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Abstract: The fall armyworm, Spodoptera frugiperda (Noctuidae; Lepidoptera), is a serious threat to
food security as it has the potential to feed on over 353 plant species. To control this insect pest,
endophytic colonization of entomopathogenic fungi (EPF) in plants is being considered as a safer
and more effective alternative. This study evaluated the efficacy of two EPFs, Beauveria bassiana and
Metarhizium anisopliae, for endophytic colonization using foliar spray and seed treatment methods on
maize plants, and their impact on the survival, development, and fecundity of S. frugiperda. Both
EPF effectively colonized the maize plants with foliar spray and seed treatment methods, resulting in
72–80% and 50–60% colonization rates, respectively, 14 days after inoculation. The EPF negatively
impacted the development and fecundity of S. frugiperda. Larvae feeding on EPF-inoculated leaves
had slower development (21.21 d for M. anisopliae and 20.64 d for B. bassiana) than the control
treatment (20.27 d). The fecundity rate was also significantly reduced to 260.0–290.1 eggs/female
with both EPF applications compared with the control treatment (435.6 eggs/female). Age-stage-
specific parameters showed lower fecundity, life expectancy, and survival of S. frugiperda when they
fed on both EPF-inoculated leaves compared with untreated leaves. Furthermore, both EPFs had
a significant effect on population parameters such as intrinsic (r = 0.127 d−1 for B. bassiana, and
r = 0.125 d−1 for M. anisopliae) and finite rate (λ = 1.135 d−1 for B. bassiana, and λ = 1.1333 d−1 for
M. anisopliae) of S. frugiperda compared with the control (r = 0.133 d−1 and λ = 1.146 d−1). These
findings suggest that EPF can be effectively used for the endophytic colonization of maize plants to
control S. frugiperda. Therefore, these EPFs should be integrated into pest management programs for
this pest.

Keywords: biology; colonization; entomopathogenic fungi; endophyte; Spodoptera frugiperda

1. Introduction

The fall armyworm, Spodoptera frugiperda (Noctuidae; Lepidoptera), is an invasive
insect pest that attacks various economically important crops. It is native to tropical and
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subtropical regions of the Americas and has rapidly spread to other countries worldwide
due to its strong flying capacity and migratory behavior [1]. This pest has a polyphagous
feeding habit and is known to feed on over 353 plant species, with corn being its most
preferred host, causing significant annual losses in corn production [2]. S. frugiperda’s
extensive feeding on economically important crops is increasingly threatening agricultural
productivity and exacerbating food insecurity [3]. Since its introduction to Pakistan in
2019 [4], S. frugiperda has caused significant damage to the maize crop, leading to substantial
losses.

Farmers commonly rely on synthetic insecticides to control insect pests in their fields,
but this approach can lead to a host of problems, such as insect resistance, harm to non-
target organisms, and environmental damage [5]. Consequently, alternative strategies for
pest management are needed. One such strategy is microbial control, which has proven to
be highly effective against insect pests [6,7]. Entomopathogenic fungi (EPF) are particularly
promising for integrated pest management, as they are cost-effective and have no harmful
effects on humans or the environment [8,9]. There are around 750 known EPF species that
infect various insects and mites, each with its own specific target [8]. The genera Beauveria,
and Metarhizium are especially effective against lepidopterous insect pests [10]. In addition
to their use as biological insecticides, many EPF species are capable of colonizing plant
tissues [11,12]. Although only a few EPF species occur naturally as endophytes, numerous
successful attempts have been made to introduce various EPFs into plants using different
techniques [12]. This endophytic colonization of EPF can help improve plant growth and
reduce pest densities in a variety of economically important crops [13–16].

The ability of B. bassiana to colonize maize plants and produce secondary plant metabo-
lites that infect herbivorous insects is considered highly effective [17,18]. Endophytically
colonized entomopathogenic fungi have been recovered from different parts of plants, such
as leaves, stems, and roots, and these colonized plants show high virulence against insect
herbivory [19,20]. M. anisopliae has been introduced as an endophyte in several plants,
including tomato, cassava, and oilseed rape, with negative effects on the larvae of Plutella
xylostella [21–23]. The insecticidal effect of such endophytic EPF colonization on major
plant insect pests can be useful in IPM strategies. The main objective of our study was to
evaluate the endophytic effect of B. bassiana and M. anisopliae on the biology and survival
of S. frugiperda.

