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Abstract: This study investigated the genetic variability and antibiotic resistance of Acinetobac-
ter community depending on the stage of wastewater treatment in Kokšov-Bakša for the city of
Košice (Slovakia). After cultivation, bacterial isolates were identified by matrix-assisted laser desorp-
tion/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and their sensitivity to ampicillin,
kanamycin, tetracycline, chloramphenicol and ciprofloxacin was examined. Acinetobacter spp. and
Aeromonas spp. dominated bacterial populations in all wastewater samples. We identified 12 different
groups based on protein profiling, 14 genotypes by amplified ribosomal DNA restriction analysis
and 11 Acinetobacter species using 16S rDNA sequence analysis within Acinetobacter community,
which showed significant variability in their spatial distribution. While Acinetobacter population
structure changed during the wastewater treatment, the prevalence of antibiotic-resistant strains did
not significantly vary depending on the stage of wastewater treatment. The study highlights the role
of a highly genetically diverse Acinetobacter community surviving in wastewater treatment plants as
an important environmental reservoir assisting in the further dissemination of antibiotic resistance in
aquatic systems.

Keywords: Acinetobacter spp.; wastewater treatment plant; antibiotic resistance; genetic variability

1. Introduction

Members of the genus Acinetobacter are typical gram-negative, non-motile bacteria.
These bacteria were first isolated from soil by Beijerinck in 1911 and named as a species
Micrococcus calcoaceticus [1,2]. Since then, the bacterium has been reclassified several
times and was first described as the genus Acinetobacter by Brisou and Prevot in 1954 [3].
Currently, the genus is classified in the family Moraxellaceae, order Pseudomonadales,
class Gammaproteobacteria and the phylum Proteobacteria. To date, at least 82 species
have been identified, and new species are still being described [4].

Bacteria are characterized by diverse properties and can be found in a variety of
environments. They are commonly found in soil, in water, on human skin and in human
and animal intestinal tracts and feces. In addition, some bacteria are able to thrive in extreme
environments such as raw sewage and activated sludge in wastewater treatment plants
(WWTPs) or environments contaminated by heavy metals [5,6]. Some species are known to
cause severe nosocomial infections, such as A. baumannii, A. lwoffii or A. haemolyticus. Many
strains are characterized by extensive drug resistance, and some members of the genus play
an important role in heavy metal removal from contaminated soils or possess hydrocarbon-
degrading capabilities. Therefore, these bacteria are also interesting for application in
bioremediation processes [7–9].

The major problem with Acinetobacter spp. is their resistance to many antibiotics, the
most common to ampicillin, cephalothin, carbenicillin, gentamicin, amikacin, chloram-
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phenicol, tetracycline, co-trimoxazole, ciprofloxacin, cefoperazone, etc. [10–12]. Mecha-
nisms of antimicrobial resistance among Acinetobacter spp. depend on the species, the type
of antibiotic and geographical location and can include the inactivation of antibiotics via
modifying enzymes, decreased permeability of the outer membrane to antibiotics, increased
efflux of the antibiotics from the cell and target site mutations [11,13]. Antimicrobial resis-
tance is easily transferred among Acinetobacter spp. by plasmids and transposons, mainly
via horizontal gene transfer, such as conjugation and transformation. However, gene
transfer by bacteriophage transduction has also been observed among these bacteria [3,14].

Many studies have documented that WWTPs belong to the main anthropogenic
sources of antibiotics, antibiotic-resistance genes and antibiotic-resistant bacteria due to
high loads of hospital and municipal wastewater and insufficient degradation of antibi-
otics [6,15]. Acinetobacter spp. are commonly found in WWTPs and represent an important
component of cultivable microbiota of wastewater and activated sludge. They play an
important role in nitrification–denitrification processes and phosphorus removal from
wastewater [16,17].

The aim of this study was to assess the genetic variability and antibiotic resistance
of Acinetobacter spp. obtained from the wastewater treatment plant in Kokšov-Bakša near
Košice city (Slovakia).

