
Citation: Cruz-Silva, A.; Laureano,

G.; Pereira, M.; Dias, R.; Silva, J.M.d.;

Oliveira, N.; Gouveia, C.; Cruz, C.;

Gama-Carvalho, M.; Alagna, F.; et al.

A New Perspective for Vineyard

Terroir Identity: Looking for

Microbial Indicator Species by Long

Read Nanopore Sequencing.

Microorganisms 2023, 11, 672.

https://doi.org/10.3390/

microorganisms11030672

Academic Editors: Teresa Lino-Neto

and Paula Baptista

Received: 18 January 2023

Revised: 1 March 2023

Accepted: 3 March 2023

Published: 6 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Article

A New Perspective for Vineyard Terroir Identity: Looking for
Microbial Indicator Species by Long Read Nanopore Sequencing
Ana Cruz-Silva 1,2 , Gonçalo Laureano 1,2 , Marcelo Pereira 1 , Ricardo Dias 1,3, José Moreira da Silva 4,
Nuno Oliveira 5, Catarina Gouveia 1,2, Cristina Cruz 3,6 , Margarida Gama-Carvalho 1,7 , Fiammetta Alagna 8 ,
Bernardo Duarte 3,9 and Andreia Figueiredo 1,2,3,*

1 Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa,
1749-016 Lisboa, Portugal

2 Grapevine Pathogen Systems Lab, BioISI Faculdade de Ciências da Universidade de Lisboa,
1749-016 Lisboa, Portugal

3 Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande,
1749-016 Lisboa, Portugal

4 Quinta dos Murças, Esporão Company, Covelinhas, 5050-011 Peso da Régua, Portugal
5 NBI—Natural Business Intelligence, Regia Douro Park, 5000-033 Vila Real, Portugal
6 cE3c—Center for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and

Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande,
1749-016 Lisboa, Portugal

7 Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande,
1749-016 Lisboa, Portugal

8 Energy Technologies and Renewable Sources Department, National Agency for New Technologies, Energy
and Sustainable Economic Development (ENEA), Trisaia Research Centre, 75026 Rotondella, MT, Italy

9 MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Infrastructure Network
Associate Laboratory, Faculty of Sciences of the University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal

* Correspondence: aafigueiredo@fc.ul.pt

Abstract: Grapevine is one of the most important fruit crops worldwide, being Portugal one of
the top wine producers. It is well established that wine sensory characteristics from a particular
region are defined by the physiological responses of the grapevine to its environment and thus, the
concept of terroir in viticulture was established. Among all the factors that contribute to terroir
definition, soil microorganisms play a major role from nutrient recycling to a drastic influence on
plant fitness (growth and protection) and of course wine production. Soil microbiome from four
different terroirs in Quinta dos Murças vineyard was analysed through long-read Oxford Nanopore
sequencing. We have developed an analytical pipeline that allows the identification of function,
ecologies, and indicator species based on long read sequencing data. The Douro vineyard was used
as a case study, and we were able to establish microbiome signatures of each terroir.

Keywords: soil metagenomic; microbiome; long-read nanopore sequencing; microbial signature; grapevine

1. Introduction

Grapevine is one of the most important fruit crops worldwide. In 2021, 7.3 million
hectares of the word cultivated area were dedicated to viticulture to produce table grapes
and wine. Portugal is one of the top 5 producers with 194 thousand hectares of vineyards
and 7.3 million of hectolitres of wine production [1].

Wine can be distinguished as branded wine and terroir wine. Branded wine is pro-
duced by blending grapes from various regions, while terroir wine is made exclusively
from grapes from a specific region that comprises singular characteristics [2]. It is well
established that wine sensory characteristics from a particular region are defined by the
physiological responses of the grapevine to its environment and thus, the concept of terroir
in viticulture was established to define the physical (e.g., climate, soil) and biological
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(e.g., soil microbiota, grape variety, fauna) characteristics, as well as the viticulture and
oenological techniques of a particular geographical location [2]. In 2010, the International
Organization of Vine and Wine published an official definition of terroir: “ Vitivinicultural
“terroir”, is a concept which refers to an area in which collective knowledge of the interactions
between the identifiable physical and biological environment and applied Viti vinicultural practices
develops, providing distinctive characteristics for the products originating from this area. “Terroir”
includes specific soil, topography, climate, landscape characteristics and biodiversity features”,
highlighting its complexity.

Among all the factors that contribute to terroir definition, soil microorganisms play a
major role. Soil microbiota are a very important aspect of the ecosystem, their contribu-
tion going beyond nutrient recycling to a drastic influence on plant fitness (growth and
protection). Vineyard microbiota can greatly influence the productivity of agricultural
systems forming complex and dynamic associations, which can range from mutualistic
to commensal to pathogenic [3–7]. Several examples of this have already been described
for grapevine, from plant inoculation with growth-promoting bacteria leading to increase
in growth and bunch production per plant [4]; to protection against pathogens such as
Botrytis cinerea [5,6] and Plasmopara viticola [6,7] with natural antagonists.