2. Materials and Methods
2.1. Insect Culture

The eggs and larvae of S. frugiperda were obtained from a maize field located at the
research farm (32◦07′57.3′′ N 72◦41′30.2′′ E) of the University of Sargodha. The culture was
maintained under controlled conditions of 65 ± 5% relative humidity and 27 ± 2 ◦C
at the Biocontrol laboratory of the Entomology Department at the University of Sar-
godha. Neonate larvae were fed an artificial diet prepared using the method suggested by
Sorour et al. [24]. The adults were moved to plastic cages (30 × 30 × 30 cm) and provided
with a 10% sugar solution for food. Muslin cloth was provided in plastic jars to facilitate
oviposition. The F3 generation was used for further experiments.

2.2. Plant Culture

The researchers purchased hybrid maize seeds (Zea mays L.; var. HY-CORN 11 Plus, ICI
Pakistan Ltd., Lahore, Pakistan) from a local market in Sargodha. The seeds were sterilized
by soaking them in a 70% ethanol solution for two minutes. The seeds were washed
with 1.0% sodium hypochlorite (DAEJUNG Chemicals & Metals Co., Ltd., Gyeonggi-do,
Republic of Korea) for 2 min followed by three times washing with distilled water, after
which they were soaked in distilled water at 4 ◦C for 24 h before planting. The seeds
were then sown in plastic pots (11 × 12 cm) containing a mixture of soil, perlite, and
vermiculite in equal proportions (1:1:1), and the planting medium was autoclaved three
times for 45 min at 121 ◦C with an interval of 24 h between each autoclave. The plants were
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grown in a greenhouse and irrigated as needed, without the application of any pesticides
or fertilizers throughout the experiment.

2.3. Entomopathogenic Fungi

Entomopathogenic fungi, B. bassiana and M. anisopliae were obtained from AgriLife
SOM Phytopharma (Hyderabad, Telangana. India) Limited in talc form [25]. The conidial
spore suspension for both fungi was adjusted to 1 × 108 conidia mL−1 by using Neubauer
hemocytometer [26]. A germination test [27] was performed for both fungi to evaluate the
viability of conidial spores. The conidial suspensions with ≥90% germination were used
for plant inoculation.

2.4. Plant Inoculation with Entomopathogenic Fungi by Foliar Application

Maize seeds that had been sterilized were planted in pots containing a sterile planting
medium, as described earlier. When the maize seedlings were three weeks old at the growth
stage BBCH 15 (5 leaves unfolded) [28], they were sprayed using a hand sprayer with an
average of 3 mL of spore suspensions of each fungus in distilled water with 0.01% Tween 80.
In the control treatment, plants were sprayed with 3 mL of a solution consisting of distilled
water and 0.01% Tween 80. Each treatment was sprayed directly onto the leaves. To prevent
conidial runoff, the surface of each pot was covered with aluminum foil while spraying.
The experiment was repeated four times and 5 plants were selected randomly, totaling
20 plants for each treatment. Independent batches of plants and EPF were used in each
treatment. In order to neutralize the effect of position, pots of each treatment were placed
in a randomized complete block design (RCBD) in a greenhouse.

2.5. Plant Inoculation with Entomopathogenic Fungi through Seed Treatment

In this method, surface-sterilized maize seeds were dipped in 10 mL of conidial spore
suspension of each fungus for 24 h. A sterilized paper towel was used to dry the seeds for
30 min prior to sowing in pots containing the sterile planting medium as discussed above.
In the control treatment, seeds were soaked in distilled water with 0.01% Tween 80 solution
for 24 h prior to sowing. The same numbers of replications and designs were used as in the
foliar application method.

2.6. Colonization of Plants by Endophytic Entomopathogenic Fungi

Leaf samples were collected 14 and 28 days after the inoculation of EPF. For each
sampling day, ten plants were selected, and the fourth true leaf was taken from each
plant for each treatment. The leaves were washed with distilled water, sterilized with 70%
ethanol for 2 min, and then with 1.0% sodium hypochlorite for 2 min. The samples were
then rinsed twice with sterile distilled water. Sterilized scalpels were used to slash the
leaves into small pieces. Each piece of the leaf was plated individually on Potato Dextrose
Agar (PDA) medium. On each sampling day, an average of four pieces of leaves were
collected from each plant. The samples were placed in Petri plates containing 20 mL of PDA
and incubated at 25 ◦C in the dark. The plates were observed after 7 and 15 days of PDA
inoculation to record fungal growth. The percent colonization frequency was calculated
using the following formula:

CF =
No. o f plant pieces showing f ungal growth

Total no. o f plated plant pieces
× 100

2.7. Endophytic Effects of Entomopathogenic Fungi on Life Table Parameters of S. frugiperda

The most effective method of plant inoculation was determined based on the highest
colonization rate of EPF (Figure 1). Highly colonized plants from the foliar spray method
(highly effective) were used in the life table study. In each treatment, eighty 2-day-old
first instar larvae were separated from the rearing colony and placed in Petri plates (one
per plate). Treated maize leaves were provided as needed until pupation. In the control
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group, non-inoculated plant leaves were provided. The developmental period of each stage
and survival rate were recorded daily. After pupal formation, all pupae were placed in
separate Petri plates lined with cotton, and the pupal period was recorded. Adults from
each treatment were paired and released into transparent plastic boxes (30 × 30 × 30 cm)
with a honey solution provided as food. A healthy potted plant was placed in each
cage, and muslin cloth was hung in the plastic boxes to facilitate oviposition. Newly
laid eggs were transferred to Petri plates, and the total numbers of eggs were recorded
daily. This experiment was conducted under controlled conditions at 25 ± 1 ◦C, 60–70%
relative humidity, and a 16:8 h (light: dark) photoperiod. The life stages, including the
egg incubation period, duration of each larval stage, total larval development time, pupal
duration, pupal emergence into adults (females and males), the number of eggs laid by
each female, and adult life were recorded.

Figure 1. Percent colonization (means ± SE) of entomopathogenic fungi on maize with two inocula-
tion methods at 14 and 28 days after inoculation (DAI) (LSD test after three-way ANOVA). Different
letters above bars indicate significantly different means.

2.8. Statistical Analyses

For percent colonization, data were analyzed by three-way ANOVA by keeping EPF,
inoculation method, and time interval as main factors. Means were separated by LSD
all-pairwise comparison test at a 5% level of significance. The development duration and
survival rate from raw data were analyzed using age-stage, two-sex life table procedures
using the TWO SEX-MS Chart program [29]. For the calculation of standard error, boot-
strapping method (with 100,000 random samplings) was used by using the MS Chart
program.

3. Results

Before being inoculated in maize plants, the viability of two entomopathogenic fungi,
B. bassiana and M. anisopliae, was assessed on PDA plates. Both fungi had a germination
rate of over 90% and were successfully inoculated in the maize plants. The frequency of
endophytic colonization (CF) by B. bassiana and M. anisopliae varied significantly (F = 5.78,
p < 0.05) depending on the inoculation method used. The highest CF percentage for both
fungi was observed when using the foliar spray method compared with seed treatment.
The colonization rate of both fungi was highest at 14 days after inoculation, compared
with 28 days. At 14 days, the CF percentage of M. anisopliae was 80.0% using the foliar
spray method and 65.0% using the seed inoculation method, while the CF percentage of B.
bassiana was 72.5% when applied by foliar spray and 50.0% by seed inoculation method
(Figure 1).
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Table 1 presents the development period for each stage of S. frugiperda when feeding
on leaves inoculated with EPF. The larval instars showed significant differences in their
developmental period, except for L2 and L4 (p > 0.05). The larvae took 20.64 days to
complete their developmental period when fed on B. bassiana-inoculated leaves, 21.21 days
when fed on M. anisopliae-inoculated leaves, and 20.27 days when fed on untreated leaves.
The pupal duration was extended to 8.20 days when B. bassiana was applied and 7.43 days
when M. anisopliae was applied, compared to 6.91 days in the control. The longevity of
female adults was longer than that of male adults in all treatments. However, when larvae
were fed on M. anisopliae-inoculated leaves, female adult longevity was shorter (9.73 days)
compared to adults in the control group (11.47 days) (Table 1).

Table 1. Development period (average no. of days) of Spodoptera frugiperda fed on maize plants
colonized with Beauveria bassiana and Metarhizium anisopliae in comparison with untreated plants.