2. Materials and Methods
2.1. Sampling

WWTP near the village Kokšov-Bakša treats sewage from the city Košice (eastern Slo-
vakia) and is located on the right bank of the Hornád River (48◦39′29.9′′ N 21◦18′13.8′′ E)
(Figure S1). The average capacity of the WWTP is 950 L·s−1, according to the provider Eastern
Slovakia Water Utility Services Company in Košice. Wastewater sampling was conducted
in April 2018 from four sampling points: 1. at the water inflow, 2. from sedimentation tank
after mechanical treatment, 3. during biological treatment and 4. at the water outflow. One
sample was collected from each sampling site into sterile 50 mL tube with sterile pipette.
The samples were immediately placed in transfer box and transported to the laboratory for
further processing.

The physicochemical characteristics of the wastewater at the time of sampling (includ-
ing water temperature up to 12 ◦C) were provided by the Eastern Slovakia Water Utility
Services Company in Košice based on regular water monitoring (Table S1).

2.2. Bacteria Isolation and Cultivation

Water samples were serially diluted in sterile phosphate-buffered saline (Sigma-
Aldrich, St. Louis, MO, USA), and 100 µL aliquot from each dilution was inoculated
onto R2A medium (Sigma-Aldrich, USA). Samples were incubated for 48 h at the labo-
ratory temperature range of 20–25 ◦C. Numbers of cultivable heterotrophic bacteria in
water samples were determined as a number of colony-forming units per 1 mL of wa-
ter (CFU per mL). One hundred isolates, randomly selected from each sample site, were
again subcultured on R2A medium and subsequently identified using matrix-assisted laser
desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and subjected
to antibiotic susceptibility testing.

2.3. MALDI-TOF MS Identification

Bacterial protein extracts were prepared according to the manufacturer’s instructions
(Bruker Daltonics GmbH, Bremen, Germany) using 70% formic acid and acetonitrile as
extract solutions. Subsequently, 1 µL of each extract was placed on a stainless steel plate,
dried and then 1 µL of α-cyano-4-hydroxycinnamic acid matrix was added. Samples were
analyzed by Microflex LT MALDI-TOF MS system with FlexControl v.3.0 (Bruker Daltonics
GmbH, Bremen, Germany). Protein profiles were analyzed by Biotyper v.3.0 against the
reference library of the integrated database v.3.3.1.0. The identification criteria by MALDI-
TOF MS were as follows: a score of ≥2.0 was considered as an accurate species-level
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identification, a score from 1.7 to 2.0 was considered as a probable genus-level identification
and a score of <1.7 was considered as not reliable identification (NRI). Main spectra library
(MSP) dendrograms, generated using Biotyper v.3.0, were used to infer the relationships
between isolates.

2.4. Antimicrobial Susceptibility Testing

Agar-dilution susceptibility testing was used to examine the antibiotic resistance of
isolates. Isolates were inoculated on the Mueller–Hinton agar (Merck, KgaA, Darmstadt,
Germany) supplemented with one of the following antibiotics to a final concentration:
ampicillin (8 mg L−1), tetracycline (4 mg L−1), kanamycin (16 mg L−1), chloramphenicol
(8 mg L−1) or ciprofloxacin (Acinetobacter spp. 1 mg L−1, other species 0.5 mg L−1), and
cultivated overnight at the laboratory temperature. The concentrations of antibiotics were
chosen as a consensus of recommendations (for Acinetobacter spp., Enterobacteriaceae and
other non-Enterobacteriaceae) according to the criteria of European Committee on Antimi-
crobial Susceptibility Testing and Performance Standards for Antimicrobial Susceptibility
Testing as official standards for susceptibility testing of antimicrobials [18,19].

2.5. Genetic Variability Determination of Acinetobacter spp.

The genetic variability of Acinetobacter spp. was assessed by a combination of protein
profiling and amplified ribosomal DNA restriction analysis (ARDRA) [20]. Firstly, MALDI
dendrogram was constructed based on protein spectra of all isolates identified as Acineto-
bacter species. Subsequently, 16S rRNA gene amplification of all isolates was performed
and PCR products were digested with selected restriction enzymes. Thereafter, isolates
were divided into separate groups based on ARDRA results and their position in the MSP
dendrogram. Finally, representative isolates having unique ARDRA profiles were selected
from each MALDI group for 16S rDNA sequence analysis.