Also, microbial activity has a special influence on wine production and quality [8,9].
Studies of grape and must microbiomes highlight differences in fungal and bacterial
communities of different regions [10,11]. Considering that soil is a reservoir of microbial
communities in the vineyard [12], terroir-associated microbiota will certainly influence not
only both grapevine plants’ ability to cope with stress and its fitness, but also ultimately
terroir wine sensory characteristics. Moreover, soil could represent an important source of
grapevine pathogens inoculum [13], so understanding the potential differences between
their abundances in soil could help in the definition the viticulture management practices.

In this study, we aimed at defining microbiome signatures and indicator species for
different terroirs based on long-read Oxford Nanopore sequencing. Quinta dos Murças, an
organic vineyard located in the demarcated wine region of the Douro Valley, was chosen as
a case study has it presents a unique topography and exposure, and different terroirs were
previously identified.

2. Materials and Methods
2.1. Vineyard Location and Sampling

Soil samples were collected at Quinta dos Murças, belonging to the wine company
Esporão, located at Alto Douro Wine Region, right bank of the Douro River (41◦09′11.9′′

N 7◦41′17.3′′ W), Portugal (Figure 1). These vineyards are managed by a single owner,
minimizing differences in viticulture management, and an organic viticulture approach is
followed. Soil is derived from metasedimentary rocks and granitoids, being the vineyard’s
soils of schistose origin. As the soil in vineyards has been strongly affected by human
activities it can be classified as an anthropology [14]. Different terroirs have been defined
in this vineyard, according to soil and edaphoclimatic conditions.

Four terroirs were selected for this study (Table 1), bulk soil samples were collected
in 2018, during grapevine season (July and mid-September) at a depth of 5–20 cm under
the canopy of adult grapevine plants (namely from the cultivar Touriga nacional—evenly
represented in all the terroirs). Phytosanitary status of the vineyard was consistently
monitored throughout the seasons and years. To avoid differences in soil composition,
soil samples were taken between grapevine plants in the same row and fifteen sites were
sampled per terroir. Soil samples were taken and mixed to obtain a homogeneous sample
of about 5 kg. Homogenized soil was immediately passed through a 2-mm-pore-size sieve,
and five subsamples of 100 g each were randomly selected and stored in sterile bags on dry
ice at the time of sampling. Samples were then kept at −80 ◦C until processing.
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Figure 1. Quinta dos Murças from the wine company Esporão, located at Alto Douro Wine Re-
gion map illustration (https://www.esporao.com/pt-pt/sobre/quinta-dos-murcas/; accessed on 17
January 2023). VV—Vinhas Velhas.

Table 1. Terroir geographical and soil characteristics. In all terroirs the grapevines were conducted in
the vertical.

Terroir Altitude (m) Sun
Exposure

Types of
Plantations

Soil
Composition

Year of
Plantation

Margem 140–170 SouthWest Vertical
schist blocks
and pebbles
rolled schist

1980–1987

Vinhas
Velhas 260–290 South-East Vertical schist 1947

Assobio 231–308 North Vertical mica-schist 1987

Reserva 150–280 SouthWest Vertical mica-schist 1980–1987

2.2. Determination of Soil Physicochemical Characteristics

For each terroir, several soil parameters were evaluated, namely: pH, water content,
organic matter (OM), nitrate (NO3

-), total phosphate and inorganic soluble phosphate
(PO4

−). Five soil samples taken in mid-September were used per terroir.
A 1:10 soil water extract was prepared as described in Dias et al. [15] and used to

determine soil pH by means of a selective electrode; nitrate concentration by vanadium
trichloride (VCl3) Griess reaction [16]; and inorganic soluble phosphate (PO4

−) by malachite
green reaction [17]. Soil organic matter was determined by loss of ignition according to
Schulte and Hopkins [18]. To determine the total soil phosphate concentration, the soil
ashes obtained after ignition of the organic matter were resuspended in 1 M KCl and
subsequently analysed using the malachite green reaction [17].

The concentrations of NO3
-, total PO4

- and inorganic soluble PO4
- were expressed

as mg or µg per gram of dry soil. Soil dry weight was obtained by drying soil samples at
45 ◦C until constant weight. Organic matter (OM) concentrations were also expressed as %
of dry soil.

The Kruskal-Wallis test coupled with post hoc Fisher’s and a Bonferroni correction
adjustment method was used to define the statistical significance of all physiological

https://www.esporao.com/pt-pt/sobre/quinta-dos-murcas/
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parameters between the terroirs. Statistical analysis was performed with the agricolae R
package [19].

2.3. DNA Extraction

From each terroir soil sample, total DNA extraction was performed using the DNeasy®

PowerMax® Soil Kit (Qiagen, MD, USA), with slight changes to the manufacturer protocol.
The protocol’s input material and lysis steps were adapted to fit different soil textures (for
drier soils, 5 g of input soil were used instead of 10 g and an additional heating step was
performed during lysis). DNA quality and concentration were assessed by NanoDropTM

One and QubitTM 4 Flourometer analysis. Three biological replicates for each terroir were
obtained and used as independent samples.

2.4. Metagenomic Sequencing by Long-Read Nanopore

Quantification steps were performed using the dsDNA HS assay for Qubit. DNA
was end-repaired (New England BioLabs, MA, USA), cleaned with Agencourt AMPure
XP Beads (Beckman Coulter, High Wycombe, UK) and dA-tailed (New England BioLabs,
MA, USA). The library was prepared from 1400 ng input DNA using the SQK-LSK109
kit (Oxford Nanopore Technologies, Oxford, UK) in accordance with the manufacturer’s
protocol.