Life Stages n B. bassiana n M. anisopliae n Control

Egg incubation 80 3.15 ± 0.059 b 80 2.90 ± 0.083 c 80 3.44 ± 0.061 a

L1 80 3.49 ± 0.056 a 80 3.31 ± 0.055 b 80 3.52 ± 0.056 a

L2 79 3.47 ± 0.065 a 79 3.39 ± 0.058 a 79 3.53± 0.074 a

L3 76 3.41 ± 0.065 b 77 3.77 ± 0.086 a 79 3.44 ± 0.057 b

L4 71 3.56 ± 0.069 a 69 3.49 ± 0.064 a 77 3.62 ± 0.064 a

L5 65 3.29 ± 0.065 b 59 3.51 ± 0.086 a 77 2.98 ± 0.062 c

L6 60 3.42 ± 0.083 b 51 3.74 ± 0.068 a 77 3.18 ± 0.118 b

Pupa 54 8.20 ± 0.081 a 44 7.43 ± 0.110 b 75 6.91± 0.109 c

Adult
Longevity 53 10.3 ± 0.237 b 44 9.73 ± 0.135 c 75 11.4 ± 0.086 a

Male adult
Longevity 23 9.74 ± 0.310 b 15 9.20 ± 0.170 b 35 11.4 ± 0.130 a

Female adult
Longevity 30 10.8 ± 0.320 b 29 10.0 ± 0.160 b 40 11.4 ± 0.110 a

SE was estimated by Bootstrapping (100,000 replications), and L1–L6 indicates the larval instar. n = shows the
number of individuals; means sharing similar letters are not significantly different determined using the paired
bootstrap test (p < 0.05); L1–L6 shows the larval instars.

The study found that the control group had a shorter adult pre-oviposition period
(APOP) of 2.35 days, while the APOP period was longer in the B. bassiana and M. anisopliae
treatments (2.67 days and 2.55 days, respectively). However, the total pre-oviposition
period (TPOP) was longer in the control group (35.3 days) compared with the B. bassiana
and M. anisopliae treatments (33.3 days). When immature stages were fed on EPF-inoculated
leaves, the oviposition period of females was shorter (3.6–3.8 days) compared with the
control group (4.58 days). The lowest fecundity rate was recorded in the M. anisopliae
treatment (260.0 eggs/female), followed by 290.1 eggs/female in B. bassiana, compared
with the control group (435.6 eggs/female). All reproductive parameters, including intrinsic
increase rate (r) and finite increase rate (λ), net reproductive rate (Ro), and generation time
(T) of S. frugiperda, were reduced in both EPF treatments compared with the control group
(Table 2).

Figure 2 displays the age-stage-specific survival rate (sxj) of S. frugiperda after treatment
with EPF. The curve represents the survival rate from the egg stage to age x and stage j.
Male and female adults emerged on the 29th day in the control group and the 26th day in
the M. anisopliae treatment group. In the B. bassiana group, the male emerged on the 28th
day and the female on the 27th day (Figure 2). The life expectancy rate (exj) curve shows
the expected survival time of individuals of age x and stage j. The exj curves of larvae
and adults of S. frugiperda treated with both EPF were lower compared with the untreated
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(control) group. At age zero (e01), the exj of S. frugiperda was 43.1 days in the control group,
33.5 days in the B. bassiana treatment group, and 30 days in the M. anisopliae treatment
group (Figure 3). Females were predicted to live for 13.5 days and 13.7 days, while males
were predicted to live for 11.5 days and 12 days when fed on maize plants inoculated with
B. bassiana and M. anisopliae, respectively. In non-inoculated maize plants, females and
males were predicted to live for 14.45 and 15.08 days (Figure 3).

Figure 2. Age-stage-specific survival rate (sxj) of Spodoptera frugiperda fed on endophytic colonized
and non-colonized plants.



Microorganisms 2023, 11, 1067 7 of 14

Figure 3. Age-stage-specific life expectancy (exj) of Spodoptera frugiperda fed on endophytic colonized
and non-colonized plants.

Figure 4 displays the age-specific survival rate (lx), age-stage-specific fecundity (fxj),
age-specific fecundity (mx), and age-specific maternity (lxmx) of S. frugiperda after EPF
application. The fecundity rate of female S. frugiperda appeared on the 31st day in control,
29th day in B. bassiana, and on the 28th day in M. anisopliae. Overall, the maternity rate of S.
frugiperda peaked on the 39th day in control and B. bassiana, and 43rd day in M. anisopliae
(Figure 4). The age-stage reproductive value (vxj) indicates the future population growth of
individuals of age x and stage j. At age zero (v01), the vxj of S. frugiperda was 1.146 d−1 in
control, 1.135 d−1 in B. bassiana, and 1.133 d−1 in M. anisopliae. The highest reproductive
value of female was observed in the case of control at age 36 days (v36,9 = 247.07 d−1).
However, the vxj value was highest (v33,9 = 177.92 d−1) on the 33rd day in B. bassiana, and
in the case of M. anisopliae, higher peaks of vxj were recorded; v32,9 = 154.39 d−1 at 32 days
and v34,9 = 154.46 d−1 at 34 days (Figure 5).
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Figure 4. Age-stage-specific survival rate (lx), age-stage specific fecundity (fxj), age-specific fecundity
(mx) and age-specific maternity (lxmx) of Spodoptera frugiperda fed on endophytic colonized and
non-colonized plants.