2.6. Amplification of 16S rRNA Gene

A small amount of bacterial colony was suspended in 500 µL of distilled water, boiled
for 10 min, agitated thoroughly and centrifuged briefly. Amplification of 16S rRNA gene
was performed by polymerase chain reaction (PCR) using Taq Core Kit (Jena Bioscience,
Jena, Germany) and Mastercycler® Pro S (Eppendorf, Hamburg, Germany). A 50 µL of
PCR mixture contained 1× Crystal Buffer, 200 µM of dNTP, 1 µM of each primer (fD1
5′-AGAGTTTGATCCTGGCTCAG-3′, rP2 5′-ACGGCTACCTTGTTACGACTT-3′), 1.25 U
of Taq polymerase and 1 µL of bacterial suspension [21]. Initial denaturation at 95 ◦C for
5 min was followed by 35 cycles of denaturation at 95 ◦C for 1 min, primer annealing at
54 ◦C for 1 min and extension at 72 ◦C for 1.5 min with the final extension step at 72 ◦C
for 5 min. PCR products were inspected for correct size (~1500 bp) on an agarose gel (1%,
wt/vol) electrophoresis for 1 h at 95 V.

2.7. Amplified Ribosomal DNA Restriction Analysis

Amplified 16S rDNA fragments (5 µL) were separately digested for 1 h at 37 ◦C in 25 µL
reaction mixture containing 2.5 µL of 10× NEBuffer and 5 U of restriction endonuclease as
AluI, MspI or RsaI (New England Biolabs, Inc., Ipswich, MA, USA). Restriction fragments
were separated by electrophoresis on 1.5% agarose gel for 1 h at 80 V. Subsequently,
a specific genotype of each isolate was determined based on the combination of three
restriction patterns.

2.8. Identification Using 16S rDNA Sequence Analysis

PCR amplicons were purified by ethanol precipitation, and concentration of DNA
was measured using NanodropTM One (Thermo Scientific, Waltham, MA, USA). In both
directions, 16S rDNA sequences were sequenced by Sanger sequencing method at SEQme
s.r.o sequencing service (Dobříš, Czech Republic). Obtained sequences were assembled
using the CAP3 tool [22] and aligned using a BLAST search tool against the GenBank 16S
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rDNA sequence database (http://www.ncbi.nlm.nih.gov/blast accessed on 20 September
2022). The sequences were submitted to the GenBank database and are available under
accession numbers from OK235605 to OK235620.

2.9. Data Analysis

Phylogenetic placement of isolates was confirmed by multiple sequence comparisons
against the existing 16S rRNA gene sequences of closest relatives obtained from GenBank
database. Sequences were aligned using the ClustalW algorithm implemented in MEGAX
v.10.2.4 [23]. Phylogenetic tree was constructed using the neighbor-joining method with
1000 bootstrap replications. The evolutionary distances were computed using Kimura
2-parameter model [24].

Past v.3.20 software was used for statistical evaluation of the results [25]. Differences
in bacterial counts between sampling sites were analyzed by one-way ANOVA. Changes in
the cultivable bacterial composition, in the occurrence of resistant strains and in the genetic
variability in the genus Acinetobacter during the wastewater treatment were assessed by Chi-
square test. Correlation analysis was used to evaluate the multi-resistance in Acinetobacter
spp. Alpha diversity of bacterial populations, particularly of the genus Acinetobacter, was
determined by Simpson’s and Shannon’s diversity indices.

The genetic composition of the Acinetobacter population depending on the stage of
wastewater treatment was visualized by heatmap constructed using ClustVis web tool
(https://biit.cs.ut.ee/clustvis/ accessed on 15 March 2022) [26].

3. Results
3.1. Bacteria Isolation and Cultivation

The average number of cultivable heterotrophic bacteria in inflow was calculated as
353,000 CFU per mL, which dropped significantly after the wastewater treatment (one-way
ANOVA, p < 0.05) (Table 1).

Table 1. Abundance and biodiversity of cultivable heterotrophic bacterial community in wa-
ter samples from different stages during the wastewater treatment process in Kokšov-Bakša,
Košice (Slovakia).