The library was quantified and prepared for GridION sequencing, using FLO-MIN106
flowcells, MinKNOW v18.12.4, standard 48-h run script with active channel selection
enabled, until 2.5 Gb of data was collected from each sample. The mean read length of the
sequenced reads was 3944 bps and the mean quality score was 10.45.

2.5. Bioinformatic Analysis

After removing the low-quality gDNA reads, the remaining reads were filtered for
size and quality keeping reads with lengths higher than 300 bps and phred score ≥ 7, using
Prinseq-lite version 0.20.4 [20].

A customized in-house analytical pipeline for long-read Nanopore sequencing was
used to obtain high-accuracy taxonomical classification. The used approach had been
validated through ZymoBIOMICSTM Microbial Community Standard (Zymo Research
Corp., Irvine, CA, USA). Taxonomic classification was performed using Kraken2 (version
2.1.2), running on default options and using a reference database including the NCBI Refseq
reference genomes of Archaea, Bacteria, Viruses and the NCBI Genbank reference and
representative genomes of Fungi [21].

Rarefaction curve to assess the sequencing depth (R package vegan; Figure S1) fol-
lowed by a sample rarefaction to the lowest number of reads was performed (R package
phylosep; 711 seed). Alpha diversity of microbiota community was assessed by calculating
the Chao1 richness [22], Shannon diversity [23,24] and Pielou evenness [25] indexes using
the microbiome R package [26] and compared between terroir with a Kruskal-Wallis test
coupled with post hoc criterium Fisher’s least significant difference with Bonferroni correc-
tion adjustment method using agricolae R package [19]. Chao1 index considers the number
of species in the community. Shannon considers the number of species and their relative
abundance, measuring the uncertainty about the identity of an unknown individual. Pielou
evenness index tell us if the number of individuals of each species is even or not in an area.

Taxonomical relative abundance analyses were performed using the microbiome R
package [26] and compared between terroirs by Kruskal-Wallis test coupled with post
hoc criterium Fisher’s least significant difference with Bonferroni correction adjustment
methods [19]. Phylum relative abundance was calculated based on phylum absolute
abundance and class relative abundance was calculated based on class absolute abundance.
Functional analysis was performed with the microeco [27] R package using the procaryotes
database FAPROTAX [28] and FungalTraits for fungi [29]. Tables S1 and S2 show the
functions and ecologies associated with species.
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For the identification of potential terroir-associated indicator species and functions,
taxonomic reconstruction species had to meet three criteria: (1) Correlation indices analysis
based on point biserial correlation coefficient must present a significant (p > 0.05) association
to a given Terroir. This analysis was performed using the R package “indicspecies” [30],
results were visualised as network generated using Cytoscape (version 3.9.1) with the
edge-weighted spring-embedded layout and terroirs were defined as source nodes, the
associated species as nodes and the association strength as edges. (2) Variable Importance
for Projection Partial Least-Squares Discriminant Analysis (VIP-PLS-DA) must present a
VIP score > 1. VIP-PLS-DA analyses were made using the R package DiscriMiner [31].
(3) relative abundance of the identified species must be significantly (p > 0.05) higher in
the terroirs. This analysis was performed using by Kruskal-Wallis test coupled with post
hoc criterium Fisher’s least significant difference with Bonferroni correction adjustment
methods [19]. All R analysis were performed in R-studio version 1.4.1717.

3. Results
3.1. Physicochemical Characterization of Quinta dos Murças Terroirs

Six physicochemical characteristics (pH, organic matter content (OM), water content,
inorganic soluble and total phosphate, and nitrate content) were analysed. All terroirs
presented a slightly acidic pH, with Assobio and Margem covering the less acidic soils, and
Vinhas Velhas the most (Table 2). Though the difference in pH is less than 1, this can greatly
affect the bioavailability of nutrients [32].

Table 2. Mean and standard deviation values for each of the soil physicochemical parameters
analysed for Assobio, Vinhas Velhas, Margem and Reserva. Different letters indicate statistically
significant differences between the terroirs, considering p < 0.05 (n = 5).

Assobio Vinhas Velhas Margem Reserva

pH 6.15 ± 0.06 a 5.69± 0.2 b 6.15 ± 0.21 a 5.98 ± 0.15 ab

OM (%) 5.54 ± 0.12 a 5.11 ± 0.47 a 4.98 ± 0.86 a 3.82 ± 0.18 b

Soil water content (%) 1.65 ± 0.55 a 1.16 ± 0.51 a 2.08 ± 0.63 a 1.77 ± 0.28 a

Inorganic soluble PO4
− (µg/g soil) 2.66 ± 1.62 c 20.3 ± 0.46 ab 27.4 ± 13.46 a 9.07 ± 1.92 bc

Total phosphate (mg/g soil) 0.18 ± 0.03 a 0.61 ± 0.43 a 0.30 ± 0.11 a 0.01 ± 0.01 b

Nitrate (µg/g soil) 10.76 ± 4.62 a 3.67 ± 0.67 b 17.85 ± 9.38 a 3.25 ± 1.27 b

Reserva shows significantly lower OM than the other terroirs. From all the terroirs
analysed, Vinhas Velhas presented the highest total phosphate contents, followed by
Margem. Reserva soil presented the lowest amount of total and available phosphate.
Considering inorganic soluble phosphate, Margem soil presented the highest content.
Nitrate was more abundant in Margem and Assobio, being significantly higher than in the
Vinhas Velhas and Reserva terroirs.