Table 2. Comparison of reproductive and life table parameters (mean ± SE) of Spodoptera frugiperda
fed on maize plants colonized with Beauveria bassiana and Metarhizium anisopliae in comparison with
untreated plants.

Parameters B. bassiana M. anisopliae Control

APOP 2.67 ± 0.110 a 2.55 ± 0.090 ab 2.35 ± 0.080 b

TPOP 33.3 ± 0.270 b 33.3 ± 0.400 b 35.3 ± 0.280 a

Oviposition days 3.80 ± 0.120 b 3.62 ± 0.090 b 4.58 ± 0.090 a

Fecundity 290.1 ± 9.870 b 260.0 ± 8.030 c 435.6 ± 10.930 a

Ro (offspring individual−1) 108.7 ± 16.11 b 94.30 ± 14.31 c 217.8 ± 24.99 a

T (d) 36.8 ± 0.300 b 36.3 ± 0.430 b 39.3 ± 0.280 a

r (d−1) 0.127 ± 0.004 b 0.125 ± 0.004 b 0.133 ± 0.003 a

λ (d−1) 1.135 ± 0.004 b 1.133 ± 0.005 b 1.146 ± 0.003 a
SE was estimated by bootstrapping (100,000). Whereas R0 = Net reproductive rate, r = Intrinsic rate of increase,
λ = Finite rate of increase, T = Mean generation time; means sharing similar letters are not significantly different
as determined using the paired bootstrap test (p < 0.05).
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Figure 5. Age-stage-specific reproductive value (vxj) of Spodoptera frugiperda fed on endophytic
colonized and non-colonized plants.

4. Discussion

Entomopathogenic fungi (EPF) have been found to be effective in controlling several
economic insect pests, providing an alternative to chemical control. However, unfavorable
weather conditions may hinder the exposure of fungal spores in the field, thereby reducing
their efficiency and level of utilization [30]. To address this, inoculating EPF as fungal
endophytes can be a useful approach to reducing the negative effects of abiotic stressors [12],
rather than relying on inundative methods. Previous studies have identified a variety of
EPF as natural endophytes of important crops such as potato, maize, cotton, tomato, and
chickpea [11,31–33]. Of the various EPF, B. bassiana and M. anisopliae are well-known for
their ability to colonize plants endophytically [11]. In general, many recent investigations
stated that numerous B. bassiana and M. anisopliae isolates have shown the high efficiency
of these fungi in the infection and control of S. frugiperda larvae [34–38]. We conducted
this study to investigate the endophytic effects of two different entomopathogenic fungi, B.
bassiana, and M. anisopliae, using two inoculation methods: foliar spray and seed inoculation.
The foliar spray method was found to be more effective in terms of high percent colonization
in the leaves compared to seed inoculation. The choice of inoculation method may depend
on the targeted plant part for endophytic colonization or the insect species to be controlled,
such as sucking insects, root and stem borers, or leaf-chewing insects. According to [39],
the foliar spray method is the easiest to use in the field. However, some studies have
reported no colonization of EPF into the stem or leaf through seed inoculation [19,32],
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which could be due to the negative effects of microorganisms present in the soil that act
as antagonists for EPF. The presence of both EPFs was higher 14 days after inoculation,
but the percentage decreased on the 28th day. The percent colonization rate may depend
on the fungal strains and plant species. The plant growth stage can also be another factor
affecting the colonization rate of EPF. Rajab et al. [40] reported that the fungus was able to
colonize cucumber plants more efficiently in the first stage of plant growth compared to the
seedling stage. Rondot and Reineke [41] recorded the existence of B. bassiana in grapevine
plants after 28 days of inoculation, while Akello et al. [42] reported it could be re-isolated
up to 120 days after inoculation from banana plants. Posada et al. [39] isolated B. bassiana
at low rates from coffee tissues after 120 days of inoculation.

Our study revealed that the larval and pupal stages were negatively impacted when
feeding on leaves inoculated with EPF, particularly M. anisopliae. The developmental period
was extended in larvae that fed on EPF-inoculated leaves compared to those that consumed
untreated leaves. Our findings are consistent with previous research indicating that EPF
can increase the developmental time of insects [43,44]. The prolonged development of
immature stages of insects may be attributed to the reduced conversion of ingested and
digested food after exposure to fungi, leading to slower larval development [43].