Sampling Site Title CFU a Per mL Wastewater Simpson’s Index Shannon’s Index

1. inflow 353 × 103 0.5418 1.278
2. mechanical treatment 116 × 104 0.4986 1.194
3. biological treatment 61 × 103 0.5716 1.226

4. outflow 3.6 × 103 * 0.7372 1.800
a CFU—colony forming unit; average number of CFU per mL calculated from three different dilutions of each
water sample. * Significant reduction in the number of CFU per mL in outflow compared to inflow water (one-way
ANOVA, p < 0.05).

3.2. Identification of Isolates Using MALDI-TOF MS

A total of 400 isolates (100 from each sampling site) were identified using MALDI-TOF
MS. Ninety-four isolates were successfully identified with a score higher than 2.0 and
285 isolates with a score ranging from 1.7 to 2.0. These isolates represented 16 different
bacterial genera belonging to three bacterial phyla such as Actinobacteria, Firmicutes and
Proteobacteria (Figure 1). Twenty-one isolates showed a score of <1.7.

At the genus level, Acinetobacter spp. (95 isolates) and Aeromonas spp. (228 isolates)
dominated cultivable bacterial populations in all water samples. The relative abundance
of Aeromonas spp. decreased significantly (from 65% to 36%), while the occurrence of
Acinetobacter spp. increased (from 18% to 35%) during the wastewater treatment (Chi-square
test, p < 0.05). In addition, the counts of Enterobacteriaceae, as well as their species richness,
significantly decreased (from 7 to 3) in outflow compared to the inflow wastewater sample.

http://www.ncbi.nlm.nih.gov/blast
https://biit.cs.ut.ee/clustvis/
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Figure 1. The composition of cultivable bacterial communities in different stages of the wastewa-
ter treatment process in Kokšov-Bakša, (Košice, Slovakia). The category “Others” groups bacteria
whose relative abundance was within the community below 2%, such as Achromobacter spp., Kluyvera
spp., Lactobacillus spp., Lactococcus spp., Leuconostoc spp., Providencia spp., Raoultella spp. and un-
reliable identified isolates by MALDI-TOF MS. 1.—inflow, 2.—mechanical wastewater treatment,
3.—biological wastewater treatment, 4.—outflow. * Significant reduction in the number of Aeromonas
spp. and significant increase in the number of Acinetobacter spp. during the wastewater treatment
process (Chi-square test, p < 0.05).

A score of <1.7 was recorded for 21 isolates (NRI). These isolates were classified into
13 different MALDI groups, and according to their position in the MALDI dendrograms,
they represented with a high probability 13 different genera belonging to Proteobacteria
(18 isolates) and Firmicutes (3 isolates). Two unique NRI MALDI groups were found in the
water sample from the sedimentation tank after mechanical treatment, five NRI MALDI
groups (three of them were unique) were found in the sample during biological treatment
and eight NRI MALDI groups (of which six were unique) in outflow water.

In addition, Simpson’s and Shannon’s indices indicated an increased alpha diversity of
the cultivable bacterial community in the effluent compared to the inflow (Table 1). Based
on these findings, we can assume that the composition of cultivable heterotrophic bacteria
significantly changed during the wastewater treatment.

3.3. Antimicrobial Susceptibility Testing

Almost all bacterial isolates showed resistance to ampicillin (the occurrence ranged
from 96% to 100%, depending on the sampling site). Moreover, kanamycin-resistant isolates
achieved a very high prevalence (ranging from 55% to 81%). Resistance to other antibiotics
occurred with significantly lower frequency (Figure 2a). No significant changes were
observed in the prevalence of antibiotic-resistant isolates during the wastewater treatment
process (Chi-square test, p < 0.05).

More than 98% of all Acinetobacter spp. were resistant to ampicillin (from 95% to 100%
isolates, depending on the sampling site). The relative abundance of isolates resistant to
other antibiotics ranged from 13% to 44%. No statistically significant differences were de-
tected in the occurrence of antibiotic-resistant isolates depending on the stage of wastewater
treatment (Chi-square test, p < 0.05) (Figure 2b).
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Figure 2. The prevalence of antibiotic-resistant strains within cultivable bacterial community (a)
and Acinetobacter spp. (b) in different stages of the wastewater treatment process in Kokšov-Bakša
(Košice, Slovakia). AMP—ampicillin, KAN—kanamycin, TET—tetracycline, CHL—chloramphenicol,
CIP—ciprofloxacin. 1.—inflow, 2.—mechanical wastewater treatment, 3.—biological wastewater
treatment, 4.—outflow.