3.2. Global Terroir Microbiome Analysis

Terroir-associated microbiome was assessed by long-read Oxford Nanopore sequenc-
ing technology. A total of 12.56 million reads were obtained. Reads with ≥300 bps and
quality score ≥7 were considered for taxonomic analysis. A total of 9.19 million reads
were used for taxonomic reconstruction analysis. An in-house pipeline based on k-mers
taxonomic classification was used, leading to the identification of 2.73 million reads. After
rarefaction (Figure S1), 9670 different microbial taxa were identified, 8558 of those at species
level (Table S3). The taxa were further classified as Bacteria (5792), Viruses (313), Archaea
(274) and Fungi/Oomycete (3291). Overall, 67 Phyla, 149 Classes, 351 Orders, 841 Families
and 2633 Genera were identified.

Looking at the overall representation of the identified taxa, Bacteria was the most
represented kingdom followed by Eukaryota (considering fungi and oomycete only) while
Archaea and Virus kingdoms were the less represented (Figure S2A). Considering Phyla,
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seven Archaea phyla (Figure S2B) were found and of these, Euryarchaeota presented the
higher relative abundances (>0.7). Candidatus Korarchaeota is the less represented phylum.
Whitin Eukaryota, Ascomycota presented higher relative abundances followed by Basid-
iomycota, Oomycota and Mucoromycota (Figure S2C), while Sanchytriomycota presented
the lower relative abundances. Considering virus, Uroviricota (virus that infect bacteria and
archaea) were the more abundant, while Cossaviricota were the less abundant (Figure S2D).
When looking at the Bacteria phyla (Figure S2E), Proteobacteria and Actinobacteria were
the phyla with higher relative abundances, both above 0.3. The remaining phyla showed
relative abundances lower than 0.1, being Balneolaeota the phylum with lowest relative
abundance.

Alpha diversity, that determines microorganisms’ diversity within each terroir, was
analysed based on the Chao1 richness, Shannon diversity and Pielou evenness indexes
(Figure 2). Through both Shannon and Chao1 indexes, no significant differences were
detected between the terroirs (Figure 2A,B). The Pielou evenness index, however, showed
that Margem terroir presents a significant higher diversity than Reserva terroir (Figure 2C).
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significant differences at p < 0.05.

Next, the most abundant phyla on the different terroirs were assessed. Within Bacteria
kingdom, Proteobacteria, Plantomycetes, Firmicutes, Bacteroidetes, Actinobacteria and Aci-
dobacteria were the more abundant phyla (Figure 3). The Bacteroidetes and Acidobacteria
phyla were the only that presented statistical significances between terroirs (Figure 3A). Bac-
teroidetes relative abundance was significantly higher in Margem samples when compared
to Reserva soil. Acidobacteria relative abundance is also significantly higher in Reserva
terroir when compared to Assobio and Margem terroirs (Figure 3A). Margem is the terroir
that presents the lower abundance of Acidobacteria. At class level, Deltaproteobacteria,
Betaproteobacteria, Alphaproteobacteria, and Acidobacteriia abundances were significantly
different between the four terroirs (Figure 3B). Alphaproteobacteria presented a higher
abundance in Assobio soil when compared to Reserva soil. The terroirs Margem and
Assobio presented a higher abundance of Betaproteobacteria when compared to Reserva
and Vinhas Velhas. Also, the Vinhas Velhas terroir presented lowest Betaproteobacteria
relative abundance. The Margem terroir showed significantly higher relative abundance of
Deltaproteobacteria class when compared to all the terroirs.

Considering Eukaryota, Plantomycetes, Oomycota, Basidiomycota and Ascomycota
showed no significant differences between the terroirs. Mucoromycota presents significant
lower relative abundance in Vinhas Velhas soil samples when compared to the other terroirs
(Figure 3A). At Class level, Eurotiomycetes and Sordariomycetes presented no significant
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differences between the terroirs. Dothideomycetes relative abundance is significantly higher
in Assobio and Margem soils when compared to Reserva soils (Figure 3B). Agaricomycetes
abundance is significantly higher in Assobio samples comparatively to Reserva samples.
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of 0.005 for phylum and 0.01 for Class; prevalence of 0.05). The remaining taxa are included in
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3.3. Functional Analysis

Functional analysis was done considering the identified species, to assess metabolic or
other ecologically relevant functions of the different terroir’s microbiome. Bacterial and
fungal ecological functions present a very similar distribution/representation across all
terroirs, globally maintaining the same relative abundances, with some subtle differences
that specifically differentiate them. A cluster analysis allowed the discrimination of two
groups, one including Reserva and Vinhas Velhas terroir samples and other including
Assobio and Margem terroir samples, for both prokaryotic function (Figure S3) and fungi
ecology (Figure S4).

