Antimicrobial Mechanism of Salt/Acid Solution on Microorganisms Isolated from Trimmed Young Coconut
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Strains and Culture Conditions
2.2. Preparation of Microbial Inoculum
2.2.1. Bacteria and Yeast Cell Preparation
2.2.2. Fungal Spore Preparation
2.2.3. Preparation of Selected Microbial Cocktail Inoculum
2.3. Antimicrobial Activity Assay
2.3.1. Antimicrobial Agent Preparation
2.3.2. Antimicrobial Activities of Single Inoculum
2.3.3. Antimicrobial Activities of Microbial Cocktail Inoculum on the Produce Matrix Model
2.4. Investigation of Salt/Acid Solution Antimicrobial Mechanism
2.4.1. Transmission Electron Microscopy
2.4.2. Scanning Electron Microscopy
2.5. Statistical Analysis
3. Results and Discussions
3.1. Antibacterial Activity Assay
3.1.1. Microbial Inhibition of Individual Antimicrobial Agents
3.1.2. Microbial Inhibition of Salt/Acid Solution
3.1.3. Comparison of Inhibitory Efficacy of Antimicrobial Agents
3.1.4. Microbial Inhibition of the Salt/Acid Solution on the Produce Matrix Model
3.2. Salt/acid Solution Antimicrobial Mechanism
3.2.1. Inhibitory Efficacy of Salt/Acid Solution on Microbial Structure by TEM
3.2.2. Inhibitory Efficacy of the Salt/Acid Solution on Microbial Structure by SEM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davidson, G.R.; Kaminski-Davidson, C.N.; Ryser, E.T. Persistence of Escherichia coli O157:H7 during pilot-scale processing of iceberg lettuce using flume water containing peroxyacetic acid-based sanitizers and various organic loads. Int. J. Food Microbiol. 2017, 248, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Burgess, C.M.; Gianotti, A.; Gruzdev, N.; Holah, J.; Knøchel, S.; Lehner, A.; Margas, E.; Esser, S.S.; Sela, S.; Tresse, O. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int. J. Food Microbiol. 2016, 221, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Herdt, J.; Feng, H. Aqueous antimicrobial treatments to improve fresh and fresh-cut produce safety. Microb. Saf. Fresh Prod. 2009, 167–190. [Google Scholar] [CrossRef]
- Furia, T.E. CRC Handbook of Food Additives; CRC Press: Boca Raton, FL, USA, 1973; Volume 1. [Google Scholar]
- Weil, E.D.; Sandler, S.R.; Gernon, M. Sulfur compounds. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley Online Library: New York, NY, USA, 2000. [Google Scholar]
- Lien, K.-W.; Hsieh, D.P.H.; Huang, H.-Y.; Wu, C.-H.; Ni, S.-P.; Ling, M.-P. Food safety risk assessment for estimating dietary intake of sulfites in the Taiwanese population. Toxicol. Rep. 2016, 3, 544–551. [Google Scholar] [CrossRef][Green Version]
- Cho, G.-L.; Ha, J.-W. Synergistic effect of citric acid and xenon light for inactivating foodborne pathogens on spinach leaves. Food Res. Int. 2021, 142, 110210. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, G.H.; Yoon, K.S.; Shankar, S.; Rhim, J.-W. Comparative antibacterial and antifungal activities of sulfur nanoparticles capped with chitosan. Microb. Pathog. 2020, 144, 104178. [Google Scholar] [CrossRef]