Only one isolate of Acinetobacter spp. was sensitive to all tested antibiotics (the intrinsic
resistance to ampicillin was not considered). The abundance of isolates resistant to two
different antibiotics increased in affluent compared to inflow water. On the other side,
antibiotic resistance to three and four antibiotics decreased during the wastewater treatment.
However, the differences were not statistically significant (Chi-square test, p > 0.05) (Table 2).
Low correlation coefficient values (between −0.03 and 0.21) indicate a weak relationship in
the prevalence of antibiotic resistance among Acinetobacter spp. (Table S2).

Table 2. The prevalence of multiresistant Acinetobacter isolates from the wastewater treatment plant
Kokšov-Bakša (Košice, Slovakia).

Number of
Antibiotics

Number of Resistant Isolates (%)

1. (n a = 18) 2. (n = 15) 3. (n = 27) 4. (n = 35)

2 1 (5.56) 2 (13.33) 7 (25.93) 9 (25.71)
3 1 (5.56) 1 (6.67) 1 (3.70) 1 (2.86)
4 1 (5.56) 0 (0) 1 (3.70) 0 (0)

a n—total number of Acinetobacter isolates in wastewater sample. The intrinsic resistance to ampicillin was not
considered. 1.—inflow, 2.—mechanical wastewater treatment, 3.—biological wastewater treatment, 4.—outflow.

3.4. Identification and Genetic Variability Determination of Acinetobacter spp.

Members of the Acinetobacter genus were classified into 12 different MALDI groups
based on their position in the MSP dendrogram using distance unit 200 as a group delin-
eation level (Figure S2). An exception is MALDI group IV (later identified as A. johnsonii),
including seven separate clusters at the distance level 200, which was considered as a single
group based on following ARDRA and 16S rDNA sequence analyses.

We identified 14 different genotypes within Acinetobacter spp. based on a combination
of MALDI-TOF MS protein spectra analysis and ARDRA (Figure S3). The number of
different genotypes increased from five to eight during the wastewater treatment, and each
sampling site was characterized by the presence of unique genotypes not found in any
other water sample (Table 3).

One unique genotype (G6) of Acinetobacter spp. was detected in an inflow water sample,
two unique genotypes (G2 and G9) were found in the population from the sedimentation
tank after mechanical treatment, two genotypes (G7 and G12) were unique for population
obtained during biological wastewater treatment and the bacterial community from outflow
showed four unique genotypes (G1, G8, G10 and G13) (Figure 3).
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Table 3. Variability of Acinetobacter community in wastewater treatment plant in Kokšov-Bakša for
Košice city (Slovakia) based on MALDI-TOF MS, ARDRA and 16S rDNA sequence analysis.

MALDI
Group

Genotype
(Representative

Strain)

Accession
No.

(GenBank)

Restriction
Enzyme Number of Isolates in Sampling Site (%) Best Hit Blastn Against 16S rDNA

Sequence Database (Similarity)
AluI MspI RsaI 1. a 2. 3. 4.

I G1 (4-66) b OK235617 3 c 3 4 0 0 0 1 (2.86) A. lwoffii JCM 6840 (100%)
II G2 (2-14) OK235610 4 2 4 0 1 (6.67) 0 0 A. pitii LMG 1035 (100%)
III G3 (1-55) OK235608 3 1 2 1 (5.56) 0 0 1 (2.86) A. johnsonii ATCC 17909 (99.92%)

G4 (1-44) OK235607 3 3 2 2 (11.11) 0 0 0 A. johnsonii ATCC 17909 (99.93%)
IV G3 (2-97) OK235612 3 1 2 2 (11.11) 2 (13.33) 4 (14.81) 1 (2.86) A. johnsonii ATCC 17909 (99.85%)

G4 (2-01) OK235609 3 3 2 10 (55.56) 10 (66.67) 14 (51.85) 9 (25.71) A. johnsonii ATCC 17909 (99.92%)
G5 (1-08) OK235605 1 1 1 1 (5.56) 0 1 (3.70) 0 A. johnsonii ATCC 17909 (99.92%)