Although being the prevalent bacterial function identified across all terroirs, “nitrogen
fixation” occurs at much higher abundances in the Assobio and Vinhas Velhas terroirs
and allowed the discrimination between Assobio and Margem (Figure 4A). “Xylanolysis”
appears as the second function with higher relative abundance allowing the discrimination
of Reserva terroir samples from the other terroirs. Though being a less abundant function,
“nitrification” also allows the discrimination between Margem and Vinhas Velhas samples.

Regarding fungi associated functions, the Reserva terroir present significant alter-
ations in the relative contribution of “decay substrate” the function with higher relative
abundance from those that present statistical significances (Figure 4B). The second higher
relative abundance fungi function, “endophytic interaction capability—foliar endophyte”
presented significant differences between the Margem and Reserva (Figure 4B). “Root
associated” classification present the lowest abundance of in Vinhas Velhas terroir when
compared to other terroirs, as well as “Endophytic interaction capability—root endophyte”.
Considering mycorrhiza associated guilds, “arbuscular mycorrhizal—secondary lifestyle”
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and “ectomycorrhizal” present statistical differences between Reserva and Vinhas Velhas
terroir samples. “Arbuscular mycorrhizal—primary lifestyle” is also significantly different
in present Vinhas Velhas when comparing to the other terroirs, presenting the lowest
abundance (Figure 4B). Considering “Foliar endophytes”, Margem and Reserva terroir
samples were statistically different with Margem presenting a higher abundance when
compared to Reserva.
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Figure 4. Terroir associated Bacterial functions predicted by FAPROTAX database (A) and Fungi
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methods; only functions or ecological guilds with significant differences between samples were
plotted).

3.4. Identification of Indicator Species and Functions for Each Terroir

To depict possible indicator species responsible for terroir discrimination, a point
biserial correlation analysis and a Variable Importance for Projection Partial Least-Squares
Discriminant Analysis (VIP-PLS-DA) were conducted. The point biserial correlation anal-
ysis enabled the identification of 344 indicator species with significant association to the
terroirs (Figure 5). Margem presented the highest number of indicator species (124), com-
prised in 21 different Phyla, the majority belonging to Proteobacteria (36), Ascomycota
(30), Basidiomycota (18) and Actinobacteria (11). Assobio presented 100 indicator species
belonging to 12 different phyla, with a predominance of Proteobacteria (36), followed
by Ascomycota (22), Basidiomycota (12) and Bacteroidetes (11). Vinhas Velhas presented
75 indicator species, 35 belonging to Actinobacteria and 12 to Proteobacteria, the more
represented phyla. Reserva is the terroir with the lowest number of indicator species,
mostly represented in Actinobacteria (17) and Proteobacteria (12) phyla.
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We were able to identify also potential indicator functions and fungal ecology for each
terroir based on Prokaryotic and Eukaryotic species. Considering the prokaryotic function,
Assobio is the terroirs with higher number (7), followed by Margem (3) and Reserva (1).
Vinhas Velhas had no indicator function identified. Based on fungal ecology Margem was
the terroirs with higher number of potential indicators (10), followed by Assobio with
4 indicator fungal ecology. Reserva and Vinhas Velhas had the same number on fungal
indicator ecologies (2).

For visualisation purposes PLS-DA biplots were produced to better visualize the sam-
ple dispersion and grouping at microbiome (Figure 6A), prokaryotic function (Figure 6B)
and fungal ecology levels (Figure 6C). Considering the terroir microbiome (Figure 6A), 3278
species presented a VIP score >1, thus contributing to PLS-DA model terroir separation.
The PLS-DA biplot shows a clear spatial pattern, with the samples organized in clusters
according to the collection area (terroir), resulting in 100% accuracy in correctly classifying
the terroir samples according to the species abundance dataset (Figure 7). The VIP-PLS-DA
projection for prokaryotic functional and fungal ecology is shown in Figure 6B,C. The
PLS-DA biplot shows function organization in clusters according to the collection area
(terroir), resulting in 77.78% accuracy in correctly classifying the prokaryotic functions to
the terroirs and 88.89% accuracy in correctly classifying the fungal ecology indicators to
the terroirs (Figure 7). Reserva and Vinhas Velhas were the terroirs with the lowest model
accuracy considering indicator functions, while Margem was the terroirs with the lowest
model accuracy considering fungal ecology indicators (Figure 7).

Microorganisms 2023, 11, x FOR PEER REVIEW 11 of 21 
 

 

3278 species presented a VIP score >1, thus contributing to PLS-DA model terroir 
separation. The PLS-DA biplot shows a clear spatial pattern, with the samples organized 
in clusters according to the collection area (terroir), resulting in 100% accuracy in correctly 
classifying the terroir samples according to the species abundance dataset (Figure 7). The 
VIP-PLS-DA projection for prokaryotic functional and fungal ecology is shown in Figure 
6B,C. The PLS-DA biplot shows function organization in clusters according to the 
collection area (terroir), resulting in 77.78% accuracy in correctly classifying the 
prokaryotic functions to the terroirs and 88.89% accuracy in correctly classifying the 
fungal ecology indicators to the terroirs (Figure 7). Reserva and Vinhas Velhas were the 
terroirs with the lowest model accuracy considering indicator functions, while Margem 
was the terroirs with the lowest model accuracy considering fungal ecology indicators 
(Figure 7). 