Our study found that feeding larvae on EPF-inoculated leaves, particularly M. aniso-
pliae, adversely affected their larval and pupal periods. The developmental time was longer
for those larvae fed on EPF-inoculated leaves than for those fed on untreated leaves. Our
findings regarding the extended developmental time of insects due to EPF are consistent
with previous studies [43,44]. This increase in developmental time could be due to a de-
crease in the conversion of digested and ingested food after fungal exposure, which slows
the development of larvae [43].

The longevity of adults was reduced when their immature stages were fed on EPF-
inoculated leaves. Similarly, the fecundity rate of female adults that emerged from surviving
pupae fed on EPF-inoculated leaves was considerably reduced compared to the control.
Other population parameters, such as Ro, r, λ, and T, were also reduced when using fungal
endophytes. Therefore, inoculating plants with EPF can significantly reduce the feeding
and oviposition of insect pests, as previously reported in studies on the bean stem maggot,
Ophiomyia phaseoli, in bean plants [45] and the cotton leafworm, S. littoralis, in wheat
plants [46]. Plants colonized by fungal endophytes exhibit feeding deterrence or antibiosis
against their insect pests, which could be due to the synthesis of secondary metabolites by
endophytic fungi. Plants colonized with EPF are less favorable to insects and indirectly
affect the fitness of pests, as reported in previous studies [14,16,47–50]. Our findings
are similar to previous studies showing the negative impact of endophytic fungi on the
reproductive potential and lifespan of insects [51,52]. These negative effects could be due to
secondary metabolites or the induction of a systemic response in the colonized plants [52].
The endophytic colonization of EPF in plants induces indirect detrimental impacts on
target pests through various non-pathogenic mechanisms, including antixenosis, antibiosis,
and induced systemic resistance [53]. The most commonly known endophytic fungi are
Beauveria and Metarhizium spp., which can synthesize various secondary metabolites with
antifungal, antibacterial, and insecticidal properties [54]. In this study, we did not evaluate
the effect of these EPFs on the plant. However, Rajab et al. [40] reported no negative effects
of B. bassiana colonization in cucumber plants on their pathogenicity. As an advantage, EPF
can increase plant growth, as Rivas-Franco et al. [55] concluded that Metarhizium promoted
maize vegetative growth. However, this depends on the EPF strains used.

Our study revealed that the survival rate of S. frugiperda was significantly lower when
they fed on leaves inoculated with fungal endophytes, compared to those fed on untreated
leaves. Distinctive symptoms were observed in the dead larvae, characterized by their
shrunken and rigid mummy-like appearance. The larvae’s bodies were covered with fungal
mycelia and changed color to either white or green, depending on the fungal species that
infect and demise them. Larvae that consumed leaves contaminated with B. bassiana and
M. anisopliae resulted in cadavers exhibiting white and green colors, respectively.
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Additionally, all life table parameters, including survival rate, life expectancy, repro-
ductive values, fecundity, and maternity rate were adversely affected by the application
of fungal endophytes compared with the control. Previous studies have also reported the
negative impact of endophytic EPF on the life history parameters of insect pests [56–58].
Mortality rates of insect pests using EPF depend on various factors such as the larval
developmental stage [32], fungal strain [59], and inoculation method [51]. For example,
Ramirez-Rodriguez et al. [60] reported that B. bassiana isolates from soil caused 98.3%
mortality of 3rd instar larvae of S. frugiperda, whereas the same strain isolated from endo-
phytically colonized maize plants caused 75% mortality.

Our study demonstrates that the endophytic colonization of plants with EPF can have
a negative impact on the population of S. frugiperda. Our results showed that larvae and
pupae had a prolonged developmental period, and both fecundity and survival rates were
reduced. Previous studies have also reported the effectiveness of various EPFs, such as B.
bassiana and M. anisopliae, in suppressing insect pests [14,52,61–64].

5. Conclusions

The results of our study indicated that endophytic fungi, when applied to maize plants,
had a negative impact on the population of S. frugiperda. We observed a reduction in key
life history parameters such as developmental period, reproduction potential, and survival
rate of the pest. These findings suggest that both EPFs have potential as endophytes in
integrated pest management (IPM) strategies to protect maize plants against this destructive
pest. It is worth noting, however, that our study was conducted under controlled conditions
and further research is needed to confirm the EPFs’ effectiveness in field conditions.
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