V G6 (1-24) OK235606 2 2 2 1 (5.56) 0 0 0 A. junii ATCC 17908 (99.93%)
G7 (3-97) OK235615 8 2 2 0 0 2 (7.41) 0 A. junii ATCC 17908 (100%)

VI G8 (4-67) OK235618 5 3 5 0 0 0 1 (2.86) A. bouvetii DSM 14964 (99.12%)
VII G9 (2-16) OK235611 3 3 4 0 1 (6.67) 0 0 A. pragensis ANC 4149 (99.71%)
VIII G10 (4-78) OK235619 3 2 5 0 0 0 1 (2.86) A. chinensis WCHAc010005 (99.04%)
IX G11 (4-91) OK235620 5 3 4 1 (5.56) 0 0 4 (11.43) A. johnsonii ATCC1 7909 (98.23%)
X G12 (3-93) OK235614 7 3 5 0 0 1 (3.7) 0 A. kyonggiensis KSL5401-037 (98.05%)
XI G13 (4-06) OK235616 3 2 4 0 0 0 1 (2.86) A. seohaensis SW-100 (98.82%)
XII G14 (3-75) OK235613 6 3 2 0 1 (6.67) 5 (18.52) 16 (45.71) A. movanagherensis Movanagher 4 (99.41%)

Total number of isolates 18 15 27 35
Chi-square test p < 0.05 d

a 1.—inflow, 2.—mechanical wastewater treatment, 3.—biological wastewater treatment, 4.—outflow. b Genotype
obtained using amplified ribosomal DNA restriction analysis (ARDRA). c A type of restriction pattern obtained
after digestion with the appropriate restriction enzyme. d Significant differences in genotype distribution of
Acinetobacter spp. during wastewater treatment evaluated by Chi-square test (p < 0.05).
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2.—mechanical wastewater treatment, 3.—biological wastewater treatment, 4.—outflow.

A clear correlation between MALDI and ARDRA groups was observed in several
Acinetobacter clusters, e.g., all isolates classified into MALDI groups IX and XII possessed an
identical ARDRA profile (Table 3). However, at least two different ARDRA profiles were de-
tected in MALDI groups III, IV and V. MALDI group IV included isolates belonging to three
different ARDRA profiles, indicating some probable degree of genetic non-homogeneity
within MALDI groups.
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A total of 16 representative isolates were identified based on the 16S rDNA sequence.
The analysis confirmed significant differences in the spatial distribution of Acinetobacter
species among the stages of the wastewater treatment process (Chi-square test, p < 0.05).
While A. johnsonii (genotype G3, G4 and G5) dominated the bacterial communities in the
first three sampling sites, A. movanagherensis Movanagher 4 (genotype G14) dominated the
bacterial population in the effluent water. The 16S rDNA sequence analyses showed the
highest similarity of the genotype G8 to A. bouvetii DSM 14964 (99.12%), G11 to A. johnsonii
ATCC1 7909 (98.23%) and G12 to A. kyonggiensis KSL5401-037 (98.05%) (Table 3). However,
subsequent phylogenetic analysis showed that these three genotypes might represent, with
a high probability, new species belonging to the genus Acinetobacter. These findings are
supported by branch lengths and low bootstrap values in the phylogenetic tree (Figure 4).
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Figure 4. Phylogenetic placement of representative Acinetobacter strains (OK235605-OK235620)
from the wastewater treatment plant within the genus Acinetobacter. G1–G14—genotypes obtained
based on digestion of 16S rRNA gene using three different restriction enzymes AluI, MspI and RsaI.
Phylogenetic tree was constructed using neighbor-joining method with 1000 bootstrap replications.
The evolutionary distances were computed using Kimura 2-parameter model.
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All analyses (MALDI-TOF MS, ARDRA, 16S rDNA sequence) indicated the high vari-
ability of Acinetobacter spp. community, which increased during the wastewater treatment
process (Table 4). Generally, Simpson’s and Shannon’s diversity indices indicated the high-
est diversity of Acinetobacter spp. communities evaluated based on different protein spectra.

Table 4. Alpha diversity of Acinetobacter spp. population in different stages of the wastewater
treatment process observed using different method.

Diversity
Index Analysis

Sampling Site

1. 2. 3. 4.