 
Figure 6. Partial least-squares discriminant analysis (PLS-DA) projection plots of the Terroir 
microbiome (A), Prokaryotic function (B) and Fungi ecology (C). 
Figure 6. Partial least-squares discriminant analysis (PLS-DA) projection plots of the Terroir micro-
biome (A), Prokaryotic function (B) and Fungi ecology (C).



Microorganisms 2023, 11, 672 11 of 19Microorganisms 2023, 11, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 7. Partial Least-Squares Discriminant Analysis (PLS-DA) confusion matrix and overall model 
accuracy. 

When comparing both approaches (VIP-PLS-DA and point biserial correlation 
analysis) 313 species, 11 prokaryotic function and 16 fungi ecologies were commonly 
identified as terroir-associated indicators. Of the species, 37 presented statistically 
different relative abundances in their specific terroir (Figure 8), while only 1 prokaryotic 
function and two fungi ecologies presented statistical differences. Assobio was the terroir 
with higher number of indicators taxa (14), being most of them low abundance taxa, with 
exception of Paraburkholderia species that were highly represented. Five of these species 
were exclusive to Assobio terroir samples while seven others were also present in other 
terroirs with different abundances (Figure S5). These indicator species belong to six 
different phyla (Bacteroidetes, Proteobacteria, Actinobacteria, Ascomycota, 
Basidiomycota, Firmicutes), being the Genus Paraburkholderia the only with two species. 
Assobio was also the only terroir with identified indicator function (dark iron oxidation) 
and fungi ecologies (“litter saprotroph” as primary lifestyle and “gills” Hymenium type). 
Twelve indicator species were identified for Margem terroir samples, six were exclusively 
present in this terroir (Figure S5). Margem indicator species belong to nine different phyla 
(Synergistetes, Actinobacteria, Thaumarchaeota, Verrucomicrobia, Ascomycota, 
Proteobacteria, Nitrospirae, Firmicutes, Deinococcus-Thermus), all with different Genus. 
Vinhas Velhas terroir samples revealed to have seven indicator species, with only one 
being exclusive to this terroir. Vinhas Velhas samples indicator species belonging to two 
phyla, Bacteroidetes and Actinobacteria, with six of these indicator species belong to the 
Genus Mycobacterium. Reserva terroir revealed the lower number of indicator species, four 
species belonging to tree different phyla, Actinobacteria, Ascomycota and Acidobacteria. 
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When comparing both approaches (VIP-PLS-DA and point biserial correlation analy-
sis) 313 species, 11 prokaryotic function and 16 fungi ecologies were commonly identified
as terroir-associated indicators. Of the species, 37 presented statistically different rela-
tive abundances in their specific terroir (Figure 8), while only 1 prokaryotic function and
two fungi ecologies presented statistical differences. Assobio was the terroir with higher
number of indicators taxa (14), being most of them low abundance taxa, with exception of
Paraburkholderia species that were highly represented. Five of these species were exclusive to
Assobio terroir samples while seven others were also present in other terroirs with different
abundances (Figure S5). These indicator species belong to six different phyla (Bacteroidetes,
Proteobacteria, Actinobacteria, Ascomycota, Basidiomycota, Firmicutes), being the Genus
Paraburkholderia the only with two species. Assobio was also the only terroir with identified
indicator function (dark iron oxidation) and fungi ecologies (“litter saprotroph” as primary
lifestyle and “gills” Hymenium type). Twelve indicator species were identified for Margem
terroir samples, six were exclusively present in this terroir (Figure S5). Margem indicator
species belong to nine different phyla (Synergistetes, Actinobacteria, Thaumarchaeota, Ver-
rucomicrobia, Ascomycota, Proteobacteria, Nitrospirae, Firmicutes, Deinococcus-Thermus),
all with different Genus. Vinhas Velhas terroir samples revealed to have seven indicator
species, with only one being exclusive to this terroir. Vinhas Velhas samples indicator
species belonging to two phyla, Bacteroidetes and Actinobacteria, with six of these in-
dicator species belong to the Genus Mycobacterium. Reserva terroir revealed the lower
number of indicator species, four species belonging to tree different phyla, Actinobacteria,
Ascomycota and Acidobacteria.
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3.5. Grapevine Pathogens

Grapevine pathogens were also found in the terroir soil samples; their relative abun-
dance was rather low. Despite this low abundance, the identification of grapevine pathogens
is important when considering management strategies. Plasmopara viticola, the etiological
agents of downy mildew, were identified in all terroirs while Botrytis cinerea (the etiological
agent of gray mold), was not present in Margem and Vinhas Velhas (Table S4). Erysiphe
necator, the etiological agent of powdery mildew, was only present in Vinhas Velhas terroirs
(Table S4). Several pathogens associated with grapevine truck diseases (GTD) were found,
namely: Eutypa lata, Lasiodiplodia theobromae and Neofusicoccum parvum. These were the Four
pathogens that presented higher abundance, particularly in Margem. Other GTD associated
pathogens were found, Fomitiporia mediterranea, present in all terroirs and Botryosphaeria
dothidea, present in Margem terroirs only. Fungi associated with esca syndrome develop-
ment, Phaeomoniella chlamydospore and Phaeoacremonium minimum, were also found with
higher abundances in Margem terroirs (Table S4).

