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The current state of the environment is a major concern. The quality of the environment
has decreased sharply due to anthropogenic pollution of natural ecosystems. Therefore,
it has become increasingly urgent to find ways to prevent and neutralize eco-pollutants.
Microbial biodegradation and biotransformation processes are important because they
can help break down harmful chemicals into less toxic compounds, ultimately reducing
the impact of xenobiotics on the environment and human health. In addition to being
attractive for cleaning up environmental contamination, microbial biodegradative routes for
recalcitrant compounds can also serve as sources of new catalytic reactions for application
in green chemistry and white biotechnology [1,2].

In this regard, recent efforts of most researchers have mainly concentrated in the field
of applied microbiology, which supports the search for rational ways of biodegradation
and for effective biodegraders of new xenobiotic compounds that continuously enter the
environment [3]. Their harmful effects are enhanced due to the simultaneous presence of
many other active xenobiotics in the system, with varying degrees of degradability and
toxicity. Understanding the mechanisms of microbial degradation and transformation of
pollutants can help us develop effective strategies to remediate contaminated environments
and promote sustainable development.

This Special Issue, entitled “Microbial Biodegradation and Biotransformation”, brings
together a collection of articles that highlight recent advances in the field and shed light on
the potential of microorganisms for bioremediation and biotransformation.

Several studies investigated the bioremediation potential of individual bacterial cul-
tures. For instance, the studies by I. Zinicovscaia’s research group used a cyanobacterium,
Arthrospira platensis (Spirulina), to remove rhenium and nickel from mono- and polymetallic
synthetic effluents [4,5]. The authors determined the optimal growth phases of Spirulina
for the most efficient recovery of metals. Moreover, the changes in the biomass of Spirulina
and its biochemical composition (proteins, carbohydrates, lipids, phycobiliproteins, and
contents of chlorophyll α and β-carotene) were examined.

L. Thi Mo et al. showed a high ability of Rhodococcus erythropolis X5 and S67 to de-
grade n-hexadecane at 10 ◦C (solid hydrophobic substrate) and 26 ◦C (liquid hydrophobic
substrate) [6]. In addition, the authors showed that the presence of hydrocarbon results
in the accumulation of intracellular electron-transparent inclusions (probably triacylglyc-
erols) and changes to the hydrophobicity of the cell wall and fatty acid composition. It is
interesting to note the formation of numerous vesicles and intracellular multimembrane
structures, which likely play a key role in the assimilation of solid hydrophobic substrates
in Rhodococcus.

To enhance the effectiveness of biodegradation processes, natural and artificial mi-
crobial consortia, immobilization of cells, and enzyme catalysts can be applied [7–9].
For instance, the study by E. Efremenko et al. aimed to develop an immobilized arti-
ficial consortium using a poly(vinyl alcohol) cyrogel as a carrier to degrade different
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organophosphorus pesticides (paraoxon, parathion, methyl parathion, diazinon, chlorpyri-
fos, malathion, dimethoate, and demeton-S-methyl) [10]. Two cultures of Gram-positive
and Gram-negative bacterial cells, Pseudomonas esterophilus and Rhodococcus ruber, were se-
lected, and their combination resulted in a 225% improvement in degradation activity. The
immobilized artificial consortium demonstrated multiple uses and showed increased lac-
tonase activity, highlighting the role of cell quorum in the synthetic biosystem’s efficiency.

X. Zheng and colleagues also studied the possibility of eliminating organophosphorus
pesticides and a nerve agent using an enzyme catalyst [11]. For this purpose, a novel
organophosphorus acid anhydrolase was isolated and purified from deep-sea sediment.
This enzyme was highly effective against soman, dichlorvos, paraoxon, coumaphos, and
chlorpyrifos, over a wide pH range and high salinity. The authors concluded that this en-
zyme can be used for decontamination of clothing, food, and polluted site bioremediation.

Immobilization may be an efficient method for accelerating microbial biotransforma-
tion to produce chemicals of economic value. C.J.C. Rodrigues and C.C.C.R. de Carvalho
selected a marine bacterium, Glutamicibacter arilaitensis 232, for the conversion of benzalde-
hyde to benzyl alcohol, a chemical used as a precursor for producing esters in various
industries [12]. Immobilization of cells in alginate improved the robustness of the biocata-
lyst, and a continuous flow reactor packed with immobilized cells significantly increased
benzyl alcohol productivity.