Simpson’s MALDI-TOF MS 0.5185 0.5333 0.7462 0.7069
ARDRA 0.5185 0.5244 0.6667 0.7053

16S rRNA gene 0.2037 0.3467 0.4636 0.6759
Shannon’s MALDI-TOF MS 1.051 1.173 1.739 1.564

ARDRA 1.051 1.081 1.373 1.525
16S rRNA gene 0.426 0.720 0.874 1.376

Sampling site: 1.—inflow, 2.—mechanical wastewater treatment, 3.—biological wastewater treatment, 4.—outflow.
MALDI-TOF MS—matrix-assisted laser desorption/ionization-time of flight mass spectrometry, ARDRA—
amplified ribosomal DNA restriction analysis.

Interestingly, based on 16S rRNA gene analysis, MALDI groups III and IV with
distance levels over 900 belong to the same A. johnsonii species (Figure S2). In addition,
ARDRA indicated the presence of the same genotypes in both MALDI groups (G3 and G4).
Nevertheless, the groups differed significantly in their protein spectra, and a relatively high
variability of protein spectra was also found within MALDI group IV alone.

4. Discussion

Antimicrobial resistance is a natural phenomenon that occurs via natural selection, but
anthropogenic activities such as the use of antibiotics for therapeutic purposes lead to a sig-
nificant increase in antibiotic resistance in various components of the environment [27–29].

The efficiency of WWTPs in the reduction of pathogenic microorganisms and antibiotic
degradation varies depending on the purification process. Some studies documented that
the number of bacteria, including resistant strains, was reduced up to 97–99% during the
wastewater treatment process, but the degradation of antibiotics remained insufficient in
many cases [30–33]. A high microbial density in WWTP (mainly in activated sludge) and
the presence of antibiotics at sub-inhibitory concentrations may facilitate a horizontal gene
transfer among bacterial communities. Therefore, WWTPs can be important reservoirs of
antibiotic-resistant bacteria and antibiotic-resistance genes persisting in the final effluent
and spreading into the environment [6,34].

A recent study demonstrated that the wastewater treatment process in Kokšov-Bakša
reduced more than 98.9% of cultivable heterotrophic bacteria in the effluent compared
to the inflow water. Thus, we can confirm that the wastewater treatment plant has the
desired efficiency in reducing the number of potentially dangerous bacteria entering the
environment from wastewater. However, some metagenomic approaches demonstrated
that the whole bacterial community was not significantly reduced by the purification
process, but only its species composition changed. Generally, fecal bacteria and other
potential pathogens (e.g., Escherichia, Shigella species) are dramatically reduced after water
treatment [6,35]. Similarly, there was a significant reduction in bacteria of the family
Enterobacteriaceae as well as of the genus Aeromonas after the purification process in a
recent study.

Almost all isolates showed resistance to ampicillin. This result could be expected,
as ampicillin has long been one of the most widely used antibiotics in Slovakia [36]. In
addition, the abundance of antibiotic-resistant strains remained approximately at the same
level in different stages of wastewater treatment despite the changing composition of the
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cultivable bacterial population. We can assume that this phenomenon is caused by residual
antibiotics and a horizontal gene transfer between bacteria.

Generally, Acinetobacter spp. are characterized by a natural resistance to penicillins,
so a high number of ampicillin-resistant strains in wastewater could be expected [37]. In
addition, Acinetobacter spp. show multi-resistance to many antibiotics, including various
beta-lactams [10–12]. Similarly, in WWTP of Kokšov-Bakša, 18.94% of isolates showed
resistance to two antibiotics, 4.21% to three and 2.11% to four different antibiotics, whereas
the number of multiresistant isolates did not change significantly during the wastewater
purification process. Acinetobacter strains resistant to ampicillin, kanamycin, erythromycin,
tetracycline and chloramphenicol were also detected in the effluent in a previous study [38].
Hubeny et al. [39] demonstrated that the number of Acinetobacter isolates carrying car-
bapenem antibiotic resistance genes increased in river water samples collected downstream
from the wastewater discharge point (18.6% of isolates) compared to water samples col-
lected upstream from the wastewater discharge point (13.2% of isolates).