- Görgüç, A.; Gençdağ, E.; Okuroğlu, F.; Yılmaz, F.M.; Bıyık, H.H.; Köse, S.Ö.; Ersus, S. Single and combined decontamination effects of power-ultrasound, peroxyacetic acid and sodium chloride sanitizing treatments on Escherichia coli, Bacillus cereus and Penicillium expansum inoculated dried figs. J. Food Sci. Technol. 2021, 140, 110844. [Google Scholar] [CrossRef]
- Firouzabadi, F.B.; Noori, M.; Edalatpanah, Y.; Mirhosseini, M. ZnO nanoparticle suspensions containing citric acid as antimicrobial to control Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Bacillus cereus in mango juice. Food Control 2014, 42, 310–314. [Google Scholar] [CrossRef]
- Casella, F.; Vurro, M.; Valerio, F.; Perrino, E.V.; Mezzapesa, G.N.; Boari, A. Phytotoxic effects of essential oils from six lamiaceae species. Agronomy 2013, 13, 257. [Google Scholar] [CrossRef]
- Demirci, A.; Ngadi, M.O. Microbial Decontamination in the Food Industry. In Novel Methods and Applications; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Parichanon, P.; Sattayakhom, A.; Matan, N.; Matan, N. Antimicrobial activity of lime oil in the vapour phase against Listeria monocytogenes on ready-to-eat salad during cold storage and its possible mode of action. Food Control 2022, 132, 108486. [Google Scholar] [CrossRef]
- Damodaran, S.; Parkin, K.L.; Fennema, O.R. Fennema’s Food Chemistry; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Potter, N.N.; Hotchkiss, J.H. Unit Operations in Food Processing. In Food Science; Springer: Heidelberg, Germany, 1995; pp. 69–89. [Google Scholar]
- Davidson, P.; Taylor, T. Chemical Preservatives and Natural Antimicrobial Compounds. In Food Microbiology: Fundamentals and Frontiers, 3rd ed.; Wiley Online Library: New York, NY, USA, 2017; pp. 713–745. [Google Scholar]
- Goldberg, R.N.; Kishore, N.; Lennen, R.M. Thermodynamic quantities for the ionization reactions of buffers. J. Phys. Chem. Ref. Data 2002, 31, 231–370. [Google Scholar] [CrossRef][Green Version]
- Kim, N.H.; Rhee, M.S. Synergistic bactericidal action of phytic acid and sodium chloride against Escherichia coli O157:H7 cells protected by a biofilm. Int. J. Food Microbiol. 2016, 227, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Seok, J.-H.; Ha, J.-W. Synergistic mechanism and enhanced inactivation exhibited by UVA irradiation combined with citric acid against pathogenic bacteria on sliced cheese. Food Control 2021, 124, 107861. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, H. Effect of organic acids, hydrogen peroxide and mild heat on inactivation of Escherichia coli O157:H7 on baby spinach. Food Control 2011, 22, 1178–1183. [Google Scholar] [CrossRef]