4. Discussion

Microbial communities associated with the vineyard play an important role in soil
and plant productivity and fitness. Soil is the main microbiota reservoir and the specific
(non-random) association between microorganisms and a particular geographical region
reveals the potential applied impact of microbial terroirs [33]. The definition of microbial
terroirs as well as the understanding of global patterns in the microbial community compo-
sition of specific vineyard soils may prompt the definition of adequate strategies (either
agricultural or biotechnological) for productivity, disease resistance and wine sensorial
traits. Also, information on the presence of grapevine pathogens may also pinpoint targets
for monitoring throughout the crop season or enable the reduction of chemical treatments
and definition of eradication strategies.

Previous studies of vineyard soil microbiome were conducted by focusing on bacteria
and fungi communities through Illumina sequencing [33–35]. To the authors knowledge
this is the first metagenomic study of terroirs soil microbiome utilizing the long-reads
Oxford nanopores sequencing technique. This technique was selected based on its ability to
sequence whole genome without the amplification bias (especially important for discrimi-
nation between different samples) and allowing the discrimination of closed related species.
This study also allowed for the identification of indicator species and function specific for
each terror. Previous study also identified species that contributed for soil distinction but
at a global scale [33].

Reserva was the terroir with lower organic matter values, which is coherent with
the lower abundance of wood decay fungi such as Agaricomycetes [36]. This is also
reflected when analysing the fungi ecology guilds that, apart from exception of “Arbuscular
mycorrhizal fungi”, and “other root-associated fungi”, showed lower relative abundances.
On the other hand, this higher presence of arbuscular mycorrhizal may result from lower
concentration of phosphate and nitrate present in Reserva soil, as a strategy for improved
nutrient uptake by the plants (review by [37]). Considering indicator species, Reserva was
the terroir where a lower number of indicator species were identified, however its indicator
species present roles in nitrogen and phosphate cycles, as well as biomass degradation. This
is the case of Tetrasphaera sp. HKS02, a genus Tetrasphaera well known for its denitrification
activity and Phosphorus (P) uptake ( [38], reviewed in [39]). Moreover, Sinomonas atrocyanea,
also identified as a Reserva terroir indicator species displays nitrate reduction and urease
activities [40,41] as well as indole acetic acid production, and phosphate solubilization
capacity [42]. These functions follow the same trend than Phosphate and nitrogen values
found on this terroir.

Vinhas Velhas was the terroir most similar to Reserva, considering soil physic-chemical
characteristics, namely lower pH values and nitrate concentration. Total and soluble inor-
ganic phosphate concentrations were high in Vinhas Velhas, similarly to Margem. Even
though some soil characteristics were mostly similar to Reserva, Vinhas Velhas presented
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a higher microbial abundance. Several taxa may relate to the soil properties, namely the
lower abundance of Mucoromycota, which may associate with the lower pH and higher
Phosphate concentration found [43], and the lower relative abundance of Betaproteobac-
teria, which may also be associated with the pH and lower nitrate concentration [44]. Of
the eight Vinhas Velhas indicator species, six belong to the genus Mycobacterium. When
analysing deeper this genus, from all Mycobacteria species found (genus Mycobacterium,
Mycolicibacterium, Mycolicibacter, and Mycobacteroides), 70% of these presented higher read
counts in the Vinhas Velhas terroirs them in other terroirs. Mycobacteria are ubiquitous
bacteria present in a broad type of soils and environments; however high abundances
of these bacteria are found in more acidic soils [45]. Although Mycobacterium are mainly
studied as human and animal pathogens, previous studies indicate that the same species
can act as root nodule endophytes, promoting soil nutrient turnover and/or being plant
beneficial agents [46–51].

Assobio and Margem terroirs revealed to be the most similar, when considering the
studied parameters. Only their inorganic phosphate concentration was significantly differ-
ent, with Margem presenting a ten times higher concentration. These were also the terroirs
with the highest relative abundance in most of the analysed taxa. Assobio and Margem
showed higher aerobic nitrite oxidation and nitrification function, which may be associated
with the higher nitrate values found, being this a highly important microbial function while
oxidizing ammonia and nitrite to nitrate, the preferred N uptake form for plants [52]. At the
class level, Margem terroir presented the highest abundance of Deltaproteobacteria. This
class is characterized by sulphate and sulphur reduction bacteria [53–55], dissimilative iron
reducers [56] and bacterial predators [57]. Margem soil’s higher nitrate concentration may
impact nitrogen fixation bacteria abundance since high reactive nitrogen (nitrate, ammo-
nium, or organic nitrogen) concentrations may inhibit the nitrogenase complex [58,59] and
decrease the adaptative advantage of the diazotrophic function. Interestingly, one of the
Margem indicator species belongs to a genus associated to nitrogen fixation, Mesorhizobium
(reviewed in [60], [61,62]). Other indicator species for Margem, are also involved in the
nitrogen metabolic cycle (Nitrospira moscoviensis [63]; Neisseria cinerea [64]; Candidatus
Nitrososphaera gargensis [65]). The presence of microorganisms able to oxidize ammonia
and nitrite, as well as nitrogen fixation may reflect the high nitrate concentration present is
this terroir.

Assobio is the terroir that presents the highest number of indicator functions and
fungi ecological guilds with significantly higher abundances when compared to other
terroirs. Some Assobio indicator species may present biocontrol roles (Collimonas fungivo-
rans [66,67]), other less explored/known functions (Suhomyces canberraensis [68], Flaviflexus
ciconiae [69], Hygrocybe conica [70]), and a high number of plant growth promoting species
(Paraburkholderia graminis [71,72], Paraburkholderia phytofirmans [73,74], Sphingobacterium
multivorum [75], Oidiodendron maius [76], Enterobacter sp. [77,78], Talaromyces islandicus [79]).
These plant-growth promoting microbes are the main group of indicator species found
in Assobio terroir. Of those, P. graminis has been shown to increase the nitrogen content
of plants through an abundance increase of high-affinity nitrate transporter NAR2 and
its activator, as well as increase in ammonium-inducible transporter [72]. Paraburkholderia
phytofirmans colonised tomato plants showed an increase in photosynthesis and photo-
system II activity even in higher temperatures [73], and P. phytofirmans volatile organic
compound conferred tolerance to salinity and increased Arabidopsis growth [74]. Sphingob-
acterium multivorum growth promoting mechanisms are mostly indole-3-acetic acid (IAA)
and siderophore production, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase
activity and phosphate solubilization [75]. Oidiodendron maius is an ericoid mycorrhizal
fungus, with plant growth promoting activity through increased nitrogen uptake [76].
Enterobacter spp. are able to promote plant growth by aiding nitrogen fixation [77], IAA
production [78] and by heavy metal removal from soil through siderophore production [77].
Talaromyces islandicus displays phosphorus solubilization activity improving maise growth
and phosphorus uptake [79]. When looking at the potential indicator functions, dark iron
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oxidation was appointed to Assobio, a terroir with more neutral pH and high concentration
of nitrate, which may explain this indicator. Some of the species identified as being able
to perform iron oxidation are neutrophilic, aerobic iron-oxidizing proteobacteria or neu-
trophilic iron-oxidizing proteobacteria, all of which use nitrate as respiratory substrates [80].
Also, in Assobio terroir, two species of yeast were identified as indicator species. Not much
is known about the species Kazachstania kunashirensis, however other species from this
genus were previously reported as conferring positive aroma attributes to wine in the
presence of Saccharomyces cerevisiae [81,82]. Suhomyces species seem to be able to convert
glucose and trehalose to alcohol by fermentation, thus aiding the wine-making process [68].

In our study, several grapevine pathogens were identified, Margem soil may constitute
a reservoir for grapevine trunk diseases (Eutypa lata, Lasiodiplodia theobromae, Neofusic-
occum parvum and Botryosphaeria dothidea) and esca syndrome pathogens (Phaeomoniella
chlamydospore and Phaeoacremonium minimum) based on pathogens abundance and higher
mortality rate of grapevine in this terroir in the last years, further corroborating that soil
may be an important source of GTD inoculum [13]. Additionally, an uncharacterized
Fusarium sp. S18/39 species was found to be an indicator species for Margem terroir soils.
Although many Fusarium species are grapevine pathogens [83,84], some may also have
a biocontrol action against other diseases [85–87], thus further studies on this particular
species are needed to enlighten its role within grapevine interaction.

Overall, the studied microbiomes reflect the different terroirs, with the possibility to
identity indicator species and function/ecologies to each terroir. In the future, taking into
account that the soil is considered a plant reservoir of microorganisms, a microbiome study
of the must will be interesting to better understand the microorganisms that reflect the
differences in wine quality of each terroir.

5. Conclusions

We have used a long-read sequencing approach to trace and define “microbial ter-
roirs” at an organic vineyard at the Douro region. Our results demonstrated that the soil
microbiome constitutes a terroir signature. Each terroir was also associated with signature
functions, ecologies, and indicator species, suggesting that microbiome analysis is a viable
method to distinguish terroirs. This function and indicator species are not only important
for terroirs distinguish but also for plant development and potential wine production,
reflecting the variety and quality of wine produced in this region. This result may aid the
definition of adequate viticulture and oenological practices.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms11030672/s1, Figure S1: Rarefaction curve showing
number of observed taxa in each terroir sample; Figure S2: Relative abundance of kingdom (A),
Archaea phyla (B), Eukaryota phyla (C), Virus phyla (D) and Bacteria phyla (E) in Quinta dos Murças
soil samples. Relative abundance for phyla is calculated within each kingdom group. Individual
data points from libraries from different terroirs are shown to give an overall perspective on data
variability; Figure S3: Terroir associated Prokaryotes function predicted by FAPROTAX database.
Relative Abundance (0–1) hierarchical clustering based on squared Euclidean distance and complete
linkage method; Figure S4: Terroir associated Fungal functions predicted by FungalTraits database.
Relative Abundance (0–1) hierarchical clustering based on squared Euclidean distance and complete
linkage method; Figure S5: Venn diagram representing the terroir where the 37 identified potential
indicator species can be found; Table S1: Prokaryotic functions based on database FAPROTAX;
Table S2: Fungi ecologies based on database FungalTraits; Table S3: Number different taxonomic
level present in each Terroir.; Table S4: Abundance of detected pathogens in Quinta dos Murças
terroirs soils.
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