilic Inflammation in Treatment Resistant Severe Asthma. PLoS ONE 2014, 9, e100645.
[CrossRef] [PubMed]

55. Rivas, M.N.; Crother, T.R.; Arditi, M. The microbiome in asthma. Curr. Opin. Pediatr. 2016, 28, 764–771. [CrossRef] [PubMed]
56. Kalliomäki, M.; Kirjavainen, P.; Eerola, E.; Kero, P.; Salminen, S.; Isolauri, E. Distinct patterns of neonatal gut microflora in infants

in whom atopy was and was not developing. J. Allergy Clin. Immunol. 2001, 107, 129–134. [CrossRef]
57. Penders, J.; Thijs, C.; van den Brandt, P.A.; Kummeling, I.; Snijders, B.; Stelma, F.; Adams, H.; van Ree, R.; Stobberingh, E.E. Gut

microbiota composition and development of atopic manifestations in infancy: The KOALA Birth Cohort Study. Gut 2007, 56,
661–667. [CrossRef]

http://doi.org/10.1016/j.jaci.2011.04.060
http://www.ncbi.nlm.nih.gov/pubmed/21782228
http://doi.org/10.1186/s40168-018-0564-7
http://www.ncbi.nlm.nih.gov/pubmed/30286807
http://doi.org/10.1111/all.13331
http://doi.org/10.1016/j.jaci.2016.05.050
http://doi.org/10.1111/all.14438
http://doi.org/10.1038/s41598-021-02925-5
http://doi.org/10.1155/2017/5047403
http://doi.org/10.1002/clt2.12069
http://doi.org/10.1016/j.waojou.2019.100021
http://doi.org/10.12659/MSM.910854
http://www.ncbi.nlm.nih.gov/pubmed/30401793
http://doi.org/10.4049/jimmunol.2001296
http://doi.org/10.1126/scitranslmed.aab2271
http://www.ncbi.nlm.nih.gov/pubmed/26424567
http://doi.org/10.1111/pai.13096
http://doi.org/10.1038/nm.4176
http://www.ncbi.nlm.nih.gov/pubmed/27618652
http://doi.org/10.1186/s12879-020-05427-3
http://doi.org/10.3389/fmicb.2021.723152
http://doi.org/10.1016/j.gendis.2019.03.006
http://doi.org/10.4014/jmb.2009.09019
http://doi.org/10.5415/apallergy.2022.12.e32
http://doi.org/10.1111/all.13812
http://www.ncbi.nlm.nih.gov/pubmed/30964945
http://doi.org/10.3389/fped.2019.00393
http://doi.org/10.1371/journal.pone.0100645
http://www.ncbi.nlm.nih.gov/pubmed/24955983
http://doi.org/10.1097/MOP.0000000000000419
http://www.ncbi.nlm.nih.gov/pubmed/27606957
http://doi.org/10.1067/mai.2001.111237
http://doi.org/10.1136/gut.2006.100164


Microorganisms 2023, 11, 939 29 of 29

58. Mirzayi, C.; Renson, A.; Furlanello, C.; Sansone, S.-A.; Zohra, F.; Elsafoury, S.; Geistlinger, L.; Kasselman, L.J.; Eckenrode, K.;
van de Wijgert, J.; et al. Reporting guidelines for human microbiome research: The STORMS checklist. Nat. Med. 2021, 27,
1885–1892. [CrossRef]

59. Gaulke, C.A.; Sharpton, T.J. The influence of ethnicity and geography on human gut microbiome composition. Nat. Med. 2018, 24,
1495–1496. [CrossRef]

60. Kers, J.G.; Saccenti, E. The Power of Microbiome Studies: Some Considerations on Which Alpha and Beta Metrics to Use and
How to Report Results. Front. Microbiol. 2022, 12, 4366. [CrossRef]

61. Allali, I.; Arnold, J.W.; Roach, J.; Cadenas, M.B.; Butz, N.; Hassan, H.M.; Koci, M.; Ballou, A.; Mendoza, M.; Ali, R.; et al. A
comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC
Microbiol. 2017, 17, 194. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1038/s41591-021-01552-x
http://doi.org/10.1038/s41591-018-0210-8
http://doi.org/10.3389/fmicb.2021.796025
http://doi.org/10.1186/s12866-017-1101-8

	Introduction 
	Materials and Methods 
	Eligibility Criteria 
	Information Sources and Search Strategy 
	Selection and Data-Collection Process 
	Data Items 
	Risk of Bias Assessment 
	Synthesis Methods 

	Results 
	Quality of the Included Studies 
	Characteristics of the Included Studies 
	Clinical Studies 
	Animal Intervention Studies 

	Microbiome Quantification 
	Diversity Assessments 
	Microbiome Outcome 
	Human Studies 
	Animal Intervention Studies 


	Discussion 
	Conclusions 
	References