- Brecht, J.K.; Saltveit, M.E.; Talcott, S.T.; Schneider, K.R.; Felkey, K.; Bartz, J.A. Fresh-cut vegetables and fruits. Hortic. Rev. 2003, 30, 185–251. [Google Scholar]
- Nguyen, D.T.N.; Tongkhao, K.; Tongchitpakdee, S. Application of citric acid, sodium chloride and peroxyacetic acid as alternative chemical treatment for organic trimmed aromatic coconut. Chiang Mai Univ. J. Nat. Sci. 2019, 18, 444–460. [Google Scholar] [CrossRef]
- Treesuwan, K.; Jirapakkul, W.; Tongchitpakdee, S.; Chonhenchob, V.; Mahakarnchanakul, W.; Tongkhao, K. Sulfite-free treatment combined with modified atmosphere packaging to extend trimmed young coconut shelf life during cold storage. Food Control 2022, 139, 109099. [Google Scholar] [CrossRef]
- Maciel, N.; Piló, F.; Freitas, L.; Gomes, F.; Johann, S.; Nardi, R.; Lachance, M.-A.; Rosa, C. The diversity and antifungal susceptibility of the yeasts isolated from coconut water and reconstituted fruit juices in Brazil. Int. J. Food Microbiol. 2013, 160, 201–205. [Google Scholar] [CrossRef]
- Kolaei, E.A.; Tweddell, R.J.; Avis, T.J. Antifungal activity of sulfur-containing salts against the development of carrot cavity spot and potato dry rot. Postharvest Biol. Technol. 2012, 63, 55–59. [Google Scholar] [CrossRef]
- Sagong, H.-G.; Lee, S.-Y.; Chang, P.-S.; Heu, S.; Ryu, S.; Choi, Y.-J.; Kang, D.-H. Combined effect of ultrasound and organic acids to reduce Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. Int. J. Food Microbiol. 2011, 145, 287–292. [Google Scholar] [CrossRef]
- Bracey, D.; Holyoak, C.; Coote, P.J. Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: Is growth inhibition dependent on reduced intracellular pH. J. Appl. Microbiol. 1998, 85, 1056–1066. [Google Scholar] [CrossRef] [PubMed]
- Baráti-Deák, B.; Da Costa Arruda, G.C.; Perjéssy, J.; Klupács, A.; Zalán, Z.; Mohácsi-Farkas, C.; Belák, Á. Inhibition of foodborne pathogenic bacteria by excreted metabolites of Serratia marcescens strains isolated from a dairy-producing environment. Microorganisms 2023, 11, 403. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto-Shinohara, Y.; Sukenobe, J.; Imaizumi, T.; Nakahara, T. Survival of freeze-dried bacteria. J. Gen. Appl. Microbiol. 2008, 54, 9–24. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wijnker, J.J.; Koop, G.; Lipman, L.J.A. Antimicrobial properties of salt (NaCl) used for the preservation of natural casings. Food Microbiol. 2006, 23, 657–662. [Google Scholar] [CrossRef]
- Nampuak, C.; Tongkhao, K. Okra mucilage powder: A novel functional ingredient with antioxidant activity and antibacterial mode of action revealed by scanning and transmission electron microscopy. Int. J. Food Sci. Technol. 2020, 55, 569–577. [Google Scholar] [CrossRef]