A group of substances known as antiscalants are used to prevent the precipitation and
production of scale-forming mineral salt crystals [13]. Seawater reverse osmosis is a com-
monly used desalination technique. A. Al-Ashhab and colleagues investigated if microbes
found in seawater from a desalination plant could degrade popular commercially available
antiscalants [14]. They conducted laboratory experiments on polyacrylate, polyphospho-
nate, and carboxylated dendrimers and studied how they affect microorganisms. The
results suggest that antiscalants could affect bacterial diversity and community composi-
tion. The differences between the Choa I index (species richness) and the Shannon–Wiener
index (abundance and evenness) could give insights into environmental perturbation and
different bacterial adaptation strategies.

Azo dyes are frequently employed in the food, drug, cosmetic, textile, and leather
industries. Synthetic azo dyes and their metabolites have significant health risks, including
mutagenicity and carcinogenicity [15]. I.M. Kamal and coauthors selected highly efficient
Direct Red 81-degrading bacterial mixtures isolated from tanning wastewater [16]. The
mixed bacterial cultures showed high decolorization rates and tolerance to high dye con-
centrations, temperatures, pH, and salinity, with azoreductase being the main contributor
to DR81 decolorization.

The remediation strategy for toxic compounds can be improved by combining biologi-
cal approaches with chemical/physical treatments. A study conducted by M.M. Rossi et al.
proposed a coupled adsorption and biodegradation process for trichloroethylene removal
using a biofilm–biochar reactor [17]. The study found that the use of pine wood biochar
effectively adsorbs trichloroethylene and supports the reductive dechlorination of Dehalo-
coccoides mccartyi, indicating the feasibility of biochar for field-scale applications.

In addition to the ability to break down harmful chemicals, microorganisms can also
play a role in negative biological effects, such as biodamage to buildings and other materials
in various industrial and household situations. For example, M. Danilaev et al. studied
the biodamage of novel polysiloxane coatings for the protection of organic glass under
challenging natural conditions (tropical climate, high temperature, and high humidity)
and laboratory conditions [18]. The authors found that under natural conditions, the
main contribution to the biofouling of polysiloxane surfaces is from micromycetes of
the genera Aspergillus, Penicillium, Fusarium, and Alternaria. Furthermore, fungi of the
genera Aspergillus and Penicillium make the most significant contribution to biodestruction
due to the production of organic acids. Nevertheless, the developed novel polysiloxane
coating retains its optical-mechanical properties, which emphasizes the promise of its
practical application.
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Pharmaceuticals and personal care products are increasingly becoming a concern for
the environment due to their potential adverse effects on human health and ecosystem
functioning [19]. The COVID-19 pandemic has further highlighted the importance of
understanding the fate and transport of contaminants, including emerging ones, in the
environment [20–22]. Recently, Y. Yin and coauthors reviewed the fate of triclosan, an
emerging contaminant commonly found in personal care products, in aquatic environ-
ments [23]. The review focused on the biodegradation of triclosan by isolated bacterial
strains and microbial consortia, with a particular emphasis on specific and non-specific
biodegradation enzymes involved in the process. This research can inform the development
of strategies for managing the environmental impacts of emerging contaminants, including
those associated with the COVID-19 pandemic.

Finally, I. Ivshina et al. investigated the biodegradation of non-steroidal anti-
inflammatory drugs (NSAIDs) by actinomycetes of the genus Rhodococcus [24]. Their
study examined the individual and combined effects of NSAIDs on cells, focusing on
changes in morphometric characteristics, zeta potential, and catalase activity. This research
found that the presence of NSAIDs resulted in significant changes in the morphometric and
physicochemical properties of Rhodococcus cerastii IEGM 1278 cells, as well as a decrease in
catalase activity. However, the bacteria were still able to degrade NSAIDs, suggesting that
rhodococci have the potential to be used in the bioremediation of environments contami-
nated with NSAIDs. This research highlights the importance of understanding the effects
of emerging contaminants on bacteria and the potential for bioremediation to mitigate their
impacts on the environment.

Overall, the studies presented in this Special Issue, “Microbial Biodegradation and
Biotransformation”, demonstrate the diversity and versatility of microorganisms in the
bioremediation and biotransformation of organic and inorganic compounds and provide
valuable insights into the mechanisms of microbial degradation and transformation. The
findings of these studies have important implications for the development of sustainable
solutions to environmental pollution and the promotion of a circular economy.
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