A single-medium culture method may provide very limited results on the structure
of the bacterial population in the wastewater treatment plant. However, several previous
culture-dependent and especially culture-independent (metagenomic) approaches have
shown that Acinetobacter spp. are an important part of the microbial community of WWTPs.
Many species show a high ability to survive the water purification process [6,40–42]. Some
species, such as A. junii and A. venetians, are even able to survive water chlorination [41].

The data on the species composition of Acinetobacter populations in WWTPs are
relatively scarce, as most previous studies reported the presence of Acinetobacter spp. in
wastewater at the genus level with no further species identification. There are several
studies focusing on clinically important species, such as Acinetobacter baumannii, isolated
from wastewater [43,44]. The presence of Acinetobacter johnsonii was also confirmed in
WWTPs [45]. High diversity of the genus Acinetobacter was reported in different WWTPs
by Pulami et al. [46]. They phylogenetically identified (based on 16S rRNA gene and rpoB
sequence analyses) a total of 132 Acinetobacter isolates classified in 14 different phylotypes.

Our study revealed remarkably high variability of Acinetobacter spp. community in
WWTP using various methods. Based on 16S rDNA sequence analysis, at least 11 differ-
ent Acinetobacter species were identified whose spatial distribution varied significantly
depending on the stage of the purification process. While A. johnsonii dominated the
Acinetobacter community in inflow water (84.9%), and its prevalence decreased during
the water treatment process, Acinetobacter movonagherensis dominated the community in
outflow water (45.71%). In fact, some stages of the purification process were characterized
by species not found in other phases. In addition, at least three isolates could represent
new species of the genus Acinetobacter spp., but further analyses are needed to evaluate
these preliminary findings. Finally, we also assume the presence of Acinetobacter baumannii
in WWTP in Kokšov-Bakša (confirmed in previous unpublished pilot experiments), which
was not detected by the culture method used in a recent study.

A high genetic diversity of Acinetobacter community was also confirmed using ARDRA
with three different genotypes detected within A. johnsonii and two different genotypes
within A. junii community. Moreover, biotyping using MALDI-TOF MS revealed unusu-
ally high heterogeneity of protein profiles within A. johnsonii group. Similar results were
obtained when only 16 out of 23 A. johnsonii isolates (identified by 16S rRNA gene se-
quencing) could be securely identified by the MALDI-TOF MS approach [47]. All these
data indicate the genetic non-homogeneity of A. johnsonii species and the existence of
several genospecies in A. johnsonii complex. Modern genomic data strongly suggest that
the diversity of the Acinetobacter genus is heavily underestimated, and multiple new species
have been proposed based on molecular data [48].

One study demonstrated that wastewater treatment contributes to the selective in-
crease of antibiotic resistance among Acinetobacter spp. [49]. Our findings showed that
despite changes in Acinetobacter population composition during the wastewater treatment
process, the relative abundance of antibiotic-resistant isolates did not fluctuate.
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5. Conclusions

In conclusion, our results indicate that the WWTP for Košice in Kokšov-Bakša may
represent a potential source of resistant bacteria that are further spread into the aquatic
environment of Hornád River. The genus Acinetobacter is an important component of the
cultivable heterotrophic microbiota in WWTP, exhibiting a high biodiversity and species
richness, which varied depending on the stage of wastewater treatment. Finally, we
hypothesize that Acinetobacter spp. persisting permanently or for a prolonged time in
various stages of wastewater plants could, through horizontal gene transfer, significantly
contribute to the emergence and dissemination of new antibiotic resistance bacteria entering
the environment by effluent water.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11040840/s1, Figure S1: Wastewater treatment
plant in Kokšov-Bakša near the city Košice (Slovakia); Figure S2: MSP dendrogram created based
on the MALDI-TOF MS specific-protein spectra of Acinetobacter spp.; Figure S3: Demonstration
of restriction patterns obtained after digestion of 16S rRNA gene of three different isolates (A, B
and C); Table S1: The physicochemical characteristics of the wastewater at the time of sampling
on 10 April 2018 (Eastern Slovakia Water Utility Services Company in Košice, Slovakia); Table S2:
Correlation analysis of the prevalence of antibiotic resistance within the Acinetobacter community in
the wastewater treatment plant in Kokšov-Bakša (Košice, Slovakia).
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