- Nakayama, M.; Shimatani, K.; Ozawa, T.; Shigemune, N.; Tomiyama, D.; Yui, K.; Katsuki, M.; Ikeda, K.; Nonaka, A.; Miyamoto, T. Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis. Biosci. Biotechnol. Biochemi. 2015, 79, 845–854. [Google Scholar] [CrossRef]
- Almeida, J.R.; Modig, T.; Petersson, A.; Hähn-Hägerdal, B.; Lidén, G.; Gorwa-Grauslund, M.F. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2007, 82, 340–349. [Google Scholar] [CrossRef]
- Ghaly, M.; Shaheen, A.; Bouhy, A.; Bendary, M. Alternative therapy to manage otitis media caused by multidrug-resistant fungi. Arch. Microbiol. 2020, 202, 1231–1240. [Google Scholar] [CrossRef]
- Parish, M.; Beuchat, L.; Suslow, T.; Harris, L.; Garrett, E.; Farber, J.; Busta, F. Methods to reduce/eliminate pathogens from fresh and fresh-cut produce. Compr. Rev. Food Sci. Food Saf. 2003, 2, 161–173. [Google Scholar] [CrossRef]
- Brul, S.; Coote, P. Preservative agents in foods: Mode of action and microbial resistance mechanisms. Int. J. Food Microbiol. 1999, 50, 1–17. [Google Scholar] [CrossRef]
- Dholvitayakhun, A.; Trachoo, N.; Narkkong, N.-A.; Cushnie, T.T. Using scanning and transmission electron microscopy to investigate the antibacterial mechanism of action of the medicinal plant Annona squamosa Linn. J. Herbal. Med. 2017, 7, 31–36. [Google Scholar] [CrossRef]
- Lin, R.; Deng, C.; Cheng, J.; Murphy, J.D. Low concentrations of furfural facilitate biohydrogen production in dark fermentation using Enterobacter aerogenes. Renew. Energy 2020, 150, 23–30. [Google Scholar] [CrossRef]
- Dornelas-Ribeiro, M.; Pinheiro, E.O.; Guerra, C.; Braga-Silva, L.A.; Carvalho, S.M.F.D.; Santos, A.L.S.D.; Rozental, S.; Fracalanzza, S.E.L. Cellular characterisation of Candida tropicalis presenting fluconazole-related trailing growth. Mem. Inst. Oswaldo Cruz 2012, 107, 31–38. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gomes-Junior, R.A.; da Silva, R.S.; de Lima, R.G.; Vannier-Santos, M.A. Antifungal mechanism of [RuIII (NH3)4 catechol]+ complex on fluconazole-resistant Candida tropicalis. FEMS Microbiol. Lett. 2017, 364, fnx073. [Google Scholar] [CrossRef] [PubMed]
Reagents | Concentration (%) | Inhibitory Effect (Log Reduction ± SD) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(+ve) Bacteria | (−ve) Bacteria | Yeast | Mold | ||||||||
B. cereus | B. subtilis | S. aureus | S. epidermidis | E. aerogenes | S. marcescens | C. tropicalis | L. elongisporus | A. aculeatus | P. citrinum | ||
KMS | 1 | 1.30 ± 0.25 Cc | 1.97 ± 0.26 Ba | 0.53 ± 0.41 Da | 1.27 ± 0.09 Cc | 0.45 ± 0.14 Deb | 0.47 ± 0.14 DEabc | 0.34 ± 0.19 DEc | 0.66 ± 0.87 Da | 6.30 ± 0.35 Aa | - * Eb |
2.5 | 1.65 ± 0.32 Cb | 2.04 ± 0.02 Ca | 0.18 ± 0.14 Db | 1.86 ± 0.68 Cc | 0.68 ± 0.09 Da | 0.53 ± 0.23 Dab | 0.52 ± 0.13 Dc | 0.93 ± 0.92 Da | 6.30 ± 0.35 Ba | 6.44 ± 0.16 Aa | |
3 | 1.74 ± 0.19 Cb | 1.93 ± 0.22 Cb | 0.32 ± 0.12 Eab | 1.62 ± 0.05 Cbc | 0.60 ± 0.02 DEa | 0.34 ± 0.13 Ec | 0.80 ± 0.35 DEc | 0.94 ± 0.90 Da | 6.30 ± 0.35 Ba | 6.44 ± 0.16 Aa | |
5 | 1.74 ± 0.23 Db | 1.73 ± 0.06 Dab | 0.24 ± 0.13 Fb | 3.77 ± 0.30 Ca | 0.48 ± 0.10 Fb | 0.37 ± 0.01 Fbc | 3.80 ± 0.46 Cb | 1.21 ± 0.82 Ea | 6.30 ± 0.35 Ba | 6.44 ± 0.16 Aa | |
10 | 3.04 ± 0.19 Ea | 1.89 ± 0.00 Fab | 0.34 ± 0.06 Gab | 4.01 ± 0.04 Da | 0.67 ± 0.00 Ga | 0.64 ± 0.08 Ga | 5.37 ± 0.28 Cb | 1.92 ± 0.88 Fa | 6.30 ± 0.35 Ba | 6.44 ± 0.16 Aa | |
NaOCl | 0.0005 | 2.65 ± 0.32 Eb | 2.78 ± 0.21 Ea | 7.82 ± 0.09 Ba | 4.98 ± 0.14 Dc | 7.55 ± 0.07 Bb | 8.33 ± 0.05 Aa | 6.44 ± 0.16 Ca | 6.44 ± 0.88 Ca | 1.78 ± 0.26 Fb | - Gc |
0.0010 | 2.44 ± 0.09 Db | 1.88 ± 0.20 Eb | 7.82 ± 0.09 Ba | 6.81 ± 0.32 Cb | 7.63 ± 0.11 Bb | 8.33 ± 0.05 Aa | 6.44 ± 0.16 Ca | 6.44 ± 0.88 Ca | 1.26 ± 0.08 Fc | 0.22 ± 0.12 Gc | |
0.0015 | 2.65 ± 0.07 Db | 1.71 ± 0.12 Eb | 7.82 ± 0.09 Ba | 8.31 ± 0.04 Aa | 8.43 ± 0.03 Aa | 8.33 ± 0.05 Aa | 6.44 ± 0.16 Ca | 6.44 ± 0.88 Ca | 2.08 ± 0.24 Eab | 0.96 ± 0.33 Fb | |
0.0020 | 3.04 ± 0.19 Da | 1.75 ± 0.02 Fb | 7.82 ± 0.09 Ba | 8.31 ± 0.04 Aa | 8.43 ± 0.03 Aa | 8.33 ± 0.05 Aa | 6.44 ± 0.16 Ca | 6.44 ± 0.88 Ca | 2.26 ± 0.28 Ea | 1.92 ± 0.38 EFa | |
NaCl | 5 | 0.85 ± 0.09 Bc | - * Cc | - Ca | 0.01 ± 0.11 Cb | 0.65 ± 0.01 Bb | 1.46 ± 0.09 Ab | 0.24 ± 0.20 Cb | 0.56 ± 0.94 Bb | - Ca | - Ca |
10 | 1.20 ± 0.14 Aab | 0.54 ± 0.40 Bb | - Ca | 0.25 ± 0.12 BCab | 0.55 ± 0.01 Bc | 1.39 ± 0.11 Ab | 0.37 ± 0.14 BCab | 0.62 ± 0.87 Ba | - Ca | - Ca | |
15 | 1.23 ± 0.15 Aab | - Dc | - Da | 0.19 ± 0.03 CDab | 0.49 ± 0.05 BCd | 1.41 ± 0.04 Ab | 0.15 ± 0.03 CDb | 0.55 ± 0.94 Bb | - Da | - Da | |
20 | 1.45 ± 0.35 ABa | 1.08 ± 0.5 Ca | - Da | 0.25 ± 0.02 Dab | 0.73 ± 0.07 Ca | 1.63 ± 0.11 Aa | 0.26 ± 0.23 Db | 0.64 ± 0.89 Cb | - Da | - Da | |
30 | 1.02 ± 0.22 Bbc | 0.58 ± 0.43 BCDb | - Fa | 0.26 ± 0.31 DEFa | 0.51 ± 0.03 CDEcd | 1.49 ± 0.16 Ab | 0.76 ± 0.50 BCa | 0.46 ± 0.83 BCDb | - Fa | - Fa | |
Citric acid | 5 | 1.51 ± 0.08 Ea | 2.30 ± 0.00 Db | 0.98 ± 0.05 Fe | 8.33 ± 0.00 Aa | 6.14 ± 0.13 Bd | 5.24 ± 0.18 Cc | 0.33 ± 0.21 GHb | 0.50 ± 0.88 Gb | - Ha | - Ha |
10 | 1.34 ± 0.08 Fa | 2.34 ± 0.00 Db | 1.60 ± 0.34 Ed | 8.33 ± 0.00 Aa | 6.54 ± 0.13 Bc | 5.47 ± 0.01 Cb | 0.88 ± 0.70 Gb | 0.52 ± 0.86 Gb | - Ha | - Ha | |
15 | 1.47 ± 0.10 Da | 2.46 ± 0.06 Ca | 2.73 ± 0.21 Cc | 8.33 ± 0.00 Aa | 6.65 ± 0.03 Bb | 8.33 ± 0.05 Aa | 0.92 ± 0.54 Db | 0.52 ± 0.91 Db | - Fa | - Fa | |
20 | 1.21 ± 0.08 CDa | 2.56 ± 0.13 Ca | 4.12 ± 0.16 Bb | 8.33 ± 0.00 Aa | 8.43 ± 0.03 Aa | 8.33 ± 0.05 Aa | 0.65 ± 0.72 Db | 1.01 ± 0.98 Db | - Ea | - Ea | |
30 | 1.50 ± 0.20 EFa | 2.56 ± 0.15 Da | 7.82 ± 0.09 Ba | 8.33 ± 0.00 Aa | 8.43 ± 0.03 Aa | 8.33 ± 0.05 Aa | 2.31 ± 0.11 Ea | 3.67 ± 0.75 Ca | - Fa | - Fa | |
Salt/acid | 15:10 | 0.86 ± 0.13 Ea | 3.50 ± 0.13 Ca | 4.22 ± 0.25 Bb | 8.31 ± 0.00 Aa | 8.43 ± 0.00 Aa | 8.34 ± 0.00 Aa | 3.07 ± 0.23 Db | 0.45 ± 0.22 Fc | - Fa | - Ga |
(NaCl: citric acid) | 15:15 | 0.94 ± 0.37 Da | 3.30 ± 0.11 Cab | 4.80 ± 0.30 Bb | 8.31 ± 0.00 Aa | 8.43 ± 0.00 Aa | 8.34 ± 0.00 Aa | 3.43 ± 0.34 Cb | 0.66 ± 0.44 Dc | - Ea | - Ea |
15:20 | 1.12 ± 0.13 Fa | 2.95 ± 0.45 Dbc | 6.67 ± 1.35 Ba | 8.31 ± 0.00 Aa | 8.43 ± 0.00 Aa | 8.34 ± 0.00 Aa | 4.19 ± 0.44 Ca | 1.86 ± 0.20 Eb | - Ga | - Ga | |
15:30 | 0.91 ± 0.13 Ea | 2.69 ± 0.35 Dc | 7.03 ± 0.92 Ba | 8.31 ± 0.00 Aa | 8.43 ± 0.00 Aa | 8.34 ± 0.00 Aa | 4.67 ± 0.31 Ca | 2.79 ± 0.17 Da | - Fa | - Fa | |
Range of inhibitory effect | 0–1.00 | 1.01–2.00 | 2.01–3.00 | 3.01–4.00 | 4.01–5.00 | 5.01–6.00 | 6.01–7.00 | 7.01–8.00 | 8.01–9.00 |
Microorganism | Minimum Concentrations with Maximum Inhibitory Effect of Antimicrobial Agents (% log Reduction) | ||||
---|---|---|---|---|---|
KMS (% w/v) | NaOCl (% v/v) | NaCl (% w/v) | Citric Acid (% w/v) | Salt/Acid (% w/v) | |
Bacteria Gram-positive | |||||
B. cereus | 10 (99.9%) | 0.0005 (99.77%) | 10 (93.69%) | 5 (96.69%) | 15:20 (92.41%) |
B. subtilis | 10 (98.92%) | 0.0005 (99.83%) | 20 (91.68%) | 5 (99.99%) | 15:10 (99.96%) |
S. aureus | 10 (70.48%) | 0.0005 (100%) | - * | 30 (100%) | 15:20 (99.9999%) |
S. epidermidis | 3 (94.62%) | 0.0005 (99.998%) | 10 (43.76%) | 5 (100%) | 15:10 (100%) |
Bacteria Gram-negative | |||||
E. aerogenes | 10 (64.51%) | 0.0005 (100%) | 5 (77.61%) | 5 (99.9999%) | 15:10 (100%) |
S. marcescens | 10 (66.11%) | 0.0005 (100%) | 5 (96.53%) | 5 (99.999%) | 15:10 (100%) |
Yeast | |||||
C. tropicalis | 5 (99.98%) | 0.0005 (100%) | 5 (42.45%) | 30 (99.51%) | 15:20 (9.91%) |
L. elongisporus | 10 (78.12%) | 0.0005 (100%) | 5 (72.45%) | 30 (99.97%) | 15:20 (98.61%) |
Mold | |||||
A. aculeatus | 1 (99.999%) | 0.0005 (98.34%) | - | - | - |
P. citrinum | 2.5 (99.999%) | 0.0020 (39.74%) | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treesuwan, K.; Jirapakkul, W.; Tongchitpakdee, S.; Chonhenchob, V.; Mahakarnchanakul, W.; Tongkhao, K. Antimicrobial Mechanism of Salt/Acid Solution on Microorganisms Isolated from Trimmed Young Coconut. Microorganisms 2023, 11, 873. https://doi.org/10.3390/microorganisms11040873
Treesuwan K, Jirapakkul W, Tongchitpakdee S, Chonhenchob V, Mahakarnchanakul W, Tongkhao K. Antimicrobial Mechanism of Salt/Acid Solution on Microorganisms Isolated from Trimmed Young Coconut. Microorganisms. 2023; 11(4):873. https://doi.org/10.3390/microorganisms11040873
Chicago/Turabian StyleTreesuwan, Khemmapas, Wannee Jirapakkul, Sasitorn Tongchitpakdee, Vanee Chonhenchob, Warapa Mahakarnchanakul, and Kullanart Tongkhao. 2023. "Antimicrobial Mechanism of Salt/Acid Solution on Microorganisms Isolated from Trimmed Young Coconut" Microorganisms 11, no. 4: 873. https://doi.org/10.3390/microorganisms